

Thursday February 26th, 2009

Overview of grid activities ir France in relation to FKPPL

FKPPL Workshop

Dominique Boutigny

Just 1 slide \rightarrow see Soonwook's talk...

The setting up of FKPPL VO has been the first practical action done within the framework of the VO

Idea: Setup a grid environment to allow the students attending the Seoul e-science and Grid school to practice on a real, full scale

system

Great success

The VO has been setup very fast with good coordination between KISTI and CC-IN2P3 Decision: end of July, first job in October

And the VO is actually used : 5000 jobs in 5 months and > 9000 kSI2k.hours

Dominique Boutigny

Thursday February 26th, 2009

3

Dominique Boutigny

Thursday February 26th, 2009

Dominique Boutigny

Considerable efforts have been invested in 2008 / 2009 in order to strengthen the LCG computing infrastructure

Every piece is important – A single flaky component will ruin all the system

 \rightarrow We start to collect the fruits of this

Dominique Boutigny

The weak point is clearly related to the SRM / dcache system which handles the data storage

LHC CPU consumption in 2008: > 17 M kSI2k.hours

CC-IN2P3 is committed to collaborate with KISTI in order to develop the ALICE Tier-2

Dominique Boutigny

■CMS

■ALICE ■LHC-B

- Ready-to-use software, adapted to targeted scientific field
- Hide heterogeneity between grid infrastructures
- Hide heterogeneity between middlewares
- As many interfaces as ways to implement each functionality
- As many interfaces as used technologies

application developer

plug-ins developer

11

For instance, it is possible to interactively handle files stored in SRM / dcache from my own laptop and to move them to another data storage system managed by another Grid middleware

Some applications need to run on parallel computer:

- Molecular Dynamics within WISDOM
- Lattice QCD
- Some astroparticles applications
- . .

EGEE middleware has been mainly designed to address jobs to serial computer farms Using parallel computers would require to be able to characterize

the parallel nodes within the Information System

Very relevant in the framework of FKPPL

Parallel computers at CC-IN2P3

CC-IN2P3 operates a small parallel farm: 232 CPU-cores connected in Gigabit Ethernet

This farm will be upgraded this year to ~1000 CPU cores Low latency network (probably Infiniband)

Due to modern CPU design constraints (many cores per chip), using parallelism even in HEP applications will become unavoidable

I consider that gaining expertise in this area is crucial for CC-IN2P3

KISTI has this expertise !

This year CC-IN2P3 will build a powerful analysis interactive platform

- Fast event filtering Typically read and process AOD at 1 kHz for 50 users in parallel
- Root analysis

The architecture will be based on PROOF + probably xrootd, but other storage system will be considered

A prototype will be setup in the coming weeks with existing hardware in order to validate the architecture Then we will build a full scale system for LHC startup

ALICE is very enthusiastic to get such a system at CC-IN2P3 which will complement the CERN Analysis Facility

 \rightarrow We will easily get user applications to test the system

Also in contact with René Brun and PROOF development team in order to setup something really powerful Balance between RAM – SSD and HDD

> This is something that I propose to consider within the framework of FKPPL