Recent results from Antares and prospects for KM3NeT/ORCA

Rencontres de Moriond
Electroweak session
La Thuile, 2018

Ronald Bruijn
Universiteit van Amsterdam & Nikhef
for the Antares & KM3NeT Collaborations
Neutrino mass hierarchy

Neutrino Oscillations (incl. sterile)

KM3NeT/ORCA

Neutrino point sources
Unresolved sources/diffuse flux
Multi-messenger astronomy (‘photons’, gw)

Dark Matter
Monopoles/‘Exotics’

High Energy (TeV-PeV scale)

Low Energy (GeV scale)

KM3NeT/ARCA

Antares

Neutrino (other) Physics

Supernova neutrinos (MeV)

Neutrino Astronomy

Low Energy (GeV scale)

High Energy (TeV-PeV scale)
Neutrino mass hierarchy

Neutrino Oscillations (incl. sterile neutrinos)

Neutrino (+other) Physics

KM3NeT/ORCA

Low Energy (GeV scale)

High Energy (TeV-PeV scale)

Dark Matter
Monopoles/‘Exotics’

Supernova neutrinos (MeV)

Antares

Neutrino point sources
Unresolved sources/diffuse flux
Multi-messenger astronomy (‘photons’, gw)

This talk

KM3NeT/ARCA

Neutrino Astronomy
Cherenkov light from the charged products of neutrino interactions in sea-water are detected by a sparse array of photo-multiplier tubes.

Two general event types:

Tracks
- Charged current (CC) ν_μ interaction
- Charged current ν_τ interaction

Showers
- Neutral current ν interaction
- ν_e CC electromagnetic shower
- Vertex of CC interaction
- τ decay shower

Sea-bed: ~2.5 km deep (KM3NeT/ORCA and Antares)
Antares

- Deep-Sea Cherenkov telescope:
 - Detect light from charged products of neutrino interactions
- 2.5 km deep, 40 km off-shore of Toulon, France
- 12 Vertical lines, each is 350 m high
- 25 storeys of 3 10” photomultiplier tubes per line
- 10 Mton instrumented volume
- First line deployed 2006, construction completed 2008
All-flavour neutrino point source search

Can we find sources of neutrinos in the sky?’

Strategies:
- Grid scan of sky-positions 1x1 degree
- GC region scan
- Sagittarius A* (Extended source: Gaussian profiles)
- Coordinates of interest
 - Candidate list of 106 (pulsars, SNRs)
 - IceCube events (13 HESE)

Ingredients:

Dataset:
- 2007 - 2015
- 2424 days lifetime
- All-flavour analysis:
 - 7622 tracks
 - 180 showers

Background Simulation
(Atmospheric Neutrinos and Muons)

Likelihood ratio based test statistic
Point Source Searches

Most significant cluster: 1.9 \sigma

Most sensitive upper limit in fraction of the sky, in particular at low energies (< 100 TeV)
Diffuse flux

‘Is there a neutrino flux resulting from unresolved sources? (on top of background)’

MC uncertainty bands include Honda +− 25 %
Enberg high/low
Detector systematics
Diffuse Flux: upper limits and best fit

Results:

33 events (19 tracks + 14 showers) in data
24 ± 7 (stat.+syst.) events from background MC

1.6σ excess, null cosmic rejected at 85% CL

Limits on 1-flavour flux normalization (100 TeV)

<table>
<thead>
<tr>
<th></th>
<th>Γ = 2.0</th>
<th>Γ = 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Phi_0^{1f,90%\text{Sens.}} (100\text{ TeV})$</td>
<td>1.2×10^{-18}</td>
<td>2.0×10^{-18}</td>
</tr>
<tr>
<td>$\Phi_0^{1f,90%\text{U.L.}} (100\text{ TeV})$</td>
<td>4.0×10^{-18}</td>
<td>6.8×10^{-18}</td>
</tr>
<tr>
<td>$\Phi_0^{1f,68%\text{C.L.}} (100\text{ TeV})$</td>
<td>$(0.29–2.9) \times 10^{-18}$</td>
<td>$(0.5–5.0) \times 10^{-18}$</td>
</tr>
</tbody>
</table>

$\Phi_0^{1f}(100\text{ TeV}) \sim (1.7±1.0) \times 10^{-18} (\text{GeV cm}^2 \text{ s sr}^{-1})$
Γ ~ $2.4^{+0.5}_{-0.4}$
Galactic plane

Neutrinos from interactions of cosmic rays with galactic matter

Cosmic Ray diffusion model: KRAγ
5 & 50 PeV CR cutoffs
(predicts photon+neutrino flux)

Evaluate Likelihood ratio
distribution using pseudo experiments for different
signal strengths

Get data Likelihood ratio
2007-2015
7300 tracks, 208 showers

(model dependent) upper limit
Multi-messenger program

Bi-directional real-time:
- Provide triggers (order 1/day over all programs)
 - Coincidence & High energy triggers
 - 5 s first response, 0.4 degree resolution
- Receive triggers, e.g.:
 - Supernovae
 - FRBs, AGNs
 - Flaring objects
 - Gravitational waves

On- and offline Analyses, e.g.
- Time and location coincidences
 - IceCube HESE events
 - Auger/TA cosmic ray events
 - AGN flares from HAWC

Radio/Visible/X-rays
MWA, TAROT, ZADKO, MASTER, SWIFT, SUPERB

Gamma rays:
Fermi, Hess, Magic

Neutrinos
IceCube

UHE Cosmic Rays
Auger, TA

Gravitational Waves
Ligo/Virgo
Gravitational Wave follow-up

Follow-up of several GW events
GW150914 (BBH merger)
GW151226 (BBH merger)
LVT151012 (candidate)
GW170104 (BBH merger)
GW170817 (BNS merger)

Features
• Optimized reconstruction
• +/-500 s search window
• Combined IceCube/Antares searches

No coincidences found

Search for coincidences of Antares/IceCube events with sub-threshold GW events ongoing
KM3NeT/ORCA
(Oscillations Research with Cosmics in the Abyss)

- 115 Detection Units
- 5 Mton
- 2.5 km deep, 40 km off-shore of Toulon

‘compact version of ARCA’

Detection Units:
- 18 optical modules per detection unit
- 9m between optical modules
- 153 m instrumented

Digital Optical Modules
- 31 3” PMTs in 17” sphere + electronics etc.
- Photon counting
- Directionality
- Cheap(er)

KM3NeT Collaboration
- 51 institutes in 15 countries (mainly European)
- 2 current deployment sites (Fr, It), one future (Gr)

Infrastructure:
- Sea-bed infrastructure (facility for long term high-bandwidth connection for sea-science, biology etc.)
- Optical data transmission
- *All-data-to-shore*
- Filtering/Trigger on-shore in computer farm
KM3NeT/ORCA Goal: Neutrino Mass Hierarchy

Neutrinos can change flavour during propagation as the mass eigenstates are not their flavour eigenstates.

Neutrino flavour oscillations are described by the PMNS matrix:

\[U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{-i \delta} s_{13} \\ 0 & 1 & 0 \\ -e^{i \delta} s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

and two mass squared differences:

Only the size (not the sign) of the large mass squared difference \(\Delta M^2 \) is known. This allows for two orderings of the neutrino mass eigenstates:

Neutrino Mass Hierarchy (NMH)

Also: CP violating phase \(\delta_{CP} \) unknown and octant of \(\theta_{23} \)
Determining the NMH with atmospheric ν´s

In vacuum, neutrino oscillations are unaffected by the mass ordering. E.g:

$$P_{3\nu}(\nu_\mu \rightarrow \nu_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \right)$$

$$P_{3\nu}(\nu_\mu \rightarrow \nu_\mu) \approx 1 - 4 \cos^2 \theta_{13} \sin^2 \theta_{23} (1 - \cos^2 \theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \right)$$

In matter $\nu_e (\bar{\nu}_e)$acquires effective potential $A = \pm \sqrt{2} G_F N_e$ through charged current elastic interactions with electrons. And oscillations probabilities are modified. This affects phase and amplitude of oscillations and is strongest at resonance energy:

$$E_{res} = \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2 \sqrt{2} G_F N_e} \approx 7 \text{GeV} \left(\frac{4.5 \text{ g/cm}^3}{\rho} \right) \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \text{ eV}^2} \right) \cos 2\theta_{13}$$

Density profile of the path through the Earth depends on zenith angle

Measure atmospheric neutrino flux as function of energy and zenith angle!

Determining the NMH with atmospheric ν's

Relative difference in event numbers between normal and inverted hierarchy $(N_{\text{IH}}-N_{\text{NH}})/N_{\text{NH}}$

Zenith angle corresponds with different distance and density profile!
Sensitivity for Neutrino mass ordering

Sensitivity to distinguish between normal and inverted hierarchy:

3 σ in 3 years (median sensitivity)

Normal hierarchy + upper octant θ_{23} gives more sensitivity (5 σ in 3 years)

New (improved!) results underway!!
Δm_{32}^2 and $\sin^2 \theta_{23}$

Competitive measurements of Δm_{32}^2 (2-3%) and $\sin^2 \theta_{23}$ (4-10%)
Dark Matter

Spin-dependent scattering cross-section (Sun)

KM3NeT/ORCA sensitivity (3 years, tracks and showers)

KM3NeT preliminary

Thermally averaged annihilation cross-section (GC)

Antares limits
Competitive due to low energy threshold and good angular resolution
Other KM3NeT/ORCA Physics Topics

• Supernova detection
• Tau-neutrino appearance
• Non-Standard interactions and Sterile Neutrinos
• Neutrino Beam from Protvino to KM3NeT/ORCA
 • CP & NMH
• Low Energy Neutrino Astrophysics
• Earth Tomography and Composition
• Earth and Sea Sciences
KM3NeT/ORCA Status

First DU deployed September last year

DU behaved splendidly

Fault in commercial undersea cable (Will be repaired)

Construction of phase-1 DOMs and DUs ongoing

DUs to be deployed end of this year

Phase-2 partially funded, starting tenders for components
Summary

• Antares
 • 10 years operational and running
 • Large variety in physics results
 • Combined analyses
 • Multi-messenger astronomy

• KM3NeT/ORCA
 • Neutrino mass hierarchy
 • Strong potential to make the first measurement
 • ‘3 sigma in 3 years’
 • Broad physics program
 • Under construction
Backup
Oscillation parameters and sterile neutrinos

Evaluation of the sensitivity of Antares to oscillation parameters and sterile neutrinos work in progress
At relevant energies, neutrino/lepton scattering angle dominates.

Energy resolution < 20% for E > 4 GeV.
Supernova detection

~10 MeV supernova neutrinos can not be resolved individually

Detection of Galactic supernovae by enhanced collective coincidence rates between PMTs in DOMs

SN1987A - like supernova at 10 kpc, $3 \cdot 10^{53}$ erg, $\bar{\nu}_e$ component (1/6) with 25% in first 100 ms

At >= 6 coincidences per DOM, SN signal exceeds background.

KM3NeT/ORCA: 5 σ discovery distance 16 (24) kpc at $\langle E_\nu \rangle = 12$ (16) MeV (KM3NeT/ARCA: up to 37 kpc)

(Note: neutrino fluxes from SN are influenced by mass-hierarchy)
τ appearance

Early physics result
3k tau events/year
Rate constrained to 10% in one year

KM3NeT Preliminary
KM3NeT Design (ORCA)

Detection Units:
- 18 optical modules per detection unit
- 9m between optical modules
- Lowest optical module 40m above seabed
- Two Dyneema® ropes
- Backbone: 2 copper conductors; 18 fibres (+spares)
- Break out of cable at each optical module
- Base module with DWDM at anchor
- Cable for connection to seafloor network

Cost saving design

Infrastructure:
- Building block of 115 strings
- Sea-bed infrastructure
- (facility for long term high-bandwidth connection for sea-science, biology etc.)
- Optical data transmission

All-data-to-shore
- Filtering/Trigger on-shore in computer farm
Sensitivity study

- Generate many pseudo-experiments
 - A set of ‘true’ values for oscillation parameters and systematics
 - Both normal and inverted hierarchy
 - Calculate oscillation probabilities
 - Apply resolutions, particle ID etc. (determined from simulations)
- Determine likelihood for both NH and IH cases
 - Maximize w.r.t. free parameters
- Calculate log-likelihood ratio L_{IH}/L_{NH}
- Calculate median sensitivity for hypothesis and time

A simpler approach based on Asimov-sets yields similar results