Polarisation measurement concept Angela Burger
 07/11/17

- Measure fractions of longitudinal \& transverse polarization of W \& Z-bosons
- Test of SM, MC modelling \& PDF prediction : Boson polarization dependent on hadronic dynamic of boson production meachanism
- New interactions can cause different polarization states, can probe aTGCs
- Goal :
- Measure polarization fractions of W \& Z-bosons
- Look for correlated states among W \& Z boson
- Interested especially in longitudinal polarization which is connected to massive character of gauge boson

CAPP Previous polarization measurements in ATLAS

- W-polarisation @ 7TeV : arXiv:1203.2165
- Z-polarisation @ 8TeV (full angular coefficients measurement) : arXiv:1606.00689
- Diboson polarization never measured before, first (internal) studies for WZ @ 8TeV, current studies by Elena (see for example : slides)
- W-boson polarization \& previous WZ polarization studies based on fitting templates of pure longitudinal and left- and right-handed transverse polarizations to decay lepton angular distribution

Will propose new method to measure polarization based on arXiv:1606.00689 (Z-boson angular coefficient extraction)

- All angles and momenta are defined in the Collins-Soper reference frame :

- Z-Axis : bisector of the two colliding protons, direction of positive longitudinal Z-boson momentum
- Y-Axis : Normal to incoming protons-plane
- X-axis : Complete the coordinate system that have right-handed Carthesian coordinate system
- Angle θ is the angle between the boson direction in the laboratory frame \& the lepton from the boson's decay in the boson rest frame

EntimAngle Φ is the azimuthal angle

Theory

- Spin correlations between boson decay products described by 3×3 spin-density matrix
- Diagonal elements : polarization fractions
- Off-diagonal elements : interferences between single helicity states \rightarrow introduce dependence on azimutal angle Φ
- Cross section can be decomposed in sum of nine harmonic potentials dependent on Φ and $\cos (\theta)$:
$\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{\mathrm{U}+\mathrm{L}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y^{\mathrm{Z}} \mathrm{d} m^{\mathrm{Z}}} \times\left(\left(1+\cos ^{2} \theta\right)+\sum_{i} A_{i} P_{i}(\cos \theta, \phi)\right)=$

$$
\frac{i}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta \mathrm{~d} \phi}=\frac{3}{16 \pi} \frac{\mathrm{~d} \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}}
$$

(Eq. 1)

$$
\begin{aligned}
& \left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{1} \sin 2 \theta \cos \phi\right. \\
& +\frac{1}{2} A_{2} \sin ^{2} \theta \cos 2 \phi+A_{3} \sin \theta \cos \phi+A_{4} \cos \theta \\
& \left.+A_{5} \sin ^{2} \theta \sin 2 \phi+A_{6} \sin 2 \theta \sin \phi+A_{7} \sin \theta \sin \phi\right\}
\end{aligned}
$$

- Angular coefficients $\mathrm{A}_{0}-\mathrm{A}_{7}$ (spin density matrix elements) depend on boson pT and rapidity y
- Analytic dependenct of the cross section on Φ and $\cos (\theta)=>A_{i}$ are decoupled from

CAPP Measurement of the angular coefficients in arXiv:1606.00689

- Fit templates of pure polarization to distribution sensitive to polarization
- Templates of pure polarization have to be created by reweighting the MC :

1) Remove all polarization information about Z-boson : weight each event with

$$
\frac{1 .}{\frac{3}{16 \pi}\left(\left(1+\cos ^{2} \theta\right)+\sum_{i} A_{i} P_{i}(\cos \theta, \phi)\right)}
$$

2) Apply event weights, selection criteria and weight by $A_{i} P_{i}(\cos \theta, \phi)$
=> obtain template for each angular coefficient A_{i} considering modifications of the template shape due to selection criteria

- Need to know coefficients A_{i} in simulation : calculate weighted average of each coefficient :

$$
\langle P(\cos \theta, \phi)\rangle=\frac{\int P(\cos \theta, \phi) \mathrm{d} \sigma(\cos \theta, \phi) \mathrm{d} \cos \theta \mathrm{~d} \phi}{\int \mathrm{~d} \sigma(\cos \theta, \phi) \mathrm{d} \cos \theta \mathrm{~d} \phi} .
$$

- Calculate A_{i} from the following relation obtained from momentum:

$$
\begin{aligned}
\left\langle\frac{1}{2}\left(1-3 \cos ^{2} \theta\right)\right\rangle & =\frac{3}{20}\left(A_{0}-\frac{2}{3}\right) ; \quad\langle\sin 2 \theta \cos \phi\rangle=\frac{1}{5} A_{1} ; \quad\left\langle\sin ^{2} \theta \cos 2 \phi\right\rangle=\frac{1}{10} A_{2} ; \\
\langle\sin \theta \cos \phi\rangle & =\frac{1}{4} A_{3} ; \quad\langle\cos \theta\rangle=\frac{1}{4} A_{4} ; \quad\left\langle\sin ^{2} \theta \sin 2 \phi\right\rangle=\frac{1}{5} A_{5} ; \\
\langle\sin 2 \theta \sin \phi\rangle & =\frac{1}{5} A_{6} ; \quad\langle\sin \theta \sin \phi\rangle=\frac{1}{4} A_{7} .
\end{aligned}
$$

EnigmasFit 2-dimensional templates $(\Phi, \cos (\theta))$ to data in bins of $\mathrm{pT} \& \mathrm{y}$

- If assume symmetry in Φ, can integrate Eq. 1 over Φ :

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z} \mathrm{~d} \cos \theta}=\frac{3}{8} \frac{d \sigma^{U+L}}{\mathrm{~d} p_{\mathrm{T}}^{Z} \mathrm{~d} y^{Z} \mathrm{~d} m^{Z}}\left\{\left(1+\cos ^{2} \theta\right)+\frac{1}{2} A_{0}\left(1-3 \cos ^{2} \theta\right)+A_{4} \cos \theta\right\}
$$

- Compare to expression for helicity fractions, see Elena's slides :

W-boson: $\frac{1}{\sigma_{W \pm \rightarrow \ell^{ \pm} \nu}} \frac{d \sigma_{W \pm \rightarrow \ell \pm \nu}}{d \cos \theta_{3 D}}=\frac{3}{8} f_{L}\left(1 \mp \cos \theta_{3 D}\right)^{2}+\frac{3}{8} f_{R}\left(1 \pm \cos \theta_{3 D}\right)^{2}+\frac{3}{4} f_{0} \sin ^{2} \theta_{3 D}$
Z-boson: $\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta_{3 D}}=\frac{3}{8} f_{L}\left(1+2 A \cos \theta_{3 D}+\cos ^{2} \theta_{3 D}\right)+\frac{3}{8} f_{R}\left(1+\cos ^{2} \theta_{3 D}-2 A \cos \theta_{3 D}\right)^{2}+\frac{3}{4} f_{0} \sin ^{2} \theta_{3 D}$

- Polarization fractions f_{L}, f_{R} and f_{0} can be associated to A_{0} and A_{4} :
- $f_{0}=1 / 2 A_{0}$
- $\mathrm{f}_{\mathrm{L}}-\mathrm{f}_{\mathrm{R}}= \pm 1 / 2 \mathrm{~A}_{4}(+: W-,-: W+)$
- $f_{L}-f_{R}=\frac{A_{4}}{2 \tilde{A}}$ for Z-boson, where $\tilde{A}=\frac{2 c_{V} c_{a}}{c_{V}^{2}+c_{a}^{2}}$
- Polarisation fractions only dependent on angular coefficients A_{0} and A_{4}
- 3 polarisation fractions, but only two are independent ($f_{L}+f_{R}+f_{0}=1$)
- = > Fit A_{4} and A_{0} templates, fit with less parameters also reduces uncertainty,

Polarization measurement concept

- Get templates for angular coefficients A_{0} \& A_{4} just as in arXiv:1606.00689
- Do not consider Φ dependence (integrated out), asymmetries in Φ (limited detector acceptance, selection cuts) taken into account by correcting the templates for selection cuts
- In polarization measurements (for example : arXiv:1203.2165), fit $\cos (\theta)$ distribution as it is very dependent on polarization effects
- Try to fit a different estimator : BDT distribution, feed the BDT with variables sensitive to polarization effects, for example (to be checked) :
- $\cos (\theta)$ (or projection on transverse plane in case of W-boson)
- Lepton transverse momentum
- Etmiss
- mTW
- Charge asymmetry ratio
- Variable used in CMS W-polarization measurement : $\quad \mathrm{L}_{p}=\frac{\overrightarrow{p_{\mathrm{T}}}(I) \circ \overrightarrow{p_{\mathrm{T}}}(W)}{\left|p_{\mathrm{T}}(W)\right|^{2}}$
- Try to get an estimator which is more sensitive to polarization than $\cos (\theta)$

CAPP

Methodology comparison : standard method \& « angular coefficient method »

Fit functional form of polarization fractions to $\cos (\theta)$ distribution, extract f_{i}

by

$$
w=\frac{f_{i} P(\cos (\theta))}{\sum_{i} f_{i} P(\cos (\theta))}
$$

Fit polarization templates $\left(f_{0}, f_{\mathrm{L}}, \mathrm{f}_{\mathrm{R}}\right)$ to $\cos (\theta)$ distribution

Calculate polarization fraction using the momenta :

$$
\left\langle\frac{1}{2}\left(1-3 \cos ^{2} \theta\right)\right\rangle=\frac{3}{20}\left(A_{0}-\frac{2}{3}\right) ; \quad\langle\cos \theta\rangle=\frac{1}{4} A_{4} ;
$$

Remove all polarization information from MC
Apply selection cuts \& weight by

$$
A_{i} P_{i}(\cos \theta, \phi)
$$

Fit templates for $\mathrm{A}_{0} \& \mathrm{~A}_{4}$ to BDT-score distribution

- Presented concept to extract longitudinal polarization f_{0} and transverse polarization $f_{L}-f_{R}$ using the method described in arXiv:1606.00689
- In contrast to conventional polarization measurements, fit only two templates (angular coefficients) in order to reduce uncertainty on fit
- Create templates for the angular coefficients $A_{0} \& A_{4}$ using the momentum method
- Fit templates to BDT-score distribution with input variable sensitive to polarization effects

CAPP

