Status of ALICE activities within FKPPL LIA

Development of the online monitoring software for the ALICE Muon Trigger And Suppression Study for Y

SANG-UN AHN KONKUK UNIVERSITY SEOUL, KOREA

25 February 2009

FKPPL Workshop CC-IN2P3 Lyon

Online monitoring and its purpose

- Provide checks for the shifter so that data quality problems can be fixed in an early stage
- Especially important in the beginning of an experiment for efficiently and quickly solving runtime problems

On the MOOD framework MOOD : Monitor Of Online Data of ALICE

• Interactive Data Quality Monitoring framework

• Separated into two parts for experts and shifters

• Development of the expert version has been done by Valerie Barret(LPC)

• Contribution to the development of the shifter version

• Purpose of the shifter version

• To make the online monitoring more efficient by reducing the loading time of modules of the expert version and providing easy-to-understand information to shifters

Scheme of the shifter version

- o General Information
 - × Event Type
 - Physics event
 - Software(Calibration) event
 - × Raw Data Quality
 - × Detector Data Link(DDL) Size

• Scheme of the shifter version

• Strip Level Information

- **×** Fired strip multiplicity & distribution
 - Immigrated from the expert version
- × Strip scaler distribution

• Software event only

Scheme of the shifter version

o Global Trigger Board Information

- × Global trigger output
 - Unlike-Sign di-muon High P_T
 - Unlike-Sign di-muon Low P_T
 - Like-Sign di-muon High P_T
 - Like-Sign di-muon Low P_T
 - Single muon High P_T
 - Single muon Low P_T
 - Single Choice Low/High P_T

• Summary (1)

- The purpose of the online monitoring is to monitor data quality through the information provided by the online monitoring software
- Development of the online monitoring software is separated into the expert version and the shifter version
- The aim of the shifter version is to make the online monitoring more efficient
- A few parts of modules of the shifter version are now in development

Suppression Study for Y

11

PHYSICS MOTIVATION AND PERFORMANCES FOR HEAVY QUARKONIA MEASUREMENT OF ALICE MUON SPECTROMETER

FKPPL Workshop CC-IN2P3 Lyon

Suppression Study for Y

12

• Heavy quarkonium suppression was supposed to be an ideal test of the deconfinement phase transition, Quark-Gluon Plasma (QGP)

• T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416

• Due to color screening effects, a qq pair cannot form a bound state in the QGP with T > T_D (screening temperature)

• Leads to the suppression of heavy quarkonia yield

- A strong motivation for experimental studies of quarkonia production which have been (and are being) carried out both at CERN SPS and RHIC energies
- In fact, since the Y(1S) dissolves only significantly above the critical temperature T_C (3 or $4T_C$, $T_C = 190$ MeV), at a value which should not be reached at RHIC($\sqrt{s}_{NN} = 200$ GeV, upper limit of $T^{RHIC} \le 2T_C \approx 400$ MeV), the spectroscopy of the Y family at LHC energies($\sqrt{s}_{NN} = 5.5$ TeV, $T^{LHC} \ge 600$ MeV) should reveal an unique set of information on the characteristics of the QGP

- Heavy quarkonia will be detected in ALICE both in the dielectron (in the central barrel) and in the dimuon channel (in the forward region)
 - The key detectors for this study are the Transition Radiation Detector (TRD) and the Forward Muon Spectrometer
- * Acceptance coverage for dileptons in the ALICE experiment. The x ranges are given for Pb-Pb at $\sqrt{s} = 5.5$ TeV per nucleon pair

	State	y range	<i>x</i> range	min. <i>p</i> t (triggerable)	Prompt vs. sec. J/ψ
Electron	J/ψ Y	$-0.9 \leqslant y \leqslant 0.9$ $-0.9 \leqslant y \leqslant 0.9$	$\begin{array}{c} 2.3 \times 10^{-4} \leqslant x_{1,2} \leqslant 1.4 \times 10^{-3} \\ 7.0 \times 10^{-4} \leqslant x_{1,2} \leqslant 4.2 \times 10^{-3} \end{array}$	5 GeV/c 0	Yes
Muon	${ m J}/\psi$	$2.5 \leqslant y < 4.0$	$7.0 \times 10^{-3} \leq x_1 \leq 3.1 \times 10^{-2}$ $1.0 \times 10^{-5} \leq x_2 \leq 4.6 \times 10^{-5}$	0	No
	Υ	$2.5 \leqslant y < 4.0$	$2.1 \times 10^{-2} \leqslant x_1 \leqslant 9.3 \times 10^{-2} 3.1 \times 10^{-5} \leqslant x_2 \leqslant 1.4 \times 10^{-4}$	0	

***** background level 1 = 2 Pb-Pb HIJING events with $dN_{ch}/d\eta$ = 6000 @ η = 0 each

- Y mass resolution ~ 92 MeV
- Υ reconstruction efficiency ~ 97%
- J/ ψ & Υ acceptance down to P_t = 0 (unique @ LHC)
- acceptance/ 4π : J/ ψ ~4.6%, Υ ~4.2%

p, (GeV/c)

-4.0<n<

acceptance

10

ALICE Muon Spectrometer Performances for heavy quarkonia measurement Unlike sign dimuon mass spectra (Pb-Pb ~ 10⁶s, L = 5 x 10²⁶ cm⁻²s⁻¹)

15

with p_t^{cut} > 1GeV/c no nuclear effects

b<3 fm Correlated and uncorrelated **b** b are dominant @ M_{γ}

b>12 fm Correlated $\overline{b}\overline{b}$ is dominant @ M_{γ}

.........

Summary (2) & Plans

16

• Summary (2)

- Heavy quarkonium suppression was supposed to be an ideal test of the deconfinement phase transition, QGP
- Within the LHC energy and the acceptances of ALICE Muon Spectrometer, Y(1S) suppression study via dimuon channel will be possible, in the p-p and Pb-Pb, and should reveal an unique set of information on the characteristics of the QGP

• Next plans

- Converting MOOD-Based monitoring software into AMORE
- Starting "Cotutelle" program between Blaise Pascal Univ.(Clermont-Ferrand) and Konkuk Univ.(Seoul) within FKPPL LIA
- Study for Y in p-p collision first

BACKUP

(17)

FKPPL Workshop CC-IN2P3 Lyon

Scheme of the shifter version

• To be done

× Local Trigger Board Information

- Multiplicity of local trigger board delivering trigger
- Distribution of local trigger board delivering trigger

× Global Trigger Board Information

• Global Trigger Board Scaler

× Checking Trigger Board Algorithms

UNIVERSITY TO A CONTROL OF THE OWNER TO A CONTROL OWNER TO A CONTROL OF THE OWNER TO A CONTROL OF THE OWNER TO A CONTROL OF THE OWNER TO A CONTROL OWNER TO A CONTROL

Quarkonium yields vs centrality

with p_t^{cut} > 1GeV/c no nuclear effects

Significance is good almost ever ywhere and is higher for the med ium centralities

Good statistics, except for Υ (3S)

Υ family separation

					Λ	LIC S
19	b (fm)	0-3	3-6	6-9	9-12	12- 16
	ε (GeV/fm³)	32	30	28	16	5
J/ψ	S (×10³)	133	235	198	95	22
	S/B	0.20	0.27	0.48	1.08	3.13
	S/√S+B	148	224	254	222	128
ψ'	S (×10³)	3.7	6.5	5.5	2.6	0.6
	S/B	0.01	0.02	0.03	0.06	0.17
	S/√S+B	6.7	10.4	12.6	12.4	9.3
	S (×10³)	1.35	2.38	1.99	0.93	0.20
ľ (1S)	S/B	1.66	2.35	3.60	6.06	9.12
(13)	S/√S+B	29.0	40.9	39.5	28.3	13.6
Ƴ (2S)	S (×10³)	0.36	0.63	0.53	0.25	0.05
	S/B	0.65	0.92	1.36	2.25	3.46
	S/√S+B	11.8	17.3	17.3	13.0	6.4
Υ (3S)	S (×10 ³)	0.20	0.36	0.30	0.14	0.03
	S/B	0.48	0.64	0.99	1.57	2.22
	S/√S+B	8.1	11.8	12.2	9.2	4.6

Suppression studies for Υ (1S)

Due to color screening effects, a $Q\overline{Q}$ pair cannot form a bound state in QGP with T >T_D (screening temperature). T_D can be ca lculated for different quarkonia states in I attice QCD and potential models.

Assumptions

- \checkmark no nuclear absorption of Υ (1S)
- \checkmark no energy loss of b quarks

✓ suppression : 2 extreme scenar ii (T_c =270 MeV [1] and T_c =190 M eV [2])

> W.M. Alberico et al, hep-ph/0507084 C.Y. Wong, hep-ph/0606200

Good sensitivity: the 2 scenarii can be distinguished

	Ƴ (1S)		
τ _F (fm) (formation)	0.76		
T _D /T _{C,} D=dissociation C=critical	4		
T _D /T _C	2.9		