## Neutrino mass and Warm Dark Matter in cosmology



Christophe Yèche CEA-Saclay Irfu

Séminaire IHPC,

November 10, 2017

# Brief introduction on neutrino mass

## Solar neutrinos - Mystery





#### Fusion reaction:

- > Sun: Astrophysical source
- Well constrained by models proposed by J. Bahcall
- Discrepancy between theory and experiment for ~35 years



## Solar neutrinos - the solution



2001 SNO  $1000 \text{ tons of } D_20 \text{ 10000 PMTs}$ 

## SNO sensitive to the 3 species of neutrinos

- $\rightarrow$  Confirmation of the deficit
- $\rightarrow$  Only 1/3 of the  $v_e$  arrive on earth
- $\rightarrow$  Observe two other species



#### The solution

 $\rightarrow$  Neutrinos oscillations  $v_e \rightarrow v_\tau, v_e \rightarrow v_\mu$ 

 $\rightarrow$  the solar model works!

#### Consequence

 $\rightarrow$  The neutrinos have a mass!!! 4



## Atmospheric neutrinos



#### In 1998 new discovery of Super-Kamiokande

- > Deficit of  $v_{\mu}$  compared to model
- > Longer is the  $\nu_{\mu}$  flight larger is the effect
- > The solution: neutrino oscillations



#### Neutrino oscillations

Mass eigenstates  $m_{1,2,3}$  and flavor eigenstates  $m_{e,\mu,\tau}$ Solar $\delta m^2 = m_2^2 - m_1^2$ ~ 7.5 10^{-5} eV^2Atmospheric $\Delta m^2 = m_3^2 - (m_1^2 + m_2^2)/2$ ~ 2.4 10^{-3} eV^2

- $\rightarrow$  No constraint on absolute masses
- $\rightarrow$  2 schemes (sign of  $\Delta m^2$ )



An answer with the cosmological neutrinos? 6



## Cosmic neutrino background

At early times ( $T_{\nu} \gg m_{\nu}$ ), neutrinos contribute as radiation  $\rho_{\nu} \propto T_{\nu}^4$ At late times ( $T_{\nu} \ll m_{\nu}$ ), neutrinos contribute as matter  $\rho_{\nu} = m_{\nu}n_{\nu}$ 

Non-relativistic transition

$$m_{\nu} \sim \langle p \rangle = \frac{\int p f(p) d^3 p}{\int f(p) d^3 p} = 3.15 T_{\nu} \text{ with } f(p) = \frac{1}{e^{p/T_{\nu}} + 1}$$

$$z_{nr} \sim 1900 \; \frac{m_{\nu}}{1 \,\mathrm{eV}} \quad \longrightarrow \quad$$

At recombination  $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7)$ : relativistic  $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7)$ : matter-like



## Impact on CMB



- $m_v > 0.6 \text{ eV} (\Sigma m_v > 1.7 \text{ eV})$ 
  - Non relativistic at CMB
  - Hot Dark Matter (HDM)
  - ⇒ Direct impact on CMB power spectrum:
  - ⇒ Even with pre-WMAP (COBE...), in late 90s, the damping of C<sub>ℓ</sub> on intermediate scales (100<l<1000) cannot be explained without relativistic neutrinos
  - ⇒ Fully excluded with WMAP including HCDM models (10% of HDM)

 $\Rightarrow f_{v} = \Omega_{v} / \Omega_{m}$ Fraction of neutrinos in Matter



## Impact on CMB



- $m_v < 0.6 \text{ eV} (\Sigma m_v < 1.7 \text{ eV})$  relativistic at CMB
  - $\Rightarrow$  "No" impact on baryon-photon plasma, and thus on primary CMB
  - $\Rightarrow\,$  Subtle changes in peak position & amplitude
  - $\Rightarrow \mbox{Postponing of matter-radiation equivalence } z_{eq}, \\ \mbox{OR, } z_{eq} \mbox{ being well measured by CMB, } \Omega_m \mbox{--} \Sigma m_v \mbox{ degeneracy} \\ \end{cases}$

$$1 + z_{eq} = \frac{\Omega_b + \Omega_{cdm}}{\Omega_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right]} = \frac{\Omega_m - \Omega_\nu}{\Omega_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right]} \quad \text{with} \quad \Omega_\nu = \frac{\Sigma m_\nu}{93.1 eV}$$



- CMB alone not sufficient for neutrinos masses sub-eV
- Add information directly from the matter distribution

## Matter power spectrum

 $\geq$ 

#### Matter era Radiation era Wavelength λ [h<sup>-1</sup> Mpc] Matter power spectrum 104 1000 100 10 105 > Analogy with sound: higher at Tegmark et al. 2002 [(h<sup>-1</sup> Mpc)<sup>3</sup>] certain frequencies 104 Impact > Real space $\Rightarrow$ k-space (Mpc<sup>-1</sup>) of neutrinos P(k) First observation of "total" power 1000 spectrum with different tracers of rum the matter 100 Cosmic Microwave Backgroup une SDSS galaxies Finite velocity of light Cluster abundance 10 Weak lensing Causality "horizon" (7 with time) Lyman Alpha Forest Small scales enter horizon early 0.001 0.01 Large scales enter horizon late Wavenumber k [h/Mpc] > Relativistic neutrinos will affect Small scales small scales Large scales k<sub>eq</sub>

11

## Impact on matter power spectrum

 Impact in CMB-alone only for nonrelativist neutrinos  $\Rightarrow$  ~1-2 eV limit



- Free-streaming ⇒ suppression
   of small scales in P(k)
- Suppression factor  $\Leftrightarrow \Sigma \mathbf{m}_{v}$
- Independent measurements (CMB, Galaxies, 1D Ly-α)
- Suppression is z-dependent

#### Ly- $\alpha$ :

- Access to small scales (max effect)
- Large z-range [2.1 ; 4.5] 🕇
- Caveat: non-linear regime and power spectrum of flux (not mass density)
- $\Rightarrow$  Hydro/N body simulations

# Ly-a forests with BOSS and XQ-100



BOSS



#### SDSS spectroscopic survey

- > 2.5 m Sloan telescope (New Mexico)
- > Survey area: 10,000 deg<sup>2</sup>
- > Redshifts: 1000 fibers



## Ly- $\alpha$ forests, matter tracers



#### 1D power spectrum

Correlation between the pixels of a line of sight
Proxy of the matter down to scale 1 Mpc

#### Principles

Use Ly-α forests of quasars
(2.2<z<4)</li>
HI absorption in IGM along the line of sight of QSOs
We expect low density gas (IGM) to follow the dark matter density



## **BOSS Observation Strategy**







#### Several steps (~3 months)

- > Target selections (~40 QSOs deg<sup>-2</sup> and ~150 galaxies deg<sup>-2</sup>)
- > Drill plates (1000 holes per plate)
- > Plug plates on cartridges during day



Palanque-Delabrouille., Yèche, Borde et al. (2013)

## 1D Power Spectrum analysis a tough analysis!

 Detailed study of spectrograph resolution, noise, lines of sky, correlation with other absorbers...
 Largest correction at small scales (high k)

 $P_{\text{Raw}}(k) = (P_{\text{HI}}(k) + P_{\text{HI-SiIII}}(k) + P_{\text{metals}}(k)).W^{2}(k) + P_{\text{Noise}}(k)$ 





Palanque-Delabrouille., Yèche, Borde et al. (2013)

 Improve small scales (see next slides)
 Need simulations to come back to linear matter power spectrum (see next slides)



100 QSOs observed with VLT/X-shooter, z ~ 3.5 - 4.5

XQ100 Vs BOSS: 700 for BOSS with same z
 SNR per pixel in Ly-α forest 5-60, on average ~25
 XQ100 Vs BOSS: SNR per pixel 10-20 times better
 Resolution (UVB arm: ~18km/s, VIS arm: ~12km/s)
 XQ100 Vs BOSS: Resolution 3-5 times better



- > Three bins in redshifts with different k-range
- Excellent agreement with BOSS
- Common likelihood based on the same hydro simulations (BOSS: 12 redshift bins, XQ-100: 3 redshift bins).



## Hydro-dynamical simulations

- > 3 Species: dark matter + baryons
- + 3 degenerate-mass neutrinos

#### > Methodology:

- Linear (CAMB) to z=30
- Simulations from z=30 to z=2.0
- Hydro/N-body simulations



#### Baryons

20

10

0

y[Mpc/h]



#### Dark matter



#### Neutrinos



## Hydro-dynamical simulations

Gas Dark matter Neutrinos Stars

 $z=15 \rightarrow 0$ 

- 3 species
- Baryons
- Dark matter
- Neutrinos

Stars formed from baryons

Borde et al. (2014) Rossi et al. (2014)

### Grid parameter space

#### > Grid of simulations

Р

n

→ 2nd-order Taylor expansion for cosmo & astro parameters centered on Planck (2013)  $f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \sum_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{x}) \Delta x_{i}$  $+ \sum_{i} \frac{\partial^{2} f}{\partial x_{i}}(\mathbf{x}) = \frac{1}{2} \sum_{i} \sum_{i} \frac{\partial^{2} f}{\partial$ 

| center                  | ed on Planc   | k (2013)     |          |        | $\pm \frac{1}{2} \sum \nabla$ | $-\frac{\partial^2 f}{\partial f}$      | $\mathbf{v} ) \Lambda \mathbf{r} \cdot \Lambda \mathbf{r}$ |
|-------------------------|---------------|--------------|----------|--------|-------------------------------|-----------------------------------------|------------------------------------------------------------|
| arameter                | Central value | Range        |          |        | $2 \sum_{i} \Delta$           | $\frac{1}{i} \partial x_i \partial x_j$ | $\mathbf{x}_{j} \Delta x_{i} \Delta x_{j}$                 |
| s • • • • • • •         | 0.96          | $\pm 0.05$   | ן ר      |        |                               | <i>.</i>                                |                                                            |
| 8                       | 0.83          | $\pm 0.05$   | Cosmol   | 001    |                               |                                         |                                                            |
| $\mathbf{D}_m$          | 0.31          | $\pm 0.05$   |          | 97     |                               |                                         |                                                            |
| $I_0 \ldots \ldots$     | 67.5          | ± 5          | J        |        |                               |                                         |                                                            |
| $f_0(z = 3)$            | 14000         | ± 7000       | TGM      |        |                               |                                         |                                                            |
| (z = 3)                 | 1.3           | ± 0.3        |          |        |                               |                                         |                                                            |
| τ                       | 0.0025        | $\pm 0.0020$ | Ontion   | Idonth |                               |                                         |                                                            |
| τ                       | 3.7           | ±0.4         | Johnca   | aepin  |                               |                                         |                                                            |
| $m_{\nu} (\mathrm{eV})$ | 0.0           | 0.4, 0.8     | } Neutri | no     |                               |                                         |                                                            |
|                         |               |              | -        |        |                               |                                         |                                                            |

- > 36 simulations + 3 normalizations (+ numerous sanity checks)
- > >4Mhrs CPU at TGCC CURIE supercomputer
- 23 nuisance parameters (Resolution, Noise, UV fluctuations, AGN or SN feedback, DLA and splicing)

## Constraint on $\Sigma m_v$



Limits: > With Ly- $\alpha$  alone:  $\Sigma m_v < 1.1 \text{ eV @95\%CL}$ > With Planck 2015 alone:  $\Sigma m_v < 0.72 \text{ eV @95\%CL}$ > Combined with CMB (Planck 2015)  $\Sigma m_v < 0.12 \text{ eV @95\%CL}$ 

|                                               | (1) Ly $\alpha$        | (2) Ly $\alpha$   | (3) Ly $\alpha$   |  |
|-----------------------------------------------|------------------------|-------------------|-------------------|--|
| Parameter                                     | $+H_0^{Gaussian}$      | + Planck TT+lowP  | + Planck TT+lowP  |  |
|                                               | $(H_0 = 67.3 \pm 1.0)$ |                   | + BAO             |  |
| $\sigma_8$                                    | $0.831 \pm 0.031$      | $0.833 \pm 0.011$ | $0.845\pm0.010$   |  |
| $n_s$                                         | $0.938 \pm 0.010$      | $0.960 \pm 0.005$ | $0.959 \pm 0.004$ |  |
| $\Omega_m$                                    | $0.293 \pm 0.014$      | $0.302\pm0.014$   | $0.311 \pm 0.014$ |  |
| $H_0$ (km s <sup>-1</sup> Mpc <sup>-1</sup> ) | $67.3 \pm 1.0$         | $68.1 \pm 0.9$    | 67.7 ± 1.1        |  |
| $\sum m_{\nu}$ (eV)                           | < 1.1 (95% CL)         | < 0.12 (95% CL)   | < 0.13 (95% CL)   |  |

Palanque-Delabrouille , Yèche, Lesgourgues et al. (2014) and (2015) 27

## Neutrino mass hierarchy



With  $\Sigma m_v < 0.12 \text{ eV}$  @95%CL

- > NH is "favored"
- If disagreement with KATRIN experiment
- $\Rightarrow$  Indication of new physics

Direct measurement with tritium  $\beta$ -decays:  ${}^{3}H \rightarrow {}^{3}He + e^{-} + v_{e}$ 

 $\rightarrow$  Current limits  $m_{\beta}$  <2eV  $\rightarrow$  Sensitivity of 0.2 eV in near future (KATRIN experiment)

#### Complementary with cosmology



## Warm Dark Matter and Sterile neutrinos

## WDM: Thermal relics



## Sterile neutrinos and Ly- $\alpha$



- More sensitive to high z
- More sensitive to lower mass
- Need high z and high k to get the best limit
  - Extraction of a lower mass limit



#### Adding XQ100 to BOSS:

- > Marginal gain at 95% C.L
- $\succ$  Significant gain at  $3\sigma$
- > 10% improvement on the parabolic profile of  $\chi^2$

## Thermal relics

#### Limits:

- With Ly-α XQ100 alone:
   Relics: m<sub>x</sub>>2.23 keV @95%CL
- With Ly-α BOSS alone: Relics: m<sub>x</sub>>4.09 keV @95%CL
- > With Ly- $\alpha$  (BOSS+XQ100+HIRES): Relics:  $m_x>4.65$  keV @95%CL



## Sterile Neutrino

Observation of a 3.5 KeV X-ray line with XMM by Boyarski's & Bulbul's from galaxy clusters (Perseus, Centaurus...) or Andromeda galaxy



A possible interpretation: Decays of 7 keV sterile neutrinos



- Strong limit on WDM model in case of nonresonantly produced neutrinos
- Rule out 7 keV sterile neutrinos of 3.5 keV line

(Baur, Palanque-Delabrouille, Yèche et al. (2015)) 33

## Sterile Neutrino: Generic models



(Baur, Palanque-Delabrouille, Yèche et al. (2017))



Sterile neutrinos for 3.5 keV lines excluded at ~3 $\sigma$  in case of resonant production





- > High potential of Ly $\alpha$  forest on (n<sub>s</sub>,  $\sigma_8$ ,  $\Omega_m$ , H<sub>0</sub>,  $\Sigma m_v$ )
  - Sum of neutrino masses  $\Sigma m_v < 0.12 \text{ eV}$  (95% CL)
  - from Lyα+CMB
- $\succ$  Constraint on sterile neutrinos from Ly $\alpha$  forest
  - m<sub>sterile</sub> > 28.8 keV (95% CL) in case of non-resonantly produced neutrinos with Dodelson-Widrow model
  - Sterile neutrinos (~7 keV) explaining 3.5 keV line ruled out at ~3  $\sigma$  for all the production modes

#### Prospects

- Lower statistical
  uncertainties (high z):
  BOSS DR12 + eBOSS
- Future projects: DESI,
- DESI, Euclid











#### Scientific Project

 International Collaboration steered par Berkeley (DOE)
 14000 deg<sup>2</sup> survey for 0.3<z<4.5</li>

> 20M galaxies and quasars (R~4000)

10 spectrographs

Constraints on neutrino mass

- > Ly- $\alpha \sigma(\Sigma m_v) = 0.041 \text{ eV}$
- > All  $\sigma(\Sigma m_v) = 0.020 \text{ eV}$

# Additional slides



$$\rho_{\rm R} = \rho_{\gamma} + \rho_{\nu} = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right] \rho_{\gamma}$$

#### Sensitivity to the number of neutrino species

- > Full degeneracy in Ly- $\alpha$  data alone
- > Constraint when combining Ly- $\alpha$  and CMB (Planck 2013)



$$N_{eff} = 2.91 + 0.21 - 0.22$$
 (95% CL)  
 $\Sigma m_v < 0.15 \text{ eV}$  (95% CL)

 $\Rightarrow$  N\_{eff} = 4 excluded at >  $5\sigma$ 

Rossi, Yèche, et al. (2015)

Splicing technique

(McDonald, 2003)



 $\Leftrightarrow$  equivalent to 100 Mpc.h<sup>-1</sup> with 3072<sup>3</sup> particles per species



Comparison with high resolution simulation
 ~1% agreement

> Broken-line model with2 free nuisance parameters

## A mystery : running of $n_s$



 "Historical" trends to negative value for dn<sub>s</sub>/dlnk
 SPT: -0.024 ± 0.011
 WMAP+SPT+ACT: -0.022±
 0.012

Confirmation with Ly-a ???

Palanque-Delabrouille, Yèche, Lesgourgues et al. (2015)

- > Small tension (2.3 $\sigma$ ) on n<sub>s</sub> between Planck and Ly- $\alpha$
- Tension can be accommodated by running n<sub>s</sub>



## Impact of $n_s$ running on $\Sigma m_v$



#### Running of $n_s$ (dn<sub>s</sub>/dln k)

Similar constraints on  $\Sigma m_{\nu}$  letting running of  $n_{\rm s}$  free

 $\Rightarrow$  Negligible impact on  $\Sigma m_{\nu}$  of tension on  $n_{s}$  and improvement of  $~\chi^{2}$  by ~11

 $\Sigma m_v < 0.20 \text{ eV} 95\%$  (TT+lowP + Ly $\alpha$ )  $\Sigma m_v < 0.12 \text{ eV} 95\%$  (TT+lowP + Ly $\alpha$  +BAO + EE+TE)