Quark Gluon Plasma within QCD framework

Contributors (LPSC/LAPTH):

- ALICE : G. Conesa-Balbastre (CR), J. Faivre (MC), C. Furget (PR), R. Guernane (CR), C. Silvestre (CR), J. Norman (postdoc), H. Yokoyama (PhD Tsukuba/UGA), R. Hosokawa (PhD Tsukuba/UGA), H. Hassan (PhD Liban/UGA)
- **Theory**: I. Schienbein(MC), J.Ph. Guillet (DR), H. Zaraket (PR)

Quark-gluon Plasma is high density deconfined matter, which is produced in Pb-Pb collision at LHC. Its understanding requires:

- to apply particle physics to a system of finite size, complex (large number of constituents) and in dynamical evolution.
- To reconciliate the macroscopic and microscopic views of QGP in the QCD framework :
 - Soft probes (< 3-4 GeV) allow to access to macroscopic/collective properties: EOS, phase diagram, viscosity.
 - Hard probes (>10 GeV) allow to study energy loss within QGP and is sensitive to strong interaction at the partonic level.

This can be done by:

- Precise measurements of various observables and experimental comparison of different systems like
 A-A and p-p (but also p-A) to quantify the effect of QGP.
- Theoretical understanding of the baseline systems (p-p and p-Pb) and a dynamical description of A-A collisions: precise QCD calculations and hydrodynamical models.

Exp. data versus theor. predictions

Exp. viscosity (η /s) compatible with a strong coupling (QFT calculations)

Hadrons-QGP phase transition as predicted by Lattice QCD

Jet quenching (R_AA) compared to pQCD based energy loss models

Upgrade d'ALICE run 3&4

- HL-LHC runs 3+4: > 10 nb⁻¹ (x10 luminosity compared to runs 1+2)
- New electronics (TPC, TOF, TRD, Muon spectro...) + New DAQ & HLT (50 kHz Pb-Pb, O2 project)
- New detectors: ITS (Internal Tracking System) and MFT (Muon Forward tracking)

LPSC involvement (past and future):

Electromagnetic calorimeter (assembly, energy calibration, Level 1 trigger, reconstruction+analysis);
 ITS upgrade (mechanical tools); DAQ and Trigger upgrade (**O2 project**)

LPSC strategy for run3 & 4

General ALICE upgrade:

- Strategy:
 - High tracking efficiency and high resolution at low pT
 - High statistics (x10) using minimum-bias data sample
 - Preserve excellent particle ID capabilities
- Physics topics:
 - Heavy flavour and quarkonia at very low pT
 - Vector mesons and low mass di-leptons
 - Jets measurements to lower pT
 - High precision measurement of light nuclei and hypernuclei

LPSC/ ALICE project:

 Inclusive jets, jet-jet and photon-hadron/jet correlation measurements using combined information of EM calorimetry and ITS

 \rightarrow parton fragmentation related observables and allow to study in-medium modification of parton energy loss and energy redistribution at relatively low pT

 Development of new b-tagging methods for heavy flavour identification in jets:

 \rightarrow allow to study quark flavor dependence of energy loss in QGP: test dead cone effect prediction

Item 1: Jets physics

Physics motivations:

- Explore jet-medium interaction at the partonic level.
- Study the modification of the jet structure due to medium induced radiation (energy redistribution)
- Understand the fundamental QCD dynamics and showering in vacuum and in medium (Jet-medium interaction is expressed in terms of \hat{q} , which is the transferred momentum per length)

Experimental observables:

- Jet inclusive RAA, photon/hadron+Jet coincidences (Jet pT distribution), profile distribution
- Jet Fragmentation functions for inclusive and photonhadron/jet correlations
- Jet sub-structure (N-subjettiness, Delta_R, Z_g, radial moment)
- Need more accurate modeling of jet observables

Jet substructure

Z_g versus radial moment

Item 2: Heavy flavour

1)

Heavy guarks are excellent probes of OGP

- Act as 'calibrated' probe of the QGP
 - Production can be calculated from pQCD
 - Experience full space-time evolution of the system
 - Quark number conserved
- Measure heavy-quark transport properties
- Allow to study collisional vs radiative energy loss and guark flavor dependence of energy loss in QGP

Physics observables for runs 3+4 :

- Transport properties of the medium: HF elliptic flow, $R_{\Delta\Delta}$
- Hadronization mechanisms :
 - baryon-to-meson ratios (Λ_c/D , Λ_b/B), strange mesons (D_s)
- Total cross sections w.r.t pp collisions R_{AA} down to $p_T=0$
- Redistribution of energy, modified fragmentation
 - HF jets (b-jets, c-jets) and correlations (D-hadron, B-hadron..)
- ...Plus smaller systems
 - Heavy-flavour production as a function of multiplicity

QCD related framework

p-p collisions:

- Accurate predictions for charged particle, photon, photon/hadron-jet and heavy quark production
- Constraints on non perturbative fragmentation functions
- Several QCD calculations availables: DIPHOX/JETPHOX and GM-VFNS

p-Pb collisions:

- Constraints of non perturbative nuclear PDFs (nCTEQ) using LHC data. Explore small x gluon nPDF. Use HF and charmonium data.
- Predictions for di-jets production and RpA attenuation factor.

Pb-Pb collisions:

...

- New QDC based energy loss models can provide some insights on jet quenching: energy dependence, size effect, flavour dependence, etc ...
- Several approaches to be compared: pQCD, Mcarlo, etc

QCD related framework

p-p collisions:

- Accurate predictions for charged particle, photon, photon/hadron-jet and heavy quark production
- Constraints on non perturbative fragmentation functions
- Several QCD calculations available: DIPHOX/JETPHOX and GM-VFNS

p-Pb collisions:

- Constraints of non perturbative nuclear PDFs (nCTEQ) using LHC data. Explore small x gluon nPDF. Use HF and charmonium data.
- Predictions for di-jets production and RpA attenuation factor.

Pb-Pb collisions:

...

- New QDC based energy loss models can provide some insights on jet quenching: energy dependence, size effect, flavour dependence, etc ...
- Several approaches to be compared: pQCD, Mcarlo, etc

Predictions for di-jet production

Predictions for RpA(D0) vs rapidity

Running schedule

- Requirements (LOI):
 - Pb-Pb: 10/nb @0.5T + 3/nb @0.2T
 - pp 5.5 TeV: 6/pb (4e11 MB)
 - p-Pb: 50/nb
 - x150 pPb5 2016
- LOI: programme organised in 3+3 years in Runs 3 and 4 assuming:
 - Pb-Pb @ 50 kHz
 - p-Pb @ 200 kHz
 - pp @ 200 kHz
- pp 14 TeV introduced in O² TDR
 - Few weeks per year
 - ~2.5/pb min bias (~1.5e11 events)
 - Main limit by computing capacity

Year	System	$\sqrt{s_{\rm NN}}$	L_{int} pp: (pb ⁻¹)	N _{collisions}
		(TeV)	$p-Pb: (nb^{-1})$ Pb-Pb: (nb^{-1})	
2021	pp Pb–Pb	14 5.5	0.4 2.85	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$
2022	pp Pb–Pb	14 5.5	0.4 2.85	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$
2023	pp pp	14 5.5	0.4 6	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 4 \cdot 10^{11} \end{array}$
2027	pp Pb–Pb	14 5.5	0.4 2.85	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$
2028	pp Pb–Pb p–Pb	14 5.5 8.8	0.4 1.4 50	$\begin{array}{r} 2.7\cdot 10^{10} \\ 1.1\cdot 10^{10} \\ 10^{11} \end{array}$
2029	pp Pb–Pb	14 5.5	0.4 2.85	$\begin{array}{c} 2.7 \cdot 10^{10} \\ 2.3 \cdot 10^{10} \end{array}$

Predictions from JETPHOX and GM-VFNS

Inclusive D-meson production at ALICE (1405.3083) Comparison with GM-VFNS and other codes

State-of-the-art nuclear PDFs needed

Data used in global analyses of nPDFs

NCTEQ15 nuclear PDFs with uncertainties

Predictions for di-jet production (Note that EPPS16 has been fitted to these data.)

Impact of LHC heavy flavour data on NPDFs

Impact on small-x nuclear gluon PDF EPPS16 μ_F=μ₀ □ μ_F=2.0μ₀ □ μ_F=0.5μ₀ □ Original 🔼 1.6 D^0 B→J/ψ 1.4 Q²=4 GeV² 1.2

