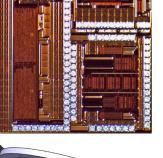
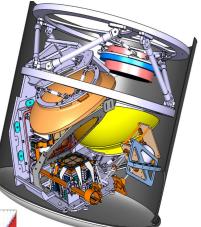
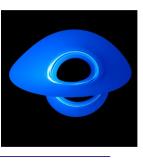
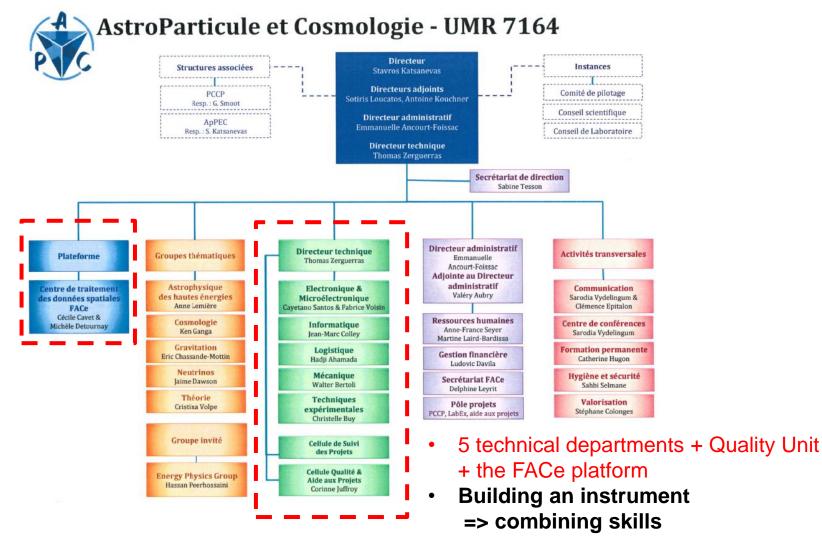

2012-2016 APC Laboratory


Technical Activities





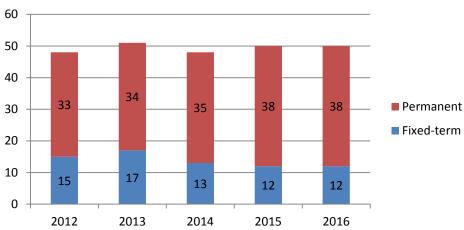


- □ Organisation
- **Equipment, facilities and platform**
- Instrumentation Department (Techniques Expérimentales)
- Electronics and Microelectronics Department
- □ Mechanics Department
- □ IT Department
- **Quality Unit**
- □ R&D: CMB µelectronic, Compton, GAMMACUBE, Liquido
- Analysis & Prospects

General organisation

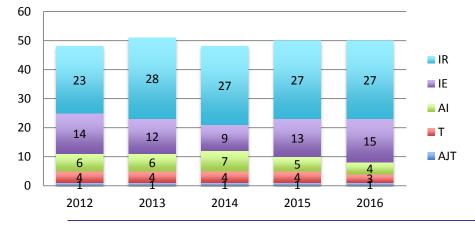
- Matrix organisation structure: Project/Department (Assignment to a department, participation to projects)
- ✓ One specific skill (Mechanics, Electronics/µelectronics, Instrumentation, IT, QA/PA)
- ✓ Transverse activities of the Quality Unit
- ✓ Supervision : Head of department
- ✓ Project coordination: Project manager
- \checkmark Indicator Boards for activities and assignments monitoring
- ✓ Project Monitoring Committee (Comité de Suivi de Projets CSP)

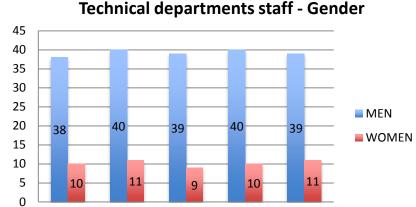
This organisation aims to create a bond of trust with funding and tutelage agencies



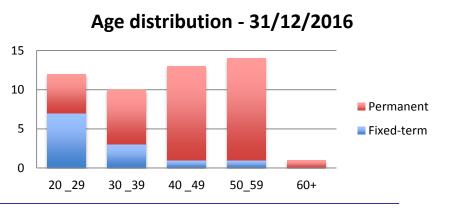
Organisation: Technical staff evolution

On 31/12


2012


2013

Technical departments staff evolution



2014

2015

2016

Technical departments staff - Gender

Equipment and facilities

ISO8 Cleanroom (128m²): - Integration room - LISA room - VIRGO room

Millimetric Laboratory: 100mK dilution-free cryostat

Frequency comb generator

(Laser emission in a spectral band from 1 to 2µm with a frequency step of 250MHz)

(Oxford Instrument) (Cooling power : 160µW @100mK,

No cryogenic fluid)

Millimetric Laboratory: Vector network analyzer (characterization of antenna and filters in

antenna and filters in the frequency range 70-220GHz)

Equipment and facilities

Low electronic noise test room (37,5 m²) including a Faraday cage to test components and circuits from 0.1mHz to 10Hz

Mouting hall

Photodetection Laboratory

3D Printing Stratasys Fortus FDM250mc (ABS stable thermoplastic)

Platform: FACe

Started in 2010, support of IPGP in the framework of the Paris-Diderot University Space Campus – Application to the CNRS/IN2P3 Platform Label

- Scientific Manager: Cécile Cavet (IT Department)
- Technical Manager : Michèle Detournay (IT Department)

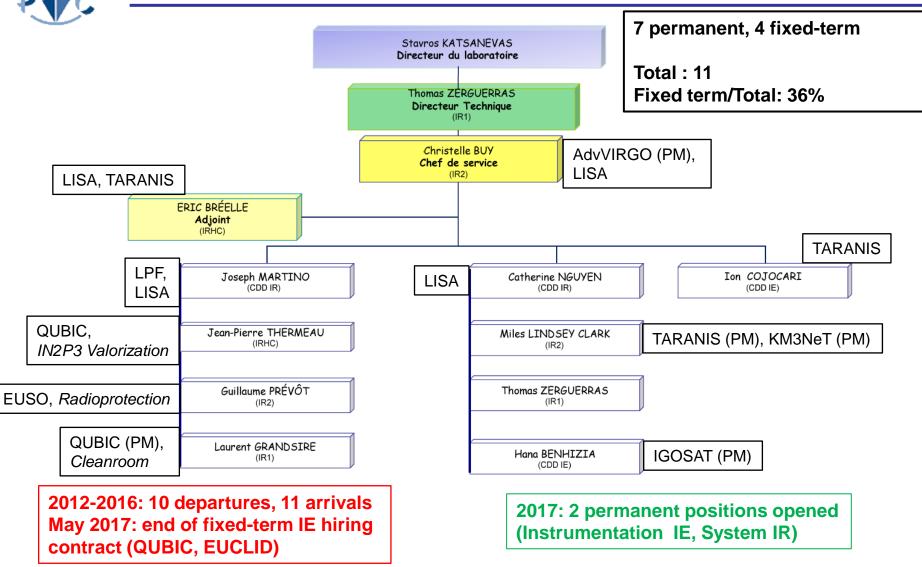
Missions:

- Building and infrastructures management (machines, electrical facilities, CDF, CVC, maintenance, subcontracting management)
- Computing infrastructures management
- Services to projects (data bases, web applications, development platform, training and user support)

Equipement:

- ✓ Computing parallel cluster: 652 cores et 42Tb storage
- ✓ 80 virtual servers for astroparticle and space projects (storage: 180Tb)
- Concurrent Design Facility (CDF): design and operations (LISAPathfinder, LISA ...)

Projects: PLANCK, INTEGRAL, CODEEN (EUCLID) ...


Next:

- □ FACe relocation in 2018
- **Contribution : LISA DPC, SVOM pipeline**

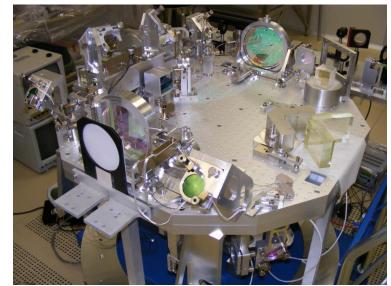
Cécile Cavet

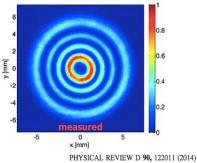
e presentation

Instrumentation Department : Organisation

- Optics and interferometry
- ✓ System engineering
- ✓ AIT/AIV
- ✓ Vacuum and cryogeny
- ✓ Bolometer
- ✓ Photodetection and spectroscopy
- ✓ Simulations (Zemax, Fred, Matlab ...)
- ✓ Test benches design for detector characterization
- ✓ Data acquisition (ex: Labview)
- ✓ Data analysis (ex: Matlab)
- ✓ Spatial and QA background (environment qualifications ...)
- ✓ Cleanroom
- ✓ Project management

Instrumentation Department: AdVIRGO and post-AdVIRGO R&D

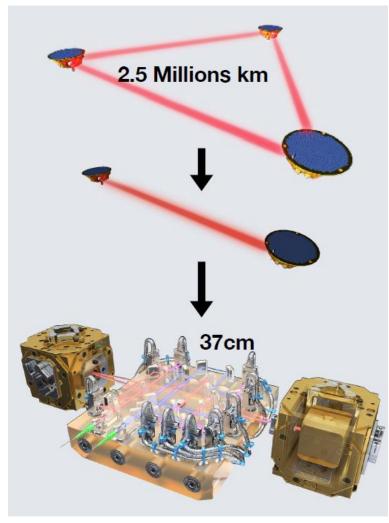

✓ Telescopes for Advanced Virgo (2011-2015):


- Adapting beam size from a few mm (laser bench) to 5 cm in cavities (and vice-versa)
- ✓ Workpackages:
 - Optical simulations and design
 - Validation tests in the APC cleanroom
 - Definition of alignment procedures
 - Installation of 5 telescopes on site.

GW detection in coincidence with LIGO (August 2017)

Laguerre-Gauss modes

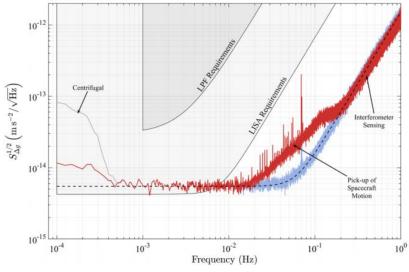
- ✓ MAJOR EVENTS:
 - ✓ Production of higher-order LG modes : PRL 2010
 - ✓ Interferometry : first lock (2014)
 - Thermal compensation of aberrations : PRD 2015
- Prospects:
 - Einstein Telescope: Third generation GW detector (underground, cryogenic, ...): LG modes integration


Fabry-Pérot-Michelson interferometer using higher-order Laguerre-Gauss modes

A. Gatto, M. Tacca, F. Kéfélian, C. Buy, and M. Barsuglia Laboratoire AstroParticule et Cosmologie (APC), Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France (Received 9 October 2014; published 31 December 2014)

Contribution: Mechanics Dpt

Instrumentation Department: LISAPathfinder



Successfully launched on 03/12/2015 (end : July 2017)

Validation of the technology for LISA: measurement of the distance between two free-falling test masses by laser heterodyne interferometry

Major contribution of the APC to data analysis and interpretation (μ -thrusters, deglitch ...)

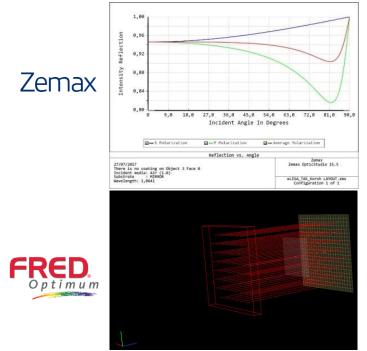
Interferometer noise performances one order of magnitude better than LPF requirements

LISA selected as ESA L3 mission (launch: 2034)

Instrumentation Department: LISA

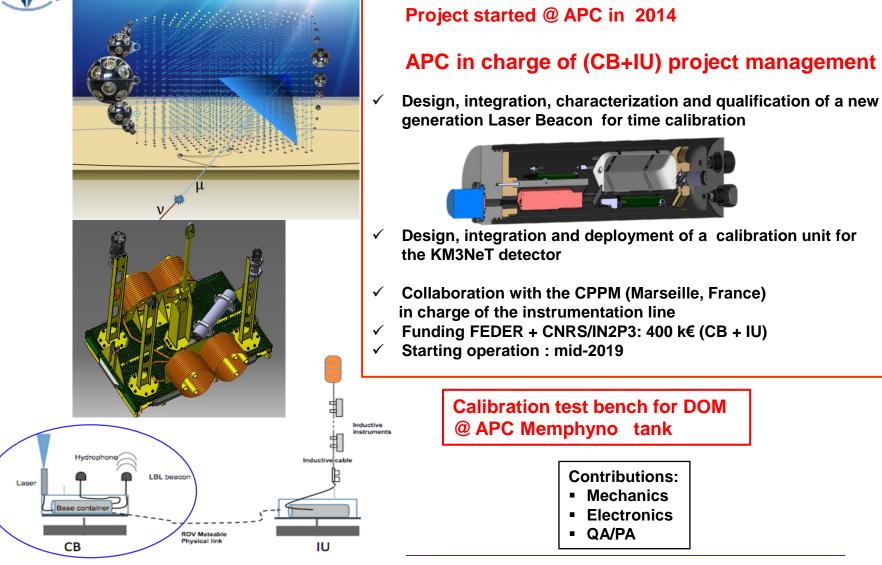
AIT/AIV Phase 0 CNES and ESA

LISA On Table (LOT)


Hardware simulator of LISA to test in a representative acquisition chain:

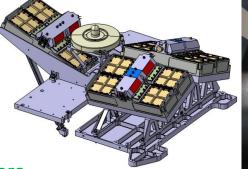
- ✓ Noise reduction techniques
- ✓ Instruments (photometers, phasemeter)
- ✓ 1st TDI tested
- ✓ Preparation for operations in vacuum (10⁻¹mbar)
- ✓ Funding: R&T CNES

Straylight studies


Simulations to estimate the scattered light from LISA telescopes:

- ✓ Specifications on surface properties with micro-roughness models ; cleanliness
- ✓ Polarization of scattered lights
- ✓ Funding: ESA ITT (collab: Thalès Alenia, APC, ARTEMIS, LMA)

Instrumentation Department: KM3NeT

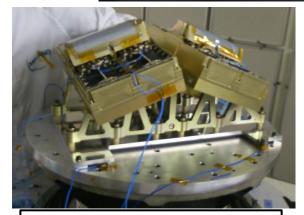


Instrumentation Department: TARANIS

CNES Microsatellite to study TLEs occuring during large storms

Design, production and validation of the XGRE sensor (3 x 4 DU: LaBr3, plastic scintillators, PMT).

Instrumentation AIT/AIV (EGSE and MGSE development, design and fabrication of QM and FM, environment tests implementation).



 Production and validation of the XGRE QM sensors (vibration and thermal vacuum tests) completed (August 2015)

Production and validation of the XGRE FM sensors

- SM2 qualifications @ CNES (February 2016)
- ✓ AIT FM sensors & vibration qualif. tests (March 2016)
- ✓ Schock qualif. tests (April 2016)
 - ✓ Anomaly detected on LaBr3 (loss of performances)
 - -> Production process upgrade by St Gobain

- -> July 2018: delivery of FM Dus
- -> End 2018- mid 2019: AIT on satellite and calibration

Contributions:	
•	Mechanics

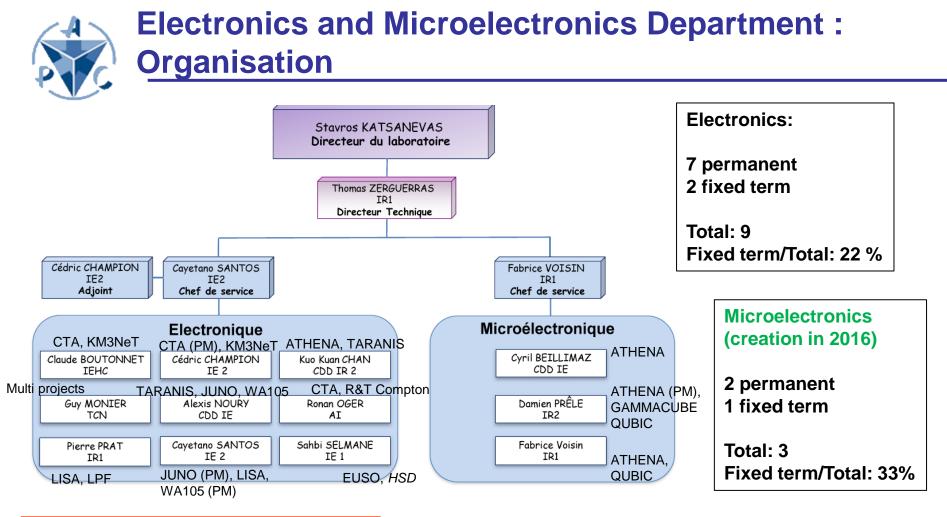
- QA/PA
- Electronics
- NEXEYA (QA/PA and AIT/AIV)

Instrumentation Department: EUSO

Towards UHECR detection from space using UV light

- Major facts / key milestones achieved
 - ✓ 2012-2014: successful flight of the <u>EUSO-Balloon</u> mission (12 countries, funding CNES+ Collaboration = 1,7 M€)
 Project management + integration & calibration focal surf @ APC

→ Congratulations from CNES for the scientific return + funding for a second flight


 Test campaigns in collaboration with the Telescope Array collaboration (USA+Japan) and in Turlab (Torino)

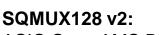
→ First UHECR detection using JEM-EUSO prototype

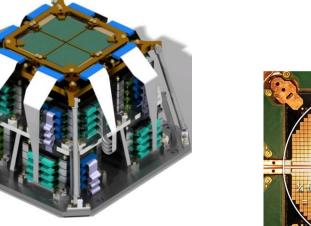
- ✓ Funding from Europe (EuHIT), Campus Spatial (Paris Diderot) and CNES for second flight (Total for APC and LAL: 225 k€)
- April 2017: EUSO-SPB (long duration balloon flight) by NASA :
 Design, integration and calibration of the detector @ APC
- Upcoming milestones
- Dec. 2018: launch of the mini-EUSO mission towards ISS
 Design, integration and calibration of PDM and HV system @ APC
- April 2020 : Second SPB flight, POEMMA prototype, selected as NASA Probe studies program in 2017

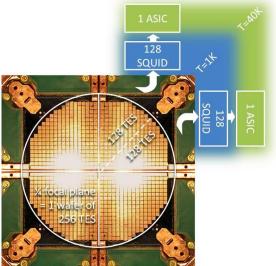
 End of the 2 fixed-term hiring contracts (31/12/2017 and 04/09/2018)

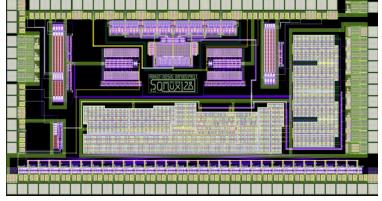
Microelectronics Dpt:

- End of the fixed-term IE hiring contract in 2018
- Need of a 3rd permanent IR


- ✓ Analog/Digital electronics
- ✓ Cryogenic microelectronics
- \checkmark ASICs definition, design and characterization
- ✓ FPGA programming (ALTERA, XILINX ...)
- ✓ PCB design & integration (CADENCE)
- ✓ Timing and clock distribution systems (White Rabbit)
- ✓ Simulations: ASICs (VIRTUOSO), VHDL, PCB (ALLEGRO)
- ✓ Tests and characterization (ex: OMEGA ROC ASICs)
- ✓ Spatial and QA backgrounds (RadHard qualifications ...)
- ✓ Project management


Microelectronics Department: QUBIC


Focal plane:


- 4 wafers made of 256 TES @300mK each
- Readout: time
 multiplexing
- 128 SQUID @ 1K
 + 1 ASIC @ 40 K
 for ¹/₈ focal plane

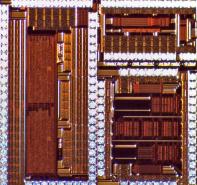
ASIC Cryo. AMS BiCMOS SiGe 0,35µm standard

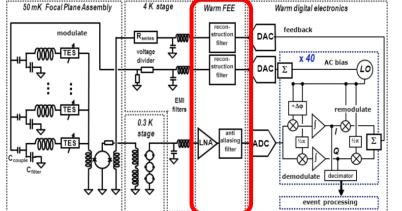
Includes: LNA with multiplexed inputs (1:4) Multiplexed current supply (1:32) for SQUIDs bias Digital circuit for addressing and serial link **Summer 2015:** Integration and validation of ¹/₄ focal plane @ APC

15/06/2016: ASIC v2 delivered - Successfull test in the dilution-free cryostat

September 2016: Starting QUBIC demonstrator integration (2x 1/4 focal planes, 512 channels)

Other contributions:


- Mechanics
- Instrumentation



Microelectronics Department: ATHENA

Warm Front-End Electronic (FEE) for the X-IFU instrument

- ✓ 96 LNA (100V/V, 1-6MHz, 1nV/√Hz)
- ✓ Box for cryostat + EMI filters
- ✓ SQUIDs biasing
- ✓ Bias regulation, HK, SQUID deflux

Phase A:

2015-2019

- ASIC production
 + RadHard qualif.
- EGSE test benches
- Mechanics integration

awaXe v1:

Goals:

ASIC AMS BiCMOS SiGe 0.35µm

- Test and characterization of several architectures
- ✓ Validation of Rad Hard digital libraries
- ✓ awaXe_v1 delivered on 01/08/2016.
- Successful RadHard test campaign @ Cocase (high-intensity 60Co source) and latch-up tests @ Louvain-la-Neuve (heavy ions)
- ✓ ASIC v2 in preparation

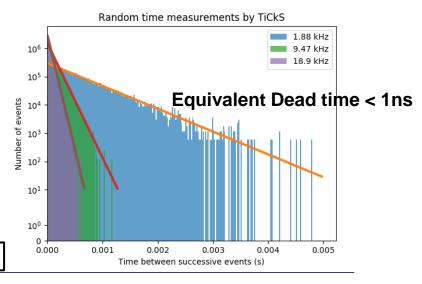
Electronics Department: TiCkS board for CTA

TiCkS board (Time and Clock Stamping) based on the White Rabbit (WR) SPEC node:

- ✓ Providing ns-precision Time Stamps (TS) of input signals
- Transmission of these TSs to a central collection point for use in any CTA camera

Modification in the Spartan-6 FPGA :

- Addition of a 1ns precision TDC for the TSs (collab. CEA/IRFU)
- ✓ UDP stack :
 - send TSs on WR fiber (No loss up to 320kHz @ fixed frequency)
 - Receive config & slow control commands on the same fiber
 - Send PPS and event counter
- ✓ 2 versions :
 - TiCks –UCTS (FMC) soon available in the WR Open Hardware repository
 - TiCKs-CTA (2xRJ45)


C. Champion et al., Proc. ICALEPCS2017, Barcelona, Spain October 8-13 2017 (accepted)

Next:

- ✓ TiCkS on NectarCAM test bench: end of 2017
- ✓ Network of 8 TiCks: end Q1 2018

Other contribution: QA/PA

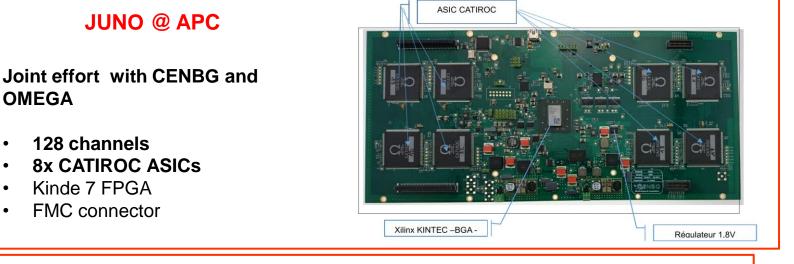
2xRJ45 Clock

Electronics Department: LISAPathfinder and LISA

LISAPathfinder: LASER MODULATOR: beam splitter + 2 AOM + actuators Validation of test procedures with the manufacturer Monitoring during the mission

LISA R&T: Electronics development for the LISA On Table simulator

- Servo electronics for laser amplitude and optical paths stabilization \checkmark
- Implementation and modification of a phasemeter developed at the AEI Hannover
 - building hardware for RF electronics and DDS kits
 - external clock synchro + jitter correction
 - Upgrade to 14 bits @200MHz sampling
- ✓ Low frequency noise measurements on RF components and voltage references



REFIMEVE: Developing the Servo electronics of an optical link between the cleanroom and the low electronic noise room for the transmission of an ultra-stable 1GHz clock

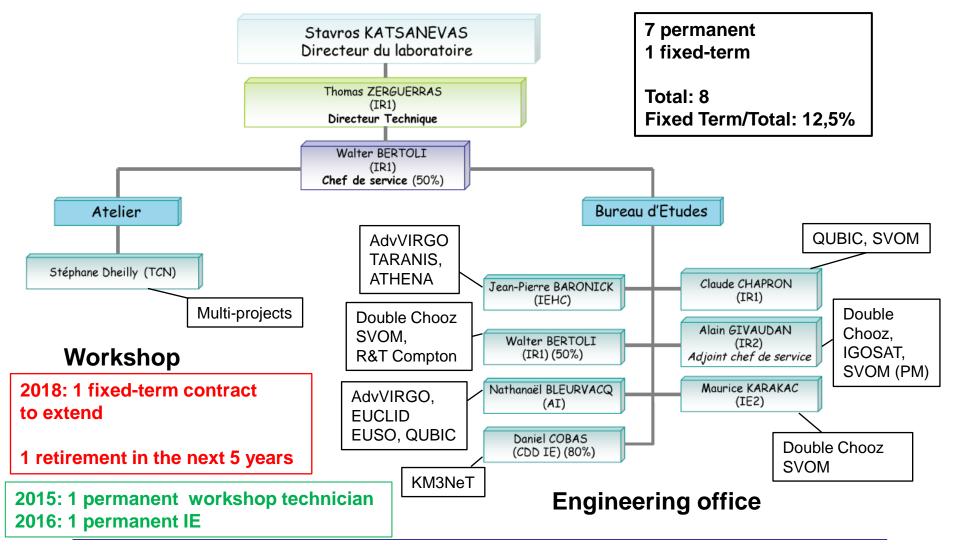
Electronics Department: Electronics readout for large PMTs assemblies

Card design, firmware and data acquisition


WA105 @ APC

Collaboration with IPNL, LAPP and OMEGA

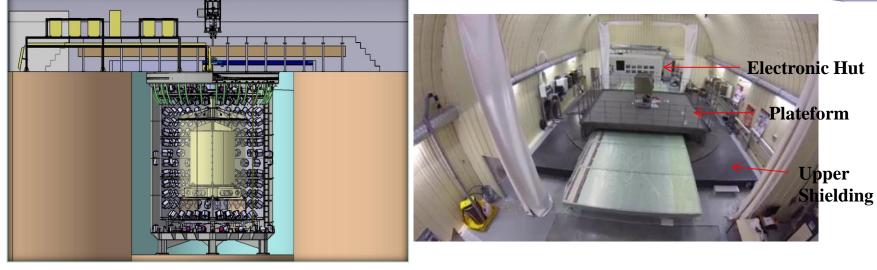
16 channels ٠


٠

- **1x CATIROC ASICs** ٠
- 65 Msps ADC ٠
- μΤCΑ ΑΜC
- FMC connector

Mechanics Department: Organisation

- Mechanical design in specific environment (space, undersea, vacuum, cryogeny, high-level cleanliness)
- ✓ CAD (CATIA)
- ✓ Finite-element analysis (transition from Samcef to ANSYS): isotrope materials, mechanics, thermal management
- ✓ Dimensionnal metrology (mechanics) + programmation
- ✓ Spatial and QA background (environment qualifications …)
- ✓ Project management, call of tenders for public contracts
- ✓ Subcontracting monitoring
- ✓ Workshop: CNC machine 2,5 axes (drilling)/assembly, numerically controlled machining center.


Mechanics Department: Double Chooz

Far Detector: Design, production and installation (2011)

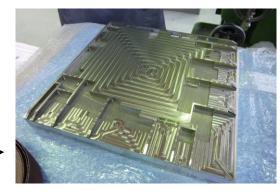
Near Detector: Design, production and installation (2012-2014)

- ✓ Shielding: 1m water (except steel on top)
- ✓ Stainless steel tank on steel supports (outer vessel)
- Support stiffness strenghtened to prevent any deflection > 1mm of the bottom (45 tons thrust load)
- ✓ Upper shielding (steel), platform and electronic hut

Mechanics Department: SVOM

French-Chinese Space Mission for detection of X and gamma bursts with a 4 keV threshold

<u>APC workpackage:</u> Design, production, test and validation of the coded mask for the ECLAIRs instrument:

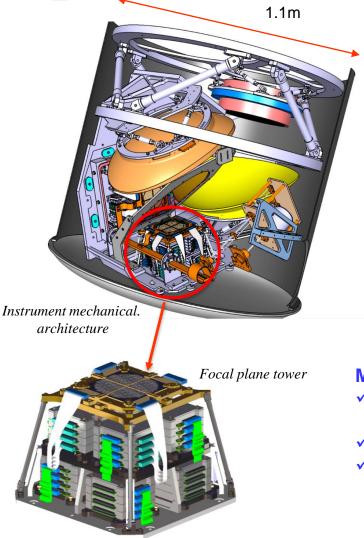

✓ Pattern area 540x540mm², 40% transparency, self-supporting mask

Initial design : pre-tensed foil made of allied Tantalum 0.6mm thick (4000 random holes)

CNES review (B phase) : September 2016

Currently: Phase C

Current design: new pattern with enlarged holes → sandwich Ti/Ta/Ti 33.6mm thick —



- ✓ Structural Thermo Model delivery : May 2018
- ✓ FM Mask: 2019
- ✓ Launch : 2021

Mechanics Department: QUBIC

APC mechanics workpackages :

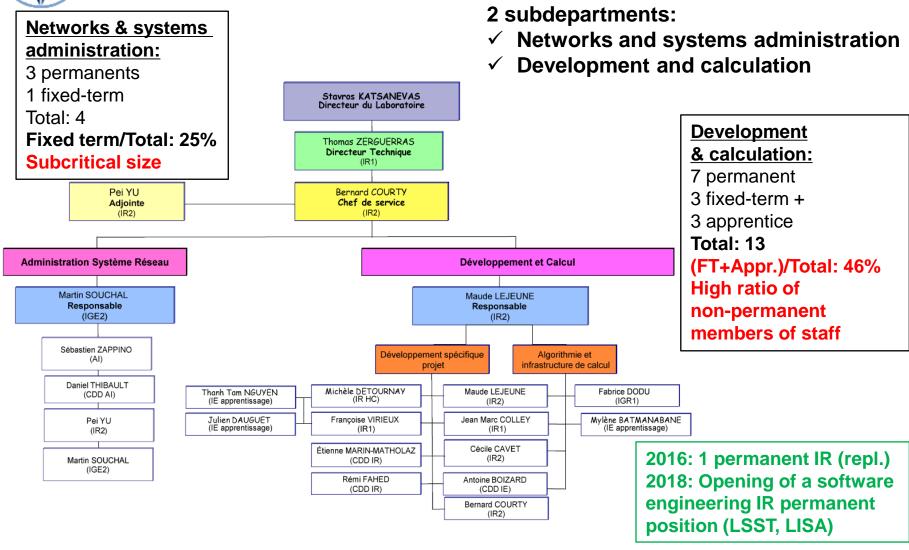
- ✓ Thermal & mech. design of focal plane towers
- Therm. & mech. design of the instrument architecture inside vessel
- Mech. design of the switches / R&D on horns manufacturing
- ✓ Integration process of instrument inside vessel and tests

Technical challenges

- ✓ Mass optimization
- Keeping optics alignment when instrument is cooled
- ✓ EMC optimization
- ✓ Many interfaces
- ✓ Integration

Milestones:

- Technical Demonstrator design finalized
- ✓ Production plan finalized
- Production : laboratories for small components (GEPI, LAL, APC), subcontracting for the biggest


1/4 Focal plane prototype

Other contributions:

- Microelectronics
- Instrumentation

IT Department : Organisation

IT Department: Skills

- Network & System Administration : network, storage, Unix account, databases, identification system
- ✓ Support: material (hard & soft) and users
- ✓ APC Website management (Drupal)
- Infrastructures for calculation and projects: parallel calculation cluster (~ 800 CPU), APC cluster (~ 600 CPU), collaborative platforms, EGEE grid, cloud computing (OpenStack) and Big-Data (Hadoop cluster)
- Control & command, real-time: architecture of distributed applications, control and monitoring of mechanical components (motor, presence detector, lock ...), data acquisition (PXI and USB bus), multi-threading and multi-processing architecture
- Data analysis: data analysis chain development (ex: CMB cards), parallel and distributed programming in shared distributed memory
- Simulations: processes in astrophysics (plasma jets from black holes, accretion disk), HPC, instrumental data (ex: EUCLID telescope)

Generalities : a web interface to manage proposals for scientific observations

Planning

2015- Mid-2016: demonstrator dev. phase Mid-2016- Mid-2018: Implementation Mid-2018: operationnal demonstrator version for the consortium

Mid-2020: First release to the observatory

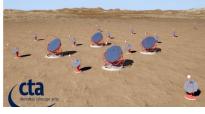
Technical Team

- Developper engineer: TT. Nguyen, J J. Dauguet
- Project manager: M. Detournay


The Cherenkov Telescope Array (CTA)

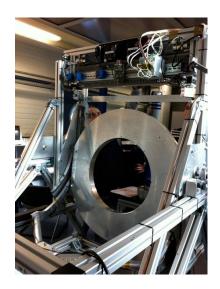
www.cta-observatory.org The CTA project is an initiative to build the next generation

ground-based very high energy gamma-ray instrument. It will serve as an open observatory to a wide astrophysics community and will provide a deep insight into the non-thermal high-energy universe



CTA Proposal Handling Platform

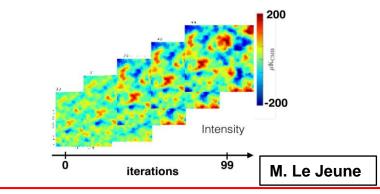
Cta-PH The work necessary to the management of the GO proposals, a requirement for CTA, is coordinated by the APC/CNRS-Universite Paris Diderot. We are developping a demonstrator to develop and test the main technical aspects of the Proposal Handling Platform.



IT Department: LSST

- JAVA development framework for the CCS camera: Monitoring and managing communications between subsystems (filters change, shutter, cooling, power supply management) and information flux between databases.
 Concept proposed by the APC laboratory and selected by the collaboration
- ✓ FCS subsystem (filter changer) Control/Command: 6 filters (motion control, exchange, positionning).
 Critical (1 filter = 700k€)
- Successfull reviews: Director NSF-DOE JSR (2016), RSP IN2P3 (2017), FCS MRR (2017)
- Scale 1 prototype under construction @ LPSC, CPPM and LPNHE

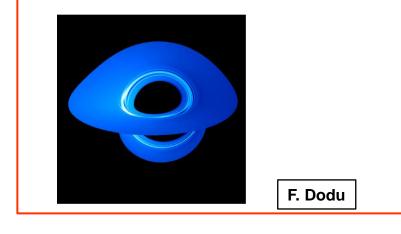
F. Virieux (PM), E. Marin-Matholaz


Map-making for CMB data analysis

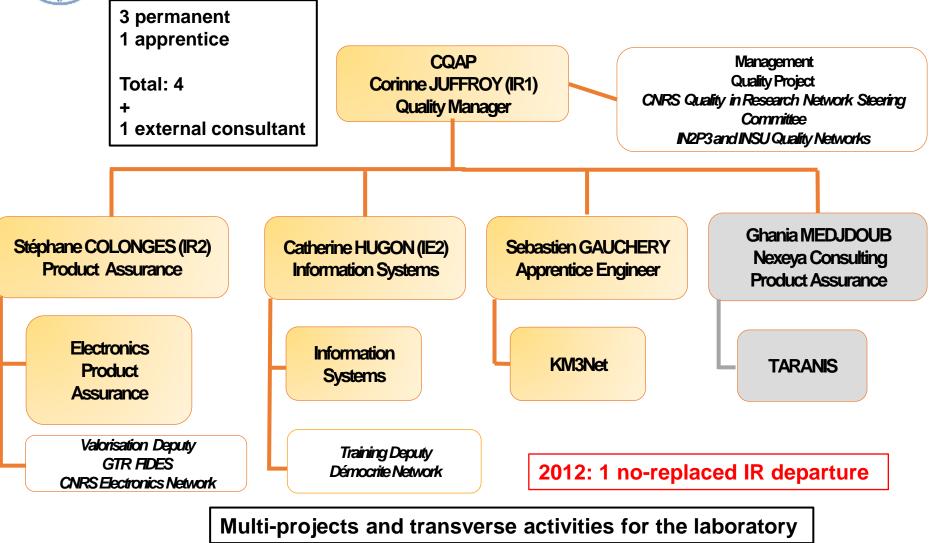
How to keep refined data analysis when data volume is exploding ?

Number of detectors : Polarbear I: 1200 -> Polarbear II: 7500 -> SIMONS array (2018): 22000

Size =n_t (10⁹) x n_pix (10⁷)


Unbiased mapmaking (iterative) to get full map recovery at optimized CPU cost

High Performance Computing


Studies of disk instabilities around black hole accretion disk

- Support : FACe (7 nodes bought by the HPC project team), CINES
- Scientific library compilation, optimization, installation
- Visualization for very big data : a new challenge

Quality Unit: Organization

Quality Unit:Skills

Quality Assurance Support:

- Setting up quality and management procedures to continuously improve scientist instruments produced by the laboratory
- ✓ Includes:
 - ✓ Documentation management
 - ✓ Non-conformities management
 - ✓ Traceability process implementation
 - ✓ Control of assembly operations

Electronics Product Assurance:

 Components qualification for commercial products or specific ASICs : Radhard qualification process, studies of reliability and ITAR process for space electronics components

Information and indicators management:

- ✓ Electronics documentation management
- ✓ Scientific bibliography
- ✓ Database studies and development for laboratory management

Quality Unit: Involvement in projects

TARANIS

Quality Project + Electronic Product Assurance (the whole project) Quality AIT/AIV

CTA / NectarCam

Reliability analysis of the MUTIN circuit Board and clock distribution. RAMS activities for NectarCam : (RAMS = Reliability Availability Maintenability Safety)

KM3NeT

Reliability analysis of DOM (Digital Optic Module) and other subsystems

EUCLID

NISP sensor RadHard test campaigns for EUCLID focal plan

SVOM

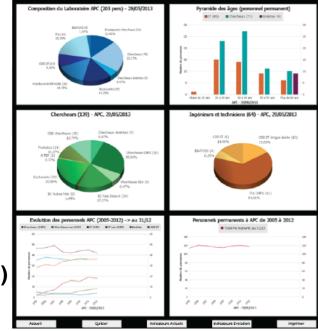
Quality Project Documentation

ATHENA

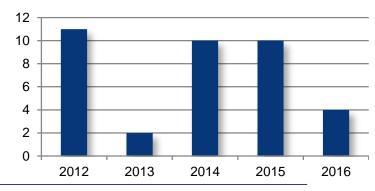
Quality Project + RADHARD Qualification

Quality Unit: Achievements

Indicators Database Human Resources:


 Information on Human Resources of the laboratory for tutelage agencies, scientific committee and the AERES

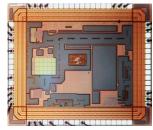
Project resources database:


- Overview on human resources assigned to each project for a better visibility
- ✓ Production of indicators (statistics, charts, graphics)

Documentation:

- Provision of documentation templates for projects
- Provision of an on-line documentation system (ATRIUM) for centralisation and storage
- ✓ Assistance to project reviews (CSP) organisation and reports management

2012-2016: 37 internal reviews

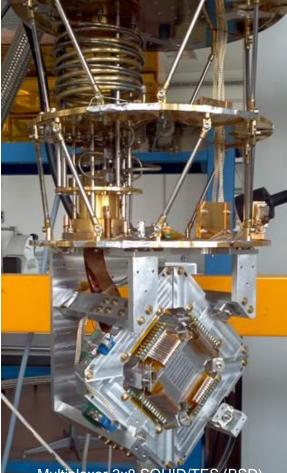


R&D: Microelectronics @ Millimetric Laboratory

SQUID multiplexed architecture and cryogenic ASICs for large TES assemblies readout

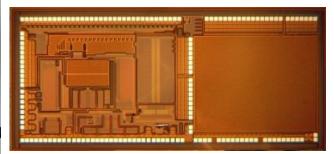
SQMUX8 : 2x4 TDM SQUIDs readout

(R&D Bolo)

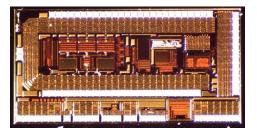

SQMUX24: 3x8 TDM SQUIDs readout(R&T CNES DCMB)

CONTRACT FERSION		
		recreated in
	A State of the second second	

Skills:

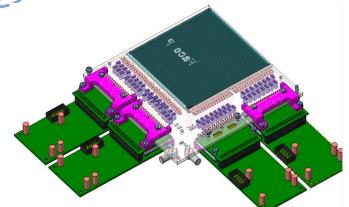

- ASIC Cryo (4,2K) design and implementation
- SQUID multiplexing + linearization (FLL)
- 2x2 / 3x8 / 4x32 prototypes integration
- Current/noise TES operation and characterization (collaboration with IEF/CSNSM)

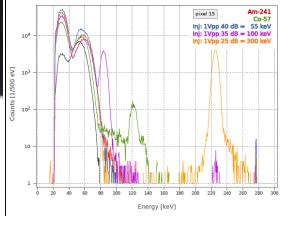
2006



Multiplexor 3x8 SQUID/TES (BSD) Thermal and méchanics: C.Chapron

SQMUX128 : 4x32 TDM SQUIDs readout (R&D CNES BSD / QUBIC)


PMO_SQMUX24 : 3x8 TDM SQUIDs readout (Chinese PMO Col.)



R&D: R&T Compton

2 DSSD 10x10cm², 1.5 mm thick mounted on dedicated hybrid PCBs, Design @ APC Manufacturing by the MICRON Semiconductor.

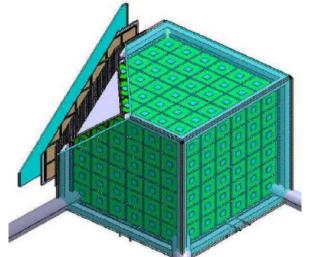
CNES milestones reached:

 ✓ Validation of the readout electronics (CEA FE including IDeF-X chips) with a Tristan silicon detector

- 2 DSSD mounted on hybrid PCBs delivered in August 2016
- First spectrum measured with DSSD read with CEA FE

Next:

- Design of a new digital electronics (FPGA + ADC) compatible with the NARVAL acquisition system
- Integration in a Compton mini-camera (DSSDs + Scintillators) in collaboration with the IPN Orsay and the CSNSM Orsay (COCOTE)

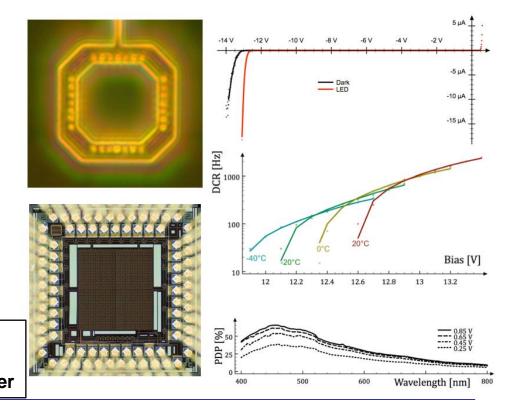

W. Bertoli (PM), G. Monier, R. Oger

Scientists: P. Laurent, D.Maier

R&D: GAMMACUBE

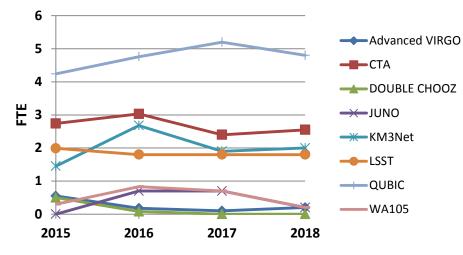
Gamma telescope, tracks reconstruction in the 5–100 MeV range

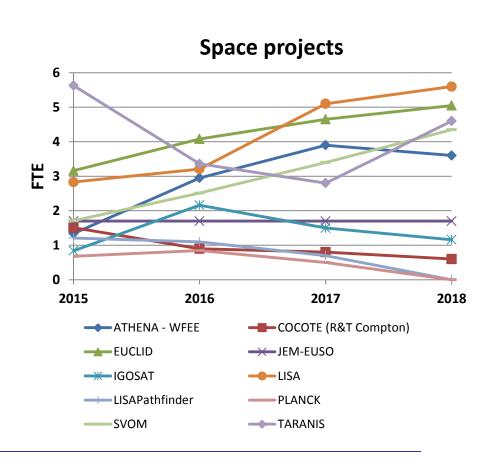
 SPAD - Single-Photon Avalanche Diodes (10 µm in opto technology CMOS 0.35 AMS)


• ASIC IMACUP (Col. LE2I), Multiplexed SPAD matrix (30x30) for imagery

• Optical and electrical characterization

→ Patent, SATT for industrial valorization (medical applications)


- **1.** Cube of plastic scintillators (1 m³)
- 2. Micro-lenses network (plenoptic imager)
- 3. Large-size Imager (few 10 cm), high spatial resolution (a few 10 μ m), single-electron detection capability



Analysis & Prospects: Technical FTE

Ground and under-sea projects

Analysis and prospects: Projects roadmap

Preparation			
Construction			
Exploitation			
End			

Projects	2016	2017	2018	2019	2020	2021
Advanced VIRGO - Telescopes						
ATHENA - WFEE						
CTA - TiCkS						
CTA - NECTARCAM- RAMS						
CTA -GATE						
CTA-PHP						
COCOTE (R&T Compton)						
DOUBLE CHOOZ						
EUCLID-CODEEN						
EUCLID-EXT						
EUCLID-NISP Rad Hard						
EUCLID-SIMULATIONS						
mini-EUSO (ISS)						
EUSO-SPB						
EUSO-SPB 2						
IGOSAT						
JUNO - Electronics						
KM3NeT - Calibration Unit						
LISA AIT/AIV						
LISA-DPC						
LISAPathfinder						
LSST - CCS et FCS software						
PLANCK						
QUBIC- Demonstrator						
QUBIC-FI						
SVOM - ECLAIR coded mask						
SVOM- Pipeline						
TARANIS - XGRE						
WA105 – Electronics						

Analysis & Prospects: SWOT Analysis

Strengths	Weaknesses
 Specific skills: optics, photodetection, cryogenic µelectronic, space AIT/AIV (mechanics & instrumentation), QA/PA, virtualization and cloud Skills in space and balloons projects managemement Recognition as a key actor in space projects by the CNES National and international visibility 	 Imbalance between projects needs and available technical HR High turn-over Risk of losing strategic skills (fixed- term contract, mobility, retirement) Some skills (ex: optics, AIT/AIV, electronics PA, mechanics workshop technician) owned by a permanent member of staff Strong commitment in projects limits involvement in generic R&D and general technologic surveys Logistics support reduced
Opportunities	Threats
 Space and funding agencies, tutelage organisations, national and international collaborations calls of tender Long-term projects: EUCLID, CTA, KM3NeT, LSST, QUBIC, LISA, ATHENA Multi-messenger astronomy rising 	 Financial cut from funding agencies and partners Time-consuming non-technical task increasing (ex: management, institutionnal consultancy, funding applications) Specific skills difficult to find on the labor market Unfavorable change in tutelage agencies hiring policy More and more restrictive administrative regulating (ex: Sauvadet, GBCP)

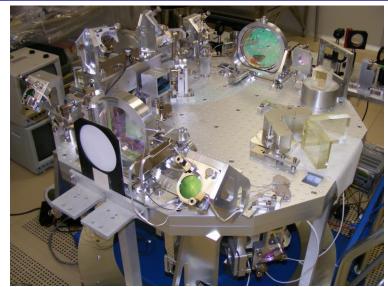
Thank you for your attention !

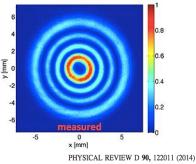
Back-up

Ground and under-sea experiments: AdvVIRGO, KM3NeT, QUBIC

Spatial projects: EUCLID, IGOSAT, LISAPathfinder, LISA, EUSO, TARANIS

Instrumentation Department: AdvVIRGO and post-AdvVIRGO R&D


✓ Telescopes for Advanced Virgo:

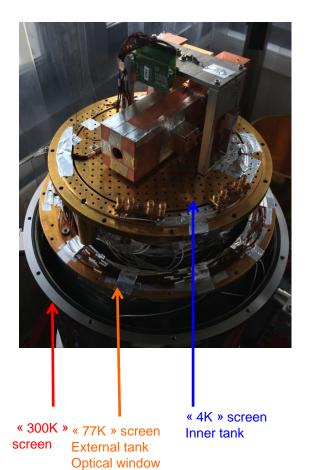

- Adapting beam size from a few mm (laser bench) to 5 cm in cavities (and vice-versa)
- ✓ MAJOR EVENTS:
 - ✓ Optical design validation (end of 2011)
 - Installation of the INJ telescope (February 2014)
 - ✓ Installation of the DFT telescope, SPRB and SNEB/SWEB (2015)

GW detection in coincidence with LIGO (August 2017)

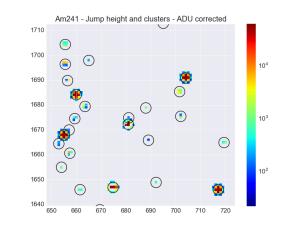
Laguerre-Gauss modes

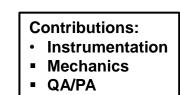
- ✓ MAJOR EVENTS:
 - ✓ Production of higher-order LG modes : PRL 2010
 - ✓ Interferometry : first lock (2014)
 - ✓ Thermal compensation of aberrations : PRD 2015
- Prospects:
 - Einstein Telescope: Third generation GW detector (underground, cryogenic, ...): LG modes integration

Fabry-Pérot-Michelson interferometer using higher-order Laguerre-Gauss modes


A. Gatto, M. Tacca, F. Kéfélian, C. Buy, and M. Barsuglia Laboratoire AstroParticule et Cosmologie (APC), Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France (Received 9 October 2014; published 31 December 2014)

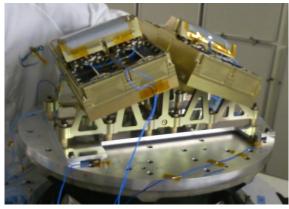
Contributions: Mechanics


EUCLID


Radiation hardness characterization of a EM NISP H2RG Teledyne detector up to a dose equivalent to 5 years operation in space

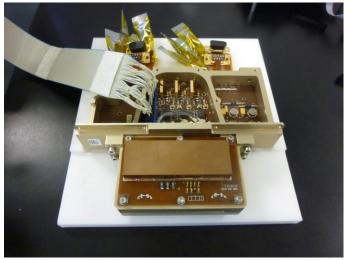
- ✓ Cryogenic test bench for the detector and its ASIC
- ✓ Thermal regulation system (Detector: 90K +/- 0.1 K, ASIC: 140K +/- 0.1K)
- ✓ Specific cabling
- ✓ Irradiation test campaigns:
 - \circ LPSC Grenoble (January 2016) with X and α sources
 - Louvain-La-Neuve (December 2016) with a 23MeV proton beam

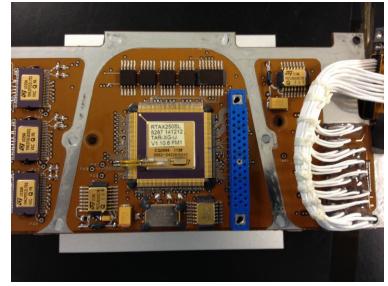
✓ Data analysis under progress



Planning:

- ✓ New LaBr3: July 2017
- ✓ VT, schock campaign on LaBr3 QM: July-August 2017
- ✓ AIT 12 UD FM and 4 UD QM: September 2017- February 2018
- ✓ AIT + FM sensors calibration: January-February 2018
- ✓ Coupling with EM analyzer: February 2018
- ✓ FM sensors thermal cycling in nitrogen gas: March 2018
- ✓ FM sensors calibration: March-April 2018
- ✓ Unmounting FM UD: April 2018
- ✓ Assembling hybrid sensor (4 QM UD) : April 2018
- ✓ VT hybrid sensor: May 2018
- ✓ Delivery to CNES + VT SAT: May-June 2018
- ✓ Remounting UD FM in sensors + validations: June 2018
- ✓ Final delivery : July 2018

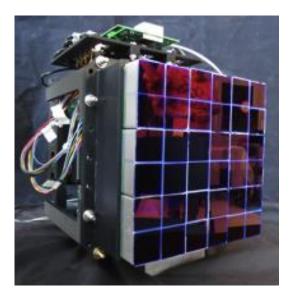


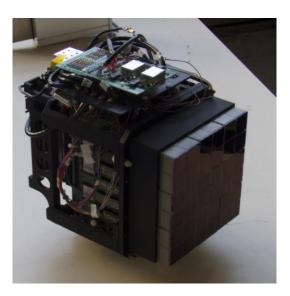


TARANIS

TARANIS: CNES µstaellite for Transient Luminescent Events studies

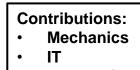
FEA card and HV modules

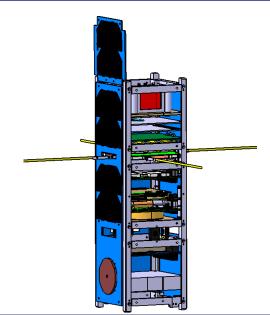


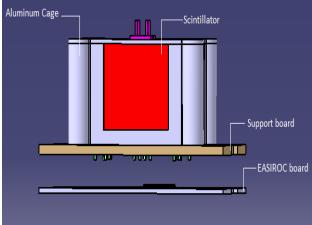

FEN card -FPGA

- Embedded electronics readout of the XGRE instrument (photons and electrons detection from 20keV to 10MeV)
- ✓ ECSS standards (European Cooperation for Space Standardization) for CAD design
- ✓ RadHard FPGA
- ✓ Radhard VHDL programmation
- ✓ Analogic : EMC and qualified components

MPMT Hamamatsu R-11265 (8x8 pixels) + UV filters ASIC : SPACIROC 3 FPGA: Xilinx (ballon 2014 et 2017)and Zynq (ISS 2018) HV Cockroft Walton





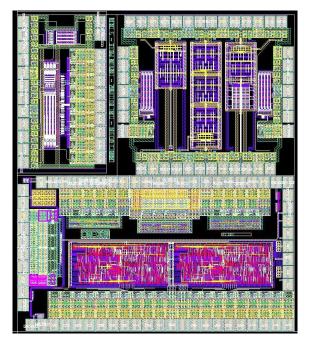

Instrumentation Department: IGOSat

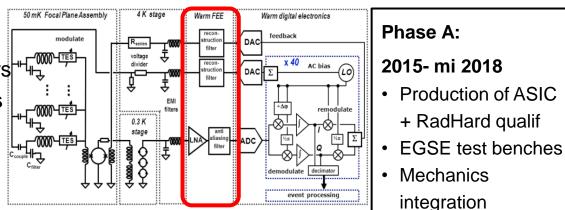
- 3U CubeSat (LEO, 600Km<Altitude<700Km)
- Student nanosatellite for measuring :
 - Gamma radiation Spectrum (from 20 keV to 2 MeV) and electrons (from 1 MeV to 20 MeV) above aurora zones and South Atlantic Anomaly (SAA)
 - The Total Electron Content (TEC) in the lonosphere
- 2 payloads:
 - A Gamma-ray detector: Scintillator
 - Dual Frequency GPS
- More than 200 students already worked on the project
- Currently in Phase D (CDR last September)
- Technology development
 - Most of the sub-systems are home-made (made by students): Scintillator Payload, Electrical Power System (EPS), Attitude Determination Control System (ADCS), On-Board Computer (OBC)
- An operational Ground Station in Lamarck for satellite tracking and telemetry

Electronics

Electronics and Microelectronics Department: Involvement in projects

Ground experiments: KM3NeT, CTA , JUNO, QUBIC, R&D Millimetric Laboratory, WA105.


Spatial projects: ATHENA, EUSO, GAMMACUBE, LISAPathfinder, LISA, R&T COMPTON, TARANIS



Electronics and Microelectronics Department: ATHENA

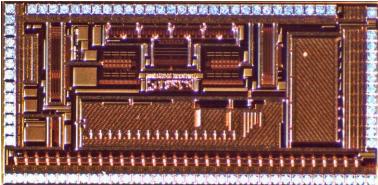
Warm Front-End Electronic (FEE) for the X-IFU instrument

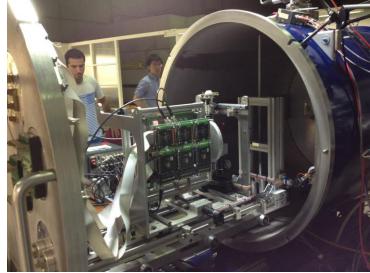
- ✓ 96 LNA (20V/V, 1-6MHz, 1nV/√Hz)
- ✓ Box part of the cryostat + EMI Filters
- ✓ Low noise adjustable SQUID bias
- ✓ Power reg., HK, SQUID deflux …

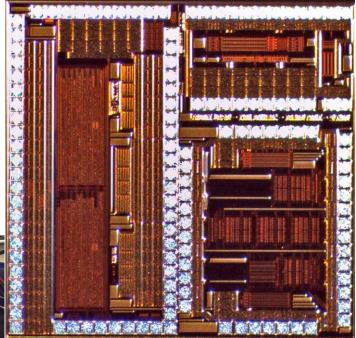
awaXe_v1:

ASIC AMS BiCMOS SiGe 0,35µm

Goals:

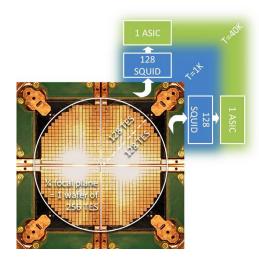

- ✓ Test and characterization of several architectures
- ✓ Validation of radiation-hard numerical libraries
- ✓ awaXe_v1 delivered on 01/08/2016.
- Successfull Rad tests @ Cocase (high activity 60Co gamma source) and latch-up tests @ Louvain-la-Neuve (heavy ions)
- ✓ ASIC version 2 under preparation


D. Prêle (Project Manager), C. Beillimaz, F. Voisin Si Chen (AHE PhD), J.P. Baronick (Mechanics), K.K. Chan (Electronics) S. Colonges, C. Juffroy (Quality)


Electronics and Microelectronics Department: QUBIC & ATHENA ASICs

QUBIC: ASIC SQUMUX128 Version 2

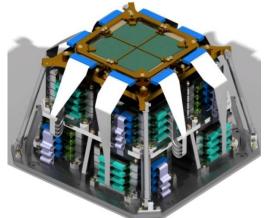
ATHENA: ASIC Awaxe Version 1



Louvain-la-Neuve test set-up for ATHENA

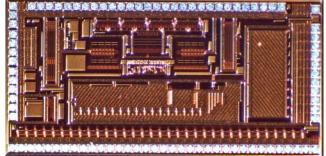
QUBIC

Bolometric interferometry for measurements of the CMB polarized B-modes

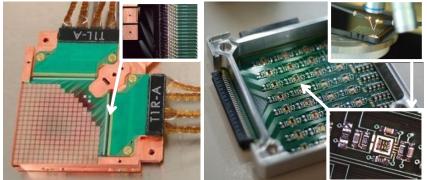


1/2 focal plane:

- 4 wafers de 256 TES @300mK
- Readout: TDM
- 128 SQUID @ 1K


+ 1 ASIC @ 40 K

for 1/8 de focal plane



QUBIC demonstrator integration

SQMUX128_evo (AMS BiCMOS SiGe 0,35µm)

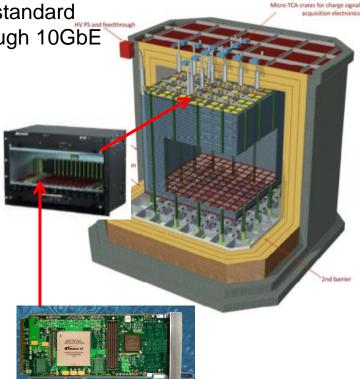
- LNA (< 0,2nV/ \sqrt{Hz}) with multiplexed inputs
- Multiplexed current supply for SQUID bias
- Digital circuit for addressing and serial link

- Supra. interconnections.
- Specific PCB
- TES characterization, SQUID definition and chips selection
 56

Electronics and Microelectronics Department: WA105 (LAGUNA)

Collaboration: Omega - APC – LAPP - IPNL

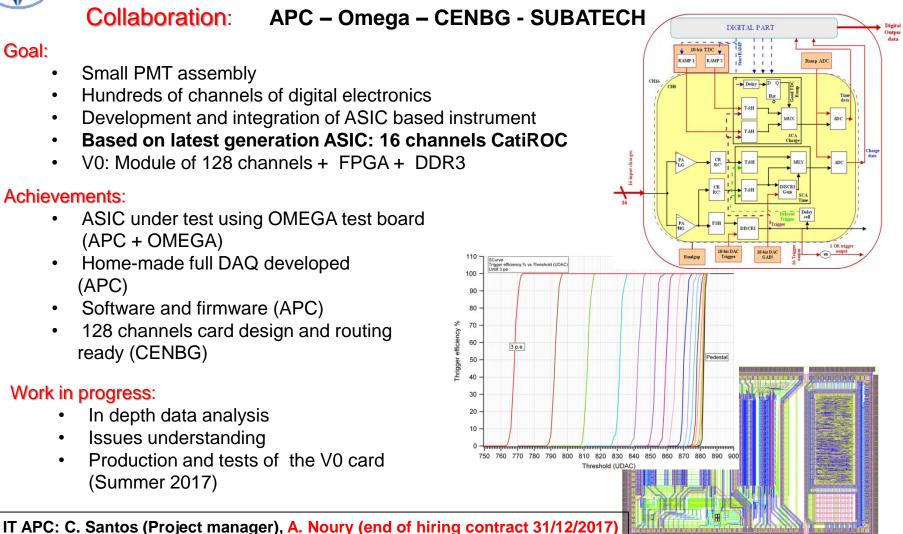
Goal:


- Thousands of channels of digital electronics
- WA105 DAQ Demonstrator based on µTCA standard
- Control through GbE, data transmission through 10GbE
- Prototyping with AMC S4AM from Bittware
- FMC mezzanine board, 16 channels + FADC
- ASIC technology: 16 channels CATIROC

Work in progress

- FMC Card 16 channels
- µTCA standard communication
- Stand-alone firmware and software development

Next:

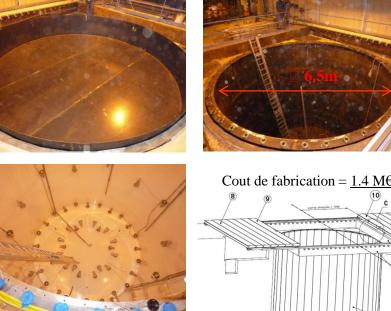

- Electrical tests
- Production firmware and software for the experiment @CERN
- Integration and test @CERN (Q1 2018)

IT APC: C. Santos (Project Manager), A. Noury (end of hiring contract 31/12/2017)

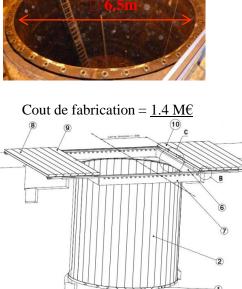
Electronics and Microelectronics Department: JUNO

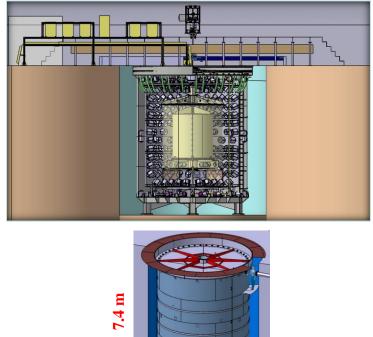
Ground and undersea experiments: Advanced VIRGO, Double Chooz, KM3NeT, QUBIC

Spatial projects: ATHENA, EUCLID, EUSO, R&T COMPTON, SVOM, TARANIS


Double Chooz

Far detector (2011):


- ✓ Steel tank + liquid scintilator + 350 tons of steel for shielding (150-mm thick)
- ✓ Airtightness
- ✓ Integration: vessel floating on water for welding
- ✓ Interfaces for PMT, cabling ...


Near Detector: Design, production and installation (2012-2014)

- Shielding: 1m water (except on top) \checkmark
- \checkmark Stainless steel tank on steel supports (outer vessel)
- Support stiffness strenghtened to prevent any deflection > 1mm of \checkmark the bottom due to water pressure (45 tons thrust load)
- Upper shielding (steel), platform and electronic hut \checkmark

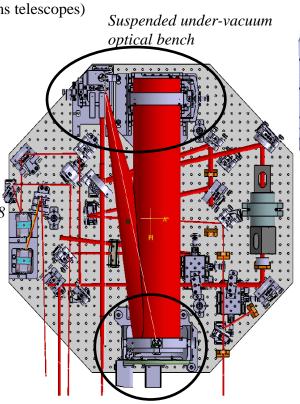
Peinture blanche réflective

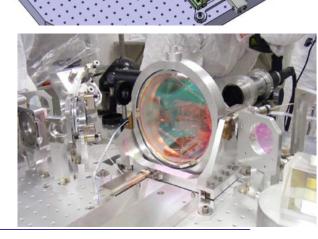
Mechanics Department: AdvVIRGO

Telescopes (Injection / Detection / Pick-off / End of arms)

6 translation and/or rotation motorized mounts (injection and détection telescopes)

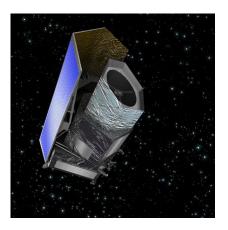
4 tunable mounts (pick-off and end of arms telescopes)


Design, construction and installation on site


- Cumbersomeness
- Linearity, moving reproductibility
- Position stability
- Operation under vacuum
- Contamination
- Vibration response
- Construction@ APC workshop (1.5 to 0.8 FTE)+ subcontracting
- MMT metrology

R&D Laguerre-Gauss

Cavité Fabry-Pérot en Invar 300 mm – miroir 1'' sur monture piézo

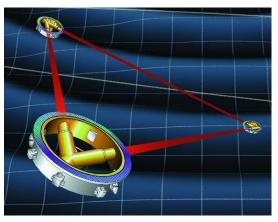


IT Department: EUCLID

- Ground Segment : phase C2
 - CODEEN :
 - Continuous integration platform for software development
 - Administration and user support, migration on the OpenStack@CC-IN2P3 cloud in 2017

- EXT/SIM :
 - Ground observatories data integration
 - Development of simulator and data analysis pipeline (démarrage EXT-generic starts in 2017, EXT-LSST in 2018 if Euclid/LSST agreement)
- SDC France scientific coordination (CC-IN2P3) :
 - Interface between the IN2P3 et the EUCLID project
 - Production infrastructure sizing and ressources allocation

C. Cavet (PM), A. Boizard, J.M. Colley, M. Detournay, R. Fahed, M. Le Jeune, M. Souchal


IT Department: DPC LISA

France in charge of the Data Processing Centre (DPC) :

✓ CNES phase 0 : load peaks management
 => hybrid cluster (continuous load) / cloud (peak) system.
 ✓ R&T CNES/ATOS : Docker containerization of applications

Objective: provide hardware and software tools to the consortium to host and process LISA data analysis.

Context: APC + CNES leadership, relatively small data volume (1Tb/year) but some processing tasks are CPU demanding

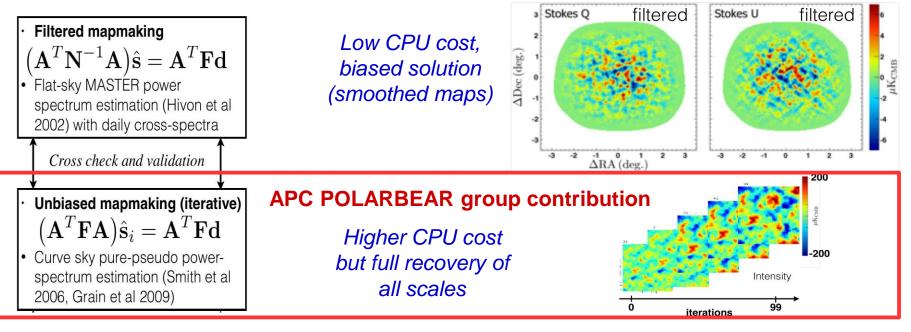
-> use distributed/on-demand CPU (~ 5000 cores/center, ~ 3 centers, including the main French center)

-> develop luggable tools and services (virtualization, containers)

Ongoing activites: 1) APC provides the proto-DPC (continuous Integration) + (due to end 2017) proto-database expected for the next data challenge.

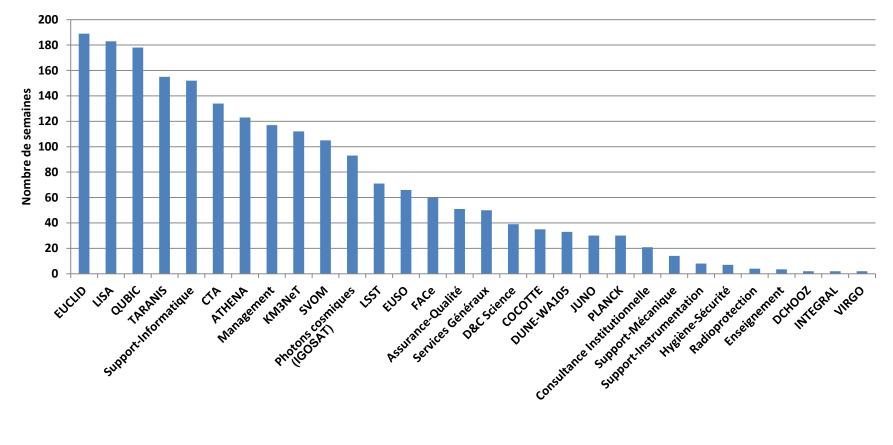
2) CNES, APC and the LISA consortium write the definition document and specify workpackages.

M. Le Jeune, C. Cavet, E. Marin-Matholaz, M. Batmanabane

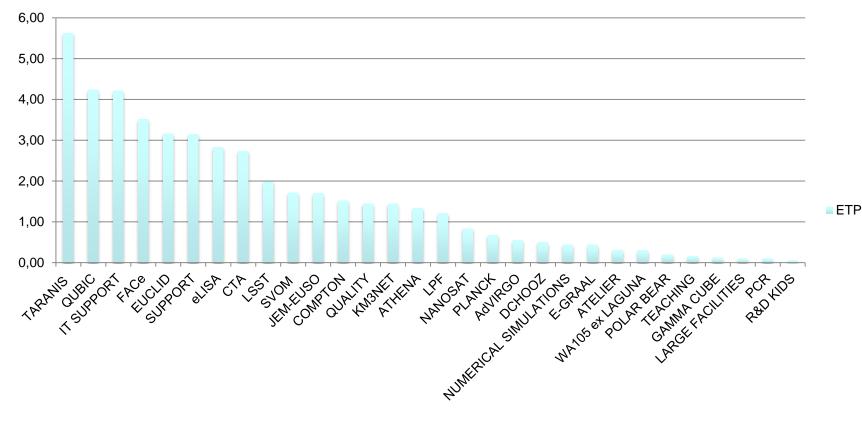


IT Department: Scientific Computing in CMB Data

- Computing issues in CMB data analysis are growing fast
- The MapMaking example : problem size = n_t (10) x n_pixel (10)


2012-2015	POLARBEAR I	1200 detectors
2016	POLARBEAR II	7500 detectors
2018	SIMONS ARRAY	22000 detectors
	CMB STAGE IV	100000 detectors

How to keep refined analysis techniques when data volume is exploding ?


Activités IT 2016 - NSIP

Technical FTE 2015

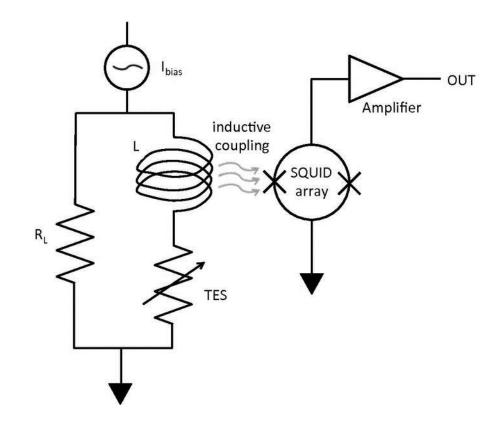
Technical FTE 2015

6 5 4 3 2 Projet 1 ISST USO MUTE FUCIPARANS 0 PCRDOL SUPPORT MANAGEMENT GRANDSEQUIPENENTS SUPPORT PREVENTION SIMULATIONS NUM. SUPPORTUTELLES SUPPORTINEO SUOM 1605AT ATHENA KM3NET COMPTON PLANUT ellSA CLA

ETP IT 2016

Summary and prospects

- Diversity and complementarity of skills, recognized expertises:
 - Cloud and distributed computing, data analysis architecture
 - ✓ Space projects management
 - ✓ QA/PA
 - ✓ AIT/AIV (Mechanics, Electronics, Instrumentation)
 - ✓ Optics & Photodetection
 - Cryogenic detectors & dedicated ASICs
- ✓ A significant fraction of the technical manpower relies on fixed-term staff
 - \rightarrow Turn-over, loss of skills
 - Mid-term and long-term strategy to stabilize the staff in a context where propositions of permanent positions are scarce


Technical departments are to their manpower limits

Departures of technical staff members generate difficulties for

projects and technical departments (4 departures in less than one year including 3 project managers, 2 non-replaced retirements in 2016)

Finding a reasonable compromise between the technical human ressources and the scientific commitments

