Higgs measurements in the di-boson final state

Rencontres de Moriond
Electroweak Interactions and Unified Theories
10-17 March 2018
La Thuile

Ioannis Nomidis

on behalf of the ATLAS collaboration

Measurements in diboson final states

- Not favoured in terms of branching ratio but have other advantages \Rightarrow Clean signal peak, fully reconstructed, extracted from well understood backgrounds, also in multi-jet environments

\Rightarrow Can probe all major production modes ($g g F, V B F, V H, t t H$)
\Rightarrow Can measure the mass ($4 \ell, \mathrm{\gamma} \mathrm{\gamma}$), an important parameter
- Measurements in diboson final states contributed significantly to the understanding of the Higgs properties in Run-1
\Rightarrow Run-2: ATLAS analyzed $36.1 \mathrm{fb}^{-1}$ so far $(2015+2016)$

6) and measured fiducial \& differential cross-sections, couplings, mass

See talks by
D. Sperka, S. Menary
$H \rightarrow \boldsymbol{W} \boldsymbol{W}^{*} \rightarrow \boldsymbol{\ell} \nu \boldsymbol{l} \ell^{\prime} \boldsymbol{v}$

Measurements in diboson final states

- Not favoured in terms of branching ratio but have other advantages \Rightarrow Clean signal peak, fully reconstructed, extracted from well understood backgrounds, also in multi-jet environments

Combination of cross-sections

\Rightarrow Can probe all major production modes (ggF, VBF, VH, ttH)
\Rightarrow Can measure the mass ($4 \ell, \mathrm{\gamma} \mathrm{\gamma}$), an important parameter

- Measurements in diboson final states contributed significantly to the understanding of the Higgs properties in Run-1
\Rightarrow Run-2: ATLAS analyzed $36.1 \mathrm{fb}^{-1}$ so far $(2015+2016)$

6) and measured
D. Sperka, S. Menary

$H \rightarrow W^{*}$ production measurements

\Rightarrow Signal consists of two prompt isolated leptons produced with a small opening angle and missing transverse energy

- Goal is to probe the Higgs production modes
- Study ggF and VBF production
- Events with 0,1 and ≥ 2 jets studied separately ($0,1 \mathrm{j}$ for ggF , $\geq 2 \mathrm{j}$ for VBF, $\mathrm{p}^{\mathrm{j}}{ }^{\text {et }}>30 \mathrm{GeV}$)
- Suppressing the background and constraining its normalization are key elements
- Differences with the Run-1 analysis
- 0j: b-jet veto ($20<\mathrm{p}^{\mathrm{jet}}<30 \mathrm{GeV}$) for suppression of top background (large increase in Run-2 due to larger $\sqrt{ } \mathrm{s}$) and additional control region to constrain its normalization
- $\mathrm{e}^{+} \mathrm{e}^{-} / \mu^{+} \mu^{-}$not included; small significance because of larger DY background

$\mathrm{H} \rightarrow \mathrm{WW}^{*}$: backgrounds

Dominant processes: WW, tt/tW, Z/ $\rangle^{*} \rightarrow \pi$
4. Normalization constrained from data in dedicated control regions (CRs)

0/1-jet CRs

- Mis-identified leptons / W+jets
\Rightarrow Evaluated with data using a fakefactor (FF) method; FFs determined from Z+jets data and corrected for expected differences with W+jets (i.e. jet flavour)

- Other dibosons (WZ, ZZ, WY)
\Rightarrow Evaluated with MC simulation normalized to best prediction

$H \rightarrow W W^{*}$: signal regions

ggF measurement combines 16 categories
$\left(2\right.$ in $\left.m_{l \ell}\right) \times\left(2\right.$ in $\left.\mathrm{p}^{\ell 2}\right) \times(e \mu / \mu \mathrm{e}) \times(0 / 1$ jet $)$

- Discriminant: $\quad m_{\mathrm{T}}=\sqrt{\left(E_{\mathrm{T}}^{l l}+E_{\mathrm{T}}^{m i s s}\right)^{2}-\left|\mathbf{p}_{\mathrm{T}}^{l l}+\boldsymbol{E}_{\mathrm{T}}^{\text {miss }}\right|^{2}}$

- VBF production measurement with BDT discriminant
- BDT built from: jet/l kinematics, $\mathrm{m}_{\mathrm{j}}, \mathrm{m}_{\ell \ell}, \Delta \mathrm{y}_{\mathrm{j}}, \Delta \phi_{\ell \ell}$

\Rightarrow Experimental uncertainties under control (<10\%)

mis Sizeable theoretical uncertainties mainly from modelling (parton showers, missing higher orders)

$\mathrm{H} \rightarrow \mathrm{WW}^{*}$: results New!

- Signal strength:

$$
\begin{aligned}
\mu_{\mathrm{ggF}} & =1.21_{-0.11}^{+0.12}(\text { stat. })_{-0.17}^{+0.18}(\text { sys. })=1.21_{-0.21}^{+0.22} \\
\mu_{\mathrm{VBF}} & =0.62_{-0.28}^{+0.30}(\text { stat. }) \pm 0.22(\text { sys. })=0.62_{-0.36}^{+0.37}
\end{aligned}
$$

\Rightarrow Uncertainties in good agreement with expectations

$$
\begin{aligned}
\mu_{g g F}^{\exp } & =1.00 \pm 0.10(\text { stat } .) \pm 0.18(\text { sys })=1.00_{-0.21}^{+0.21} \\
\mu_{V B F}^{\text {exp }} & \left.=1.00_{-0.31}^{+0.33} \text { (stat. }\right) \pm 0.25(\text { sys })=1.00_{-0.40}^{+0.42}
\end{aligned}
$$

\Rightarrow Precision as good or better than the Run-I combination

- Cross-section times branching ratio:

$$
\begin{aligned}
\sigma_{\mathrm{ggF}} \cdot \mathcal{B}_{H \rightarrow W W^{*}} & =12.6_{-1.2}^{+1.3}(\text { stat. })_{-1.8}^{+1.9} \text { (sys.) } \mathrm{pb}=12.6_{-2.1}^{+2.3} \mathrm{pb} \\
\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \rightarrow W W^{*}} & =0.50_{-0.23}^{+0.24} \text { (stat.) } \pm 0.18 \text { (sys.) } \mathrm{pb}=0.50_{-0.29}^{+0.30} \mathrm{pb}
\end{aligned}
$$

$H \rightarrow \gamma \gamma / Z Z^{*} x$-sections inclusive in production

Fiducial measurements

- Inclusive: $(\sigma \cdot \mathrm{BR})_{(p p \rightarrow H \rightarrow f)}=\mathrm{N}_{\text {signal }} /(\mathcal{L} \cdot \varepsilon)$
\Rightarrow Compare with best available predictions in the phase space directly accessible by our detectors
- Differential: $d(\sigma \cdot B R) / d x$

Yy: arXiv:1802.04146
4थ: JHEP 10 (2017) 132
$\mathrm{x}: \mathrm{p}^{\mathrm{H}}, \mathrm{y}^{\mathrm{H}}, \mathrm{n}_{\mathrm{jets}}, \mathrm{p}^{\mathrm{j}}{ }^{\mathrm{i}, 2}, \mathrm{p}^{\mathrm{h}}{ }^{\mathrm{Hj}}, \cos \theta^{\star}, \mathrm{m}_{\mathrm{j}}, \Delta \phi_{\mathrm{jj}}, \mathrm{H}_{\mathrm{T}}, \ldots$ \Rightarrow Observables sensitive to new physics and interesting for tests of the QCD calculations

- Doubly-differential: $\quad d^{2}(\sigma \cdot B R) /\left(\mathrm{dp}^{\mathrm{H}} \cdot \mathrm{dn}_{\mathrm{jets}}\right)$
\Rightarrow To disentangle the large correlations between $\mathrm{N}_{\text {jets }}$ and pr^{H}
Largely model-independent measurements; potential modelling bias on the corrections/unfolding procedure is evaluated and is insignificant in most of the bins considered

Good agreement overall with the SM predictions

\Rightarrow Theory calculations still more precise than current experimental measurements
\Rightarrow Comparisons will become more interesting with more data

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma} / \mathrm{ZZ}^{*} \mathrm{x}$-sections inclusive in production

Combination of the diphoton and four-lepton measurements:
ATLAS-CONF-2018-002

$$
\sigma_{(p p \rightarrow H)}=\mathrm{N}_{\text {signal }} /\left(\mathcal{L} \cdot \varepsilon \cdot \mathbf{A} \cdot \mathrm{BR}_{H \rightarrow f}\right)
$$

- Assume the SM branching ratios @ $\mathrm{m}_{\mathrm{H}}=125.09 \mathrm{GeV}$
- $B R(H \rightarrow \gamma Y) \sim 0.227 \%$, $B R(H \rightarrow 4 \ell) \sim 0.0125 \%$
- Acceptance correction (fiducial \rightarrow full phase space) calculated with MC simulated events generated with (N)NLO precision
- $A(H \rightarrow \gamma \gamma) \sim 50 \%, A(H \rightarrow 4 \ell) \sim 42 \%$
- fairly stable with p_{T} and $\mathrm{n}_{\text {jets }}$

$H \rightarrow \gamma \gamma / Z Z^{*} x$-sections inclusive in production

Combination of the diphoton and four-lepton measurements:

- Statistical uncertainties ~20-30\%
- Systematics from luminosity (4\%), background estimation ($\gamma\rangle, 2-6 \%$), jet reconstruction experimental uncertainties ($3-6 \%,>10 \%$ for $n_{j e t s}>2$)

\Rightarrow Excellent compatibility of $4 \mathrm{l} / \mathrm{Y} \mathrm{\gamma}$
measurements (>40\% for all observables)

p-values [\%]	$p_{\mathrm{T}}^{\mathrm{H}}$	$\left\|y^{\mathrm{H}}\right\|$	N_{jets}	$p_{\mathrm{T}}^{\mathrm{j}}$
NNLOPS (@N3LO)	29	92	45	5
HRes (NNLO+NNLL)	5	-	-	-
RADISH + NNLOJET	29	-	-	-
SCETLIB	-	91	-	21
MAdGRAPh5_AMC@NLO (@N3LO)	-	-	57	-

Higgs Measurements in the di-boson final state

$H \rightarrow \gamma \gamma / Z Z^{*} x$-sections inclusive in production

Combination of the diphoton and four-lepton measurements:

- Statistical uncertainties ~20-30\%
- Systematics from luminosity (4\%), background estimation ($\gamma\rangle, 2-6 \%$), jet reconstruction experimental uncertainties (3-6\%, >10\% for $\mathrm{n}_{\mathrm{jets}}>2$)

\Rightarrow Mild excess at the high $p T^{H} / p_{T}^{j l} / n_{j e t s}$ seen in both channels

p-values [\%]	$p_{\mathrm{T}}^{\mathrm{H}}$	$\left\|y^{\mathrm{H}}\right\|$	N_{jets}	$p_{\mathrm{T}}^{\mathrm{il}}$
NNLOPS (@N3LO)	29	92	45	5
HREs (NNLO+NNLL)	5	-	-	-
RADISH + NNLOJET	29	-	-	-
SCETLIB	-	91	-	21
MADGRAPH5_AMC@NLO (@N3LO)	-	-	57	-

p-values neglect theoretical uncertainties

Higgs Measurements in the di-boson final state

Summary

- With Run-2 data, we are entering the precision era; analysis of the diboson final states is allowing measurements with precision better than Run-1
- Analysis of the $2015+2016$ dataset $\left(36 \mathrm{fb}^{-1}\right)$ is a milestone in preparation for the Run-2 legacy physics results
- Methodology is established - high quality results already improve on the Run-1 measurements

New ATLAS measurements

- Analysis of ggF and VBF production in the $\mathrm{H} \rightarrow \mathrm{WW}^{*}$ channel yields most sensitive singlechannel measurements so far in Run-2
- Cross-section in agreement with the SM predictions
- Inclusive production in the 4ℓ and $\gamma \gamma$ channels: independent measurements with minimal theory assumptions
- Now combined to obtain differential measurements ($\mathrm{d} \mathrm{\sigma} / \mathrm{dx}, \mathrm{x}: \mathrm{p}_{T^{H}}, \mathrm{y}^{\mathrm{H}}, \mathrm{n}_{\mathrm{jets}}, \mathrm{p}_{\mathrm{T}^{11}}$) :
- No significant deviations from the SM seen
- More data will allow interesting tests of QCD calculations

Additional material

$\mathrm{H} \rightarrow \mathrm{WW}^{\star}$ event selection

$\mathrm{H} \rightarrow \mathrm{WW}^{*} \mathrm{MC}$ simulation

Process	Matrix Element (Alternative)	PDF	PS (Alternative)	Precision σ
ggF	$\begin{aligned} & \text { POWHEG-BOX v2 } \\ & \text { NNLOPS [4-6] } \\ & \text { (MG5_AMC@NLO [22, 23]) } \end{aligned}$	PDF4LHC15 NNLO [7]	PYTHIA 8 [8] (HERWIG 7 [24])	N ${ }^{3} \mathrm{LO}$ QCD + NLO EW [10-14]
VBF	$\begin{aligned} & \text { POWHEG-BOX v2 } \\ & \text { (MG5_AMC@NLO) } \end{aligned}$	PDF4LHC15 NLO	PYTHIA 8 (HERWIG 7)	NNLO QCD + NLO EW [10, 15-17]
VH	POWHEG-BOX v2 [25]	PDF4LHC15 NLO	PYTHIA 8	NNLO QCD + NLO EW[26-28]
$q q \rightarrow W W$	SHERPA 2.2.2 [29, 30] (POWHEG-BOX v2, MG5_AMC@NLO)	NNPDF3.0NNLO [31]	SHERPA 2.2.2 [32, 33] (HERWIG++ [24])	NLO [34]
$g g \rightarrow W W$	SHERPA 2.1.1 [34]	CT10 [35]	SHERPA 2.1	NLO [36]
WZ/V γ^{*} / ZZ	SHERPA 2.1	CT10	SHERPA 2.1	NLO [34]
$\mathrm{V} \gamma$	SHERPA 2.2.2 (MG5_AMC@NLO)	NNPDF3.0NNLO	SHERPA 2.2.2 (CSS variation $[32,37])$	NLO [34]
$t \bar{t}$	POWHEG-BOX v2 [38] SHERPA 2.2.1	NNPDF3.0NLO	PYTHIA 8 [39] (HERWIG 7)	NNLO+NNLL [40]
Wt	POWHEG-BOX v1 [41] (MG5_AMC@NLO)	CT10 [35]	PYTHIA 6.428 [42] (HERWIG++)	NLO [41]
Z+jets	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	NLO [43]

Higgs mass measurement

Measuring the only free parameter of the Higgs sector of the SM:

- Combined $4 \ell+\gamma \gamma$ fit, modelling correlated systematics
- 4ℓ measurement drives the overall performance, combination with $\gamma \gamma$ improves significantly the precision

- Excellent agreement with the combined ATLAS+CMS Run-1 measurement

4I limited by statistics
VY limited by photon energy scale systematics

¢ Preliminary result with inflated photon systematics; improvements underway!

