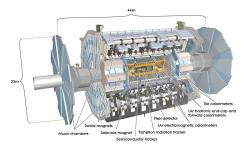

Searches for new physics with diboson final state

Olympia Dartsi supervised by L. Di Ciaccio

LAPP Annecy

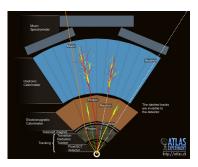
November 7, 2017

Olympia Dartsi

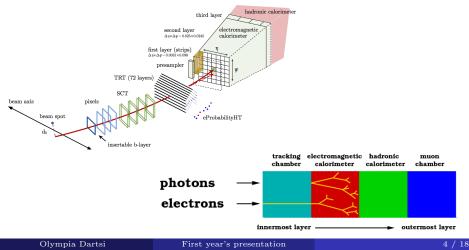

First year's presentation

Outline

1 ATLAS detector


- 2 Electron & photon reconstruction
- 3 Electron identification
- 4 Efficiency Measurement Methodology
- 5 The Standard Model and the Electroweak interaction
- 6 Vector Boson Scattering
- **7** Other Activities & Future Plans

ATLAS detector


• Patterns of energy deposits that allows the identification of different types of particles produced in collisions.

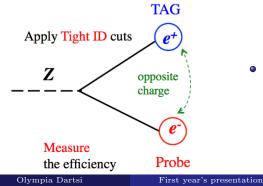
- Multipurpose detector
- Study of p-p collisions at LHC
- Run2 (2015-2018), \sqrt{s} = 13 TeV
- Aim is Luminosity $\ge 120 f b^{-1}$

Electron & photon reconstruction

- Electron: track & cluster in electromagnetic calorimeter
 Photon:
 - Unconverted: only cluster in electromagnetic calorimeter
 - Converted: Clusters with conversion vertex and tracks

Electron identification

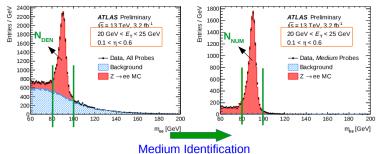
- Different sets of cuts are used to deliver a very good separation between electrons and fake electrons (ex. misidentified jets).
- (The fake electrons are called "background".)
- 3 main operating points with increasing background rejection power have been defined for electrons → loose,medium,tight.



Measuring the identification & reconstruction efficiency using data, requires a clean and unbiased sample of electrons.

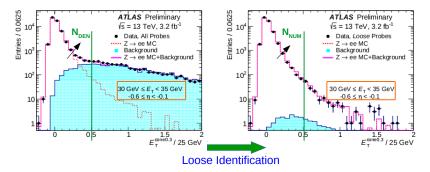
Efficiency Measurement Methodology, with data

Tag & Probe method


- use of the characteristic signatures of Z → ee and J/ψ → ee decays
- $Z \rightarrow ee decay \rightarrow rather clean sample of electrons$

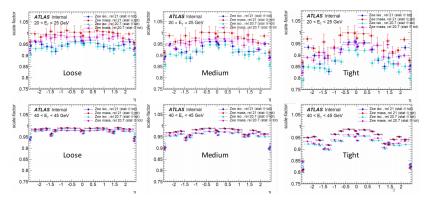
- tag electron → strict selection criteria probe electron→ used for the efficiency measurements
- Z selection:
 - Zmass & ZIso method $E_T > 15 \text{ GeV}$
 - radiative decays of the Z $10 \text{ GeV} < E_T < 15 \text{ GeV}$
- Background subtraction of probes:
 - Probes with $E_T > 25$ GeV are usually clean sample.
 - For lower E_T , care should be taken

Method I: Zmass


- use the invariant mass of the tag and the probe as discriminating variable
- provides electron identification efficiencies for electrons with E_T 15-200 GeV

- To compute the efficiency, we take the ratio after the background subtraction $\epsilon = N_{NUM}/N_{DEN}$.
- SF= $\epsilon_{data}/\epsilon_{MC}$

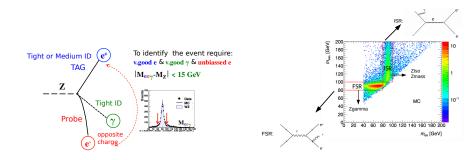
Method II: ZIso


• use the probe isolation as a discriminating variable against the background

- To compute the efficiency, we take the ratio after the background subtraction $\epsilon = N_{NUM}/N_{DEN}$.
- SF= $\epsilon_{data}/\epsilon_{MC}$

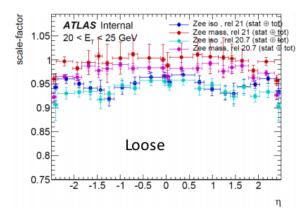
Results: Zmass & ZIso (full 2016 data)

Two different "Releases" of the ATLAS software (20.7 and 21)

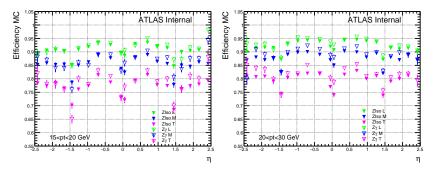


- Releases 20.7 and 21 give coherent results.
- The 2 methods give coherent results, small difference in low $E_T \rightarrow$ is going to be understood.
- Results using 2017 data have also been produced.

Olympia Dartsi


Method III: $Z\gamma$ method

- probe electrons with E_T between 10 GeV & 15 GeV are selected from $Z \rightarrow ee\gamma$ decays in which an electron has lost much of its energy due to final state radiation(FSR).
- the invariant mass of the 3 objects is used as a discriminating variable.



Motivations

- at low E_T (10-15), this topology has less background than $Z \rightarrow ee$ decays
- understanding the difference in ScaleFactor between Zmass & ZIso method in the low E_T bin.

Efficiency achieved using the $Z\gamma$ method

• Only statistical uncertainty is shown.

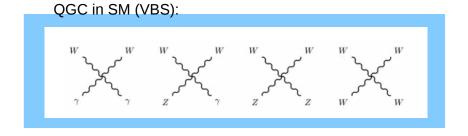
• ZIso & Z γ methods are in agreement.

The Standard Model and the Electroweak interaction

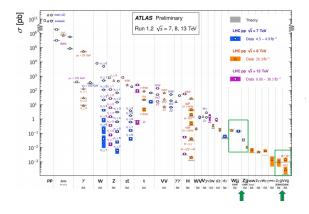


Electromagnetic & Weak:

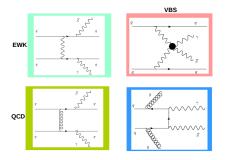
• above certain energy these two forces merge into a single electroweak (EWK) interaction.


Standard Model(SM):

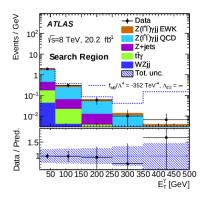
- describes the interaction of fundamental particles
- 3 kinds of interactions:
 - electromagnetic
 - weak
 - strong
- + (gravitational)


Vector Boson Dynamics

- the SM predicts self-interactions between the electroweak gauge bosons.
- these self-couplings can involve either 3(triplet, TGC) or 4(quartic, QGC) gauge boson at a single vertex.

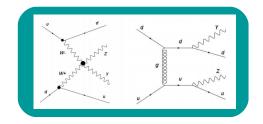

• VBS purely EWK process with small cross-section

VBS Motivation



- measurement of the production of multiple EWK gauge bosons represents an important test of the SM & a good candidate to search for physics beyond the SM.
- Complementary to Higgs boson property studies

$Z\gamma jj$ production



 Main (irreducible) background
 ↓
 QCD production of the same
 diboson states + jets • Our channel of interest: pp \rightarrow Z γ jj, Z \rightarrow 2l

QCD/EWK Interference

- QCD & EWK production of $Z\gamma jj$ have an identical final state.
- Therefore they can interfere with one another.
- The interference was estimated at the 8 TeV to be $\leq 10\%$.

- I am using MadGraph5 event generator to revisited this interference at 13 TeV, producing 3 different samples:
 - Only the EWK component.
 - Only the QCD component.
 - The combination of QCD & EWK.

- ATLAS Software Tutorial
- Monte Carlo School, Hamburg
- 60 hours of French courses
- Calo/FWD shift at ATLAS Control Room

Future Plans:

- Poster about electron ID in the Physics Workshop at CERN, December2017.
- Adding the $Z\gamma$ method in the Electron ID paper, spring 2018.
- VBS $Z\gamma$ analysis.
- More French courses