Higgs measurements in the di-boson final state

Rencontres de Moriond Electroweak Interactions and Unified Theories 10-17 March 2018 La Thuile

LPNHE

PARIS

Ioannis Nomidis on behalf of the ATLAS collaboration

H→WW* production measurements

ATLAS-CONF-2018-004

Signal consists of two prompt isolated leptons produced with a small opening angle and missing transverse energy

- Goal is to probe the Higgs production modes
 - Study ggF and VBF production
 - Events with 0,1 and ≥ 2 jets studied separately (0,1j for ggF, $\geq 2j^{50}$ for VBF, $p_T^{jet} > 30^{200} \text{ GeV})^{250}_{m_T [GeV]}$
- Suppressing the background and constraining its normalization are key elements
- Differences with the Run-1 analysis
 - Oj: b-jet veto (20<p⊤^{jet}<30 GeV) for suppression of top background (large increase in Run-2 due to larger √s) and additional control region to constrain its normalization
 - e⁺e⁻/µ⁺µ⁻ not included; small significance because of larger DY background

Data

≥ 18000

I. Nomidis, LPNHE-Paris

Higgs Measurements in the di-bos

 $H \xrightarrow[]{100}{}_{1400} \xrightarrow[]{100}{}_{140} \xrightarrow[]{$

$H \rightarrow \gamma \gamma / ZZ^*$ x-sections inclusive in production

Fiducial measurements

• Inclusive: $(\sigma \cdot BR)_{(pp \to H \to f)} = N_{signal} / (\pounds \cdot \varepsilon)$ \Rightarrow Compare with best available predictions in the phase space directly accessible by our detectors

 Differential: d(σ·BR)/dx, x: pT^H, y^H, n_{jets}, pT^{j1,2}, pT^{Hjj}, cosθ*, m_{jj}, Δφ_{jj}, H_T, ...
 → Observables sensitive to new physics and interesting for tests of the QCD calculations

• Doubly-differential: $d^{2}(\sigma \cdot BR)/(dp_{T}^{H} \cdot dn_{jets})$ \Rightarrow To disentangle the large correlations between N_{jets} and p_{T}^{H}

Largely model-independent measurements; potential modelling bias on the corrections/unfolding procedure is evaluated and is insignificant in most of the bins considered

Good agreement overall with the SM predictions

Theory calculations still more precise than current experimental measurements

Comparisons will become more interesting with more data

 $H \rightarrow \gamma \gamma ZZ^* x$ -sections inclusiv

Combination of the diphoton and four-le

ATLAS-CONF-2018-002

 $\sigma_{(pp \to H)} = N_{\text{signal}} / (\pounds \cdot \epsilon \cdot \mathbf{A} \cdot \mathbf{BR}_{H \to f})$

- Assume the SM branching ratios @ m_H=⁻
 - BR(H \rightarrow yy)~0.227%, BR(H \rightarrow 4ℓ)~0.0125%
- Acceptance correction (fiducial \rightarrow full phase space) calculated with MC simulated events generated with (N)NLO precision
 - $A(H \rightarrow \gamma \gamma) \sim 50\%$, $A(H \rightarrow 4\ell) \sim 42\%$
 - fairly stable with pT and n_{jets}

 $\sigma_{(pp \rightarrow H)}$: 57.0 +6.0 -5.9 (stat.) +4.0 -3.3 (syst.) pb

theory: 55.0 ± 2.5 pb [LHC HXS WG, arXiv:1610.07922]

□ 13 TeV measurement in perfect agreement with theory

Results in bins of p^H, y^H, n_{jets}, p^{j1} (anti-kt jets of p_T>30 GeV)

I. Nomidis, LPNHE-Paris

Higgs Measurements in the di-boson final state

0.9

0.6

0.5

0.3

0.2

0.1

0

Facto

$H \rightarrow \gamma \gamma ZZ^*$ x-sections inclusive in production

Combination of the diphoton and four-lepton measurements:

- Statistical uncertainties ~20-30%
- Systematics from luminosity (4%), background estimation ($\gamma\gamma$, 2-6%), jet reconstruction experimental uncertainties $(3-6\%, >10\% \text{ for } n_{jets}>2)$

 \Rightarrow Excellent compatibility of $4\ell/\gamma\gamma$ measurements (>40% for all observables)

 $|y^{\overline{H}}|$

92

 $p_{\rm T}^{\rm H}$

29

 N_{jets}

45

 $p_{\rm T}^{\prime \prime}$

5

p-values [%]

I. Nomidis, LPNHE-Paris

 $d\sigma/dp_{\tau}^{H}$ [pb/GeV]

Theory/Data

Summary

- With Run-2 data, we are entering the precision era; analysis of the diboson final states is allowing measurements with precision better than Run-1
- Analysis of the 2015+2016 dataset (36 fb⁻¹) is a milestone in preparation for the Run-2 legacy physics results
 - Methodology is established high quality results already improve on the Run-1 measurements

New ATLAS measurements

- Analysis of ggF and VBF production in the H→WW* channel yields most sensitive singlechannel measurements so far in Run-2
 - Cross-section in agreement with the SM predictions
- Inclusive production in the 4ℓ and γγ channels: independent measurements with minimal theory assumptions
 - Now combined to obtain differential measurements (d σ /dx, x: p_T^H , y^H , n_{jets} , p_T^{j1}) :
 - No significant deviations from the SM seen
 - More data will allow interesting tests of QCD calculations

Additional material

H→WW* event selection

Category	$ \qquad N_{\rm jet} = 0 \qquad \qquad N_{\rm jet} = 1$	$N_{jet} \ge 2$, VBF		
Preselection	Two isolated, different-flavour, leptons ($\ell = e, \mu$) with opposite charge $p_T^{\text{lead}} > 22 \text{ GeV}$, $p_T^{\text{sublead}} > 15 \text{ GeV}$ $m_{\ell\ell} > 10 \text{ GeV}$ $E_T^{\text{miss, track}} > 20 \text{ GeV}$			
Background rejection	$\begin{vmatrix} N_{b-je} \\ \Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > \pi/2 \\ p_{\rm T}^{\ell \ell} > 30 \text{ GeV} \end{vmatrix} \max \begin{pmatrix} N_{b-je} \\ max \begin{pmatrix} m_{\rm T}^{\ell} \end{pmatrix} > 50 \text{ GeV} \end{vmatrix}$	$\begin{array}{c} \text{et,} (p_{\text{T}} > 20 \text{ GeV}) = 0 \\ \text{eV} \\ \\ m_{\tau\tau} < m_Z - 25 \text{ GeV} \end{array}$		
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	$m_{\ell\ell} < 55 \text{ GeV}$	Central Jet Veto		
topology Discriminant Variable	$\frac{\Delta\phi_{\ell\ell} < 1.8}{m_{\rm T}}$	Outside Lepton Veto BDT		
BDT input variables		$ m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\mathrm{T}}, \sum C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\mathrm{T}}^{\mathrm{tot}}$		

CR	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\text{jet}} \ge 2$, VBF
WW	$55 < m_{\ell\ell} < 110 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 2.6$ <i>b</i> -jet	$\begin{vmatrix} m_{\ell\ell} > 80 \text{ GeV} \\ m_{\tau\tau} - m_Z > 25 \text{ GeV} \end{aligned}$ veto	
	5	$m_{\rm T}^{\ell} > 50 { m GeV}$	
Top-quark	$N_{b-\text{jet},(20 \text{ GeV} < p_{\text{T}} < 30 \text{ GeV})} > 0$	$N_{b-\text{jet},(p_{T}>30 \text{ GeV})} = 1$ $N_{b-\text{jet},(20 \text{ GeV} < p_{T}<30 \text{ GeV})} = 0$	$N_{b-\text{jet},(p_{\mathrm{T}}>20 \text{ GeV})} = 1$
	$\Delta \phi(\ell \ell, E_{\mathrm{T}}^{\mathrm{miss}}) > \pi/2$	$\max\left(m_{\rm T}^{\ell}\right) > 50 {\rm GeV}$	Central Jet Veto
	$p_{\rm T}^{\ell\ell} > 30 {\rm GeV}$ $m_{\tau\tau} < m_Z$		– 25 GeV
	$\Delta \phi_{\ell\ell} < 2.8$		Outside Lepton Veto
$Z \to \tau \tau$	no $E_{\rm T}^{\rm miss, track}$ requirement		Outside Lepton Veto
	$m_{\ell\ell} < 80 \text{ GeV}$		Central Jet Veto
	$\Delta \phi_{\ell\ell} > 2.8$	$m_{\tau\tau} > m_Z$	– 25 GeV
		$_{0 \text{ GeV})} = 0$	

I. Nomidis, LPNHE-Paris

H→WW* MC simulation

Process	Matrix Element	PDF	PS	Precision σ
	(Alternative)		(Alternative)	
ggF	POWHEG-BOX v2	PDF4LHC15 NNLO [7]	PYTHIA 8 [8]	$N^{3}LO QCD + NLO EW [10-14]$
	NNLOPS [4–6]	$[D]^{4}LICIJINILO[7]$		
	(MG5_AMC@NLO [22, 23])		(HERWIG 7 [24])	
VBF	POWHEG-BOX v2	PDF4LHC15 NLO	PYTHIA 8	NNLO QCD + NLO EW [10, 15–17]
	(MG5_AMC@NLO)		(HERWIG 7)	
VH	POWHEG-BOX v2 [25]	PDF4LHC15 NLO	PYTHIA 8	NNLO QCD + NLO EW[26–28]
$qq \rightarrow WW$	SHERPA 2.2.2 [29, 30]	NNPDF3.0NNLO [31]	SHERPA 2.2.2 [32, 33]	NLO [34]
	(POWHEG-BOX v2,		(HERWIG++ [24])	
	MG5_AMC@NLO)		$(\Pi L K W I O + + [2+])$	
$gg \rightarrow WW$	SHERPA 2.1.1 [34]	CT10 [35]	SHERPA 2.1	NLO [36]
$WZ/V\gamma^*/ZZ$	SHERPA 2.1	CT10	SHERPA 2.1	NLO [34]
$V\gamma$	SHERPA 2.2.2	NNPDF3.0NNLO	SHERPA 2.2.2	NLO [34]
	(MG5_AMC@NLO)		(CSS variation [32, 37])	
$t\bar{t}$	POWHEG-BOX v2 [38]	NNPDF3.0NLO	PYTHIA 8 [39]	NNLO+NNLL [40]
	SHERPA 2.2.1		(HERWIG 7)	
Wt	POWHEG-BOX v1 [41]	CT10 [35]	PYTHIA 6.428 [42]	NLO [41]
	(MG5_AMC@NLO)		(HERWIG++)	
Z+jets	SHERPA 2.2.1	NNPDF3.0NNLO	SHERPA 2.2.1	NLO [43]

Higgs mass measurement

Measuring the only free parameter of the Higgs sector of the SM:

- Combined 4ℓ+γγ fit, modelling correlated systematics
 - 4ℓ measurement drives the overall performance, combination with γγ improves significantly the precision
 - Excellent agreement with the combined ATLAS+CMS Run-1 measurement

41 limited by statistics

 $\gamma\gamma$ limited by photon energy scale systematics

I. Nomidis, LPNHE-Paris