

Measurements of CPV in beauty at LHC

Julián García Pardiñas

On behalf of the LHCb Collaboration, and of ATLAS and CMS for some results

Universidade de Santiago de Compostela, now at Universität Zürich

Moriond EW - 11 March 2018

CP violation and the CKM matrix

The CP problem

- The huge matter/anti-matter asymmetry in the Universe is inconsistent with the small CP in the Standard Model (SM). → Search for new sources.
- Loop-dominated decays can have significant contributions from new heavy particles that enter in the loops. → Detection via precision measurements.

CP violation in the SM

• The only source of CP violation in the SM comes from the CKM matrix, governing the quark mixing.

$$\begin{array}{ccc} \mathsf{d} & \mathsf{S} & \mathsf{b} \\ \mathsf{U} \\ \mathsf{C} \\ \mathsf{d} \\ \mathsf{d} \\ \lambda^3(1-\rho-i\eta) & -\lambda\lambda^2 & 1 \end{array}$$

● Unitarity matrix. → Unitarity triangles.

Types of CP violation

The decays of **beauty hadrons (mesons or baryons)** provide excellent scenarios to measure the CKM parameters and look for new sources of CP violation.

$$\begin{array}{c} |P_1\rangle = p \ |P^0\rangle + q \ \overline{|P^0\rangle} \\ |P_2\rangle = p \ |P^0\rangle - q \ \overline{|P^0\rangle} \end{array} \quad \begin{array}{c} A_f = \langle f | \ H \ |P\rangle \\ \overline{A_{\overline{f}}} = \langle \overline{f} | \ H \ \overline{|P\rangle} \end{array}$$

• $|A_f/\overline{A}_{\overline{f}}| \neq 1$

- CP violation in mixing (B)
 - Occurs in neutral mesons

•
$$|q/p| \neq 1$$

- CP violation in the **interference** between mixing and decay (C)
 - Neutral meson decaying into a non-flavour specific state

•
$$\operatorname{Im}\left(\frac{q}{p}\frac{\overline{A}_{\overline{f}}}{A_{f}}\right) \neq 1$$

• Measure CP violating parameters

•
$$\overline{A}_{f} - A_{f} = \frac{C_{f} cos(\Delta mt) - S_{f} sin(\Delta mt)}{C_{f} cos(\Delta mt) - S_{f} sin(\Delta mt)}$$

$$A_f + A_f$$
 $Cosh(\frac{2}{2}) + D_f sinh(\frac{2}{2})$

• C_f: CPV in decay

The LHCb experiment

• This talk summarises the state-of-the-art measurements of CP violation performed at the LHC, mostly focusing on the LHCb experiment.

- Excellent track and vertex reconstruction, good PID separation, flexible trigger.
- Decay-time resolution: \sim 45 fs.
- Flavour tagging power: 4 8%.

Julián García Pardiñas (UZH)

Measurement of the CKM angle γ

The CKM angle γ • The angle $\gamma = \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$ is the least known in the Unitarity Triangle. • It can be measured from tree-dominated decays. \rightarrow Very small theoretical uncertainty, $|\delta_{\gamma}| \leq \mathcal{O}(10^{-7})$ [JHEP 1401 (2014) 051]. ub K^{-} \overline{D}^0 B^{-} csR ch K^{-} Favoured Suppress The suppression of these kind of decays motivates the **combination** of many measurements. ۲ Two different strategies: • Time-integrated measurements: e.g. $B \rightarrow D^{(*)} K^{(*)}$

• Time-dependent measurements: $B_s \rightarrow D_s K$

Julián García Pardiñas (UZH)

< 17 >

Measurement of the CKM angle γ

• New LHCb combination, following the strategy of the previous LHCb combination [JHEP 12 (2016) 087] but with new analyses and updated measurements.

${\cal B}$ decay	D decay	Method	Ref.	Status since last combination [1]
$B^+ \to DK^+$	$D \to h^+ h^-$	GLW	[16]	$\begin{array}{l} {\rm Updated \ to \ Run \ 1} + \\ {\rm 2 \ fb^{-1} \ Run \ 2} \end{array}$
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[17]	As before
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[17]	As before
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	$\mathrm{GLW}/\mathrm{ADS}$	[18]	As before
$B^+ \to DK^+$	$D \to K^0_{\rm S} h^+ h^-$	GGSZ	[19]	As before
$B^+ \to DK^+$	$D \to K^0_{\rm S} K^+ \pi^-$	GLS	[20]	As before
$B^+ \to D^*K^+$	$D \to h^+ h^-$	GLW	[16]	New
$B^+ \to D K^{*+}$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[21]	New
$B^+ \to D K^+ \pi^+ \pi^-$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[22]	As before
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[23]	As before
$B^0 \! \to D K^+ \pi^-$	$D \to h^+ h^-$	GLW-Dalitz	[24]	As before
$B^0 \to DK^{*0}$	$D \to K^0_{\rm S} \pi^+ \pi^-$	GGSZ	[25]	As before
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[26]	Updated to $3{\rm fb}^{-1}$ Run 1

- LHCb combination result: $\gamma = (76.8^{+5.1}_{-5.7})^{\circ}$
- This is the most precise determination of γ from a single experiment to date.
- Compatible with the indirect determination: γ = (65.3^{+1.0}_{-2.5})° [CKMfitter].

Julián García Pardiñas (UZH)

< 17 >

Measurement of the CKM angle β

The CKM angle β

- The angle $\beta = \arg(-V_{cd} V_{cb}^* / V_{td} V_{tb}^*)$ can be determined from the **interference** between mixing and decay in $B^0 \rightarrow (c\overline{c})K_s$.
- The B-factories still dominate the world average, but LHCb Run 1 is getting close.

• New Run 1 LHCb analysis of $B^0 \rightarrow J/\psi(ee)K_s$ and $B^0 \rightarrow \psi(2S)(\mu\mu)K_s$ [JHEP 11 (2017) 170]. LHCb combination:

 $C = -0.017 \pm 0.029, \qquad S = 0.760 \pm 0.034$

• Complementary measurement from ATLAS : most precise single determination of the *B*⁰ mixing width [JHEP 1606 (2016) 081].

 $\Delta\Gamma_d/\Gamma_d = (-0.1 \pm 1.1(\textit{stat.}) \pm 0.9(\textit{syst.})) \times 10^{-2}$

• = • • =

Measurement of the CKM angle β_s

Measurement of the CKM angle β_s

- Global fit: \$\phi_s^{ccs} = -21 \pm 31 mrad [HFLAV]\$, dominated by the LHCb measurement [PRL 114, 041801 (2015)].
- Focus on analysing more more data and studying the penguin pollution [JHEP 1503 (2015) 145].
- Stay tuned for the LHCb analysis of Run 2!

- LHCb measurement of $\phi_s^{c\bar{c}s}$ in $B_s^0 \rightarrow J/\psi K^+ K^-$ above the $\phi(1020)$ region [JHEP 08 (2017) 037].
- First time φ_s^{ccs} is measured in final states dominated by a tensor.
- New LHCb average (including $J/\psi\phi$ and $J/\psi\pi\pi$): $\phi_s^{c\overline{c}s} = 1 \pm 37 \text{ mrad}$

メロマ メロマ メロマ メロ

Julián García Pardiñas (UZH)

CPV in beauty at LHC

CP violation in
$$B^0_{(s)} \rightarrow hh'$$

New result! Preliminary!

LHCb-PAPER-2018-006 (in preparation)

Indirect determination of CKM phases

- The study of time-dependent CP violation in $B^0_{(s)} \rightarrow hh'$ allows the determination of γ and $-2\beta_s$ (also α , when extra input is added) using loop-mediated decays.
- Presence of loop-diagrams \implies sensitivity to New Physics.

New LHCb measurement using Run 1 data:

- Measure time-dependent asymmetries in $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$.
- Measure time-integrated asymmetries in $B^0 \to K^+\pi^-$ and $B^0_s \to \pi^+K^-$.
- Updating previous LHCb measurements: [JHEP 10 (2013) 183, Phys. Rev. Lett. 110 (2013) 221601].

Julián García Pardiñas (UZH)

CPV in beauty at LHC

< D > < P >

CP violation in $B^0_{(s)} \rightarrow hh'$

New result! Preliminary!

LHCb-PAPER-2018-006 (in preparation)

Analysis strategy

- Loose pre-selection + PID requirements (creating exclusive $\pi\pi$, KK and $K\pi$ categories) + BDT against combinatorial background.
- Flavour-tagged, decay-time- and hh'-mass-dependent fit to data, simultaneously on the ππ, KK and Kπ categories and including signal and background species.
- Production and reconstruction asymmetries (from control samples) and time acceptance and resolution (per event) are included.
- Tagging power of $\sim 4\%$ for the $\pi\pi$ and $\sim 3.7\%$ for the *KK*.

Phase ϕ_s^{sdd} in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$

$\phi_s^{s\overline{q}q}$ phases

- The $b \rightarrow s\bar{q}q$ transitions occur at loop-level in the SM. \implies Potential New Physics entering the decay.
- The phase $b \rightarrow s\bar{s}s$ was measured by LHCb using $B_s^0 \rightarrow \phi \phi$ decays [Phys. Rev. D 90, 052011 (2014)]. \rightarrow Compatible with the SM expectation.

First LHCb Run 1 measurement of ϕ_s^{sdd} The $B_s^0 \to K^{*0}(K^+\pi^-)\overline{K}^{*0}(K^-\pi^+)$

The $B_s^{\circ} \rightarrow K^{\circ\circ}(K + \pi) K - (K - \pi^+)$ decay proceeds via a gluonic penguin diagram in the SM.

It is sensible to the phase $\phi_s^{s\overline{dd}}$, expected to be ~ 0 in the SM [JHEP 1503 (2015) 145].

To increase the statistics: study $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ decays with $M(K^{\pm}\pi^{\mp}) \in [750, 1600] \text{ MeV}/c^2$. Dominant $K\pi$ structures:

- Scalar (j = 0): $K_0^*(800)^0$, $K_0^*(1400)^0$, non-resonant
- Vector (j = 1): K*(892)⁰
- Tensor (j = 2): K₂*(1400)⁰

This leads to $3 \times 3 = 9$ channels and 19 polarisation amplitudes in total.

 \rightarrow Same phase ϕ_s^{sdd} used for all the amplitudes.

Phase $\phi_s^{s\overline{d}d}$ in $B_s^0 \to (K^+\pi^-)(K^-\pi^+)$

- Flavour-tagged, time-dependent, angular and $K\pi$ invariant mass analysis.
- Model with 19 polarisation amplitudes.
- Fit to background-subtracted data performed using GPUs.

Results

- CP-violating parameters: $\phi_{s}^{sdd} = -0.10 \pm 0.13 \pm 0.14$ rad, $|\lambda| = 1.035 \pm 0.034 \pm 0.089$. \rightarrow Compatible with the SM expectations.
- Dominant source of systematic uncertainties: size of the simulated samples used to describe the acceptance. \rightarrow Improvable in the future.

Julián García Pardiñas (UZH)

arXiv:1712.08683

CPV in $B^+ \to D^+_{(s)} \overline{D}^0$

New result! Preliminary!

LHCb-PAPER-2018-007 (in preparation)

Goals

- Measure the direct CP asymmetries in $B^+ \to D^+_{(s)}\overline{D}^0$ decays, where $D^0 \to K^-\pi^+$ or $D^0 \to K^-\pi^+\pi^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$ and $D^+_s \to K^+K^-\pi^+$, using Run 1 data.
- Interference between Cabbibo-suppressed tree diagrams with loop diagrams predicts CP asymmetries of O(10⁻²).

Strategy

- Very efficient selection that employs topological and kinematic variables, meson decay times and invariant masses. Divided in pre-selection + BDT.
- Determine raw asymmetries from fits to $M(D_{(s)}^+\overline{D}^0)$ (very clean distributions) and correct them for production and detection asymmetries (from control samples).

 $\mathcal{A}^{CP}(B^+ \to D^+_s \overline{D}{}^0) = (-0.4 \pm 0.5 \pm 0.5)\%, \qquad \mathcal{A}^{CP}(B^+ \to D^+ \overline{D}{}^0) = (-2.3 \pm 2.7 \pm 0.4)\%$

- No evidence of CP violation is found.
- First measurement in $B^+ \to D_s^+ \overline{D}^0$ and most precise one in $B^+ \to D^+ \overline{D}^0$.

Julián García Pardiñas (UZH)

メロン スポン メヨン メ

Julián García Pardiñas (UZH)

CPV in baryon decays

New result! Preliminary!

LHCb-PAPER-2018-001 (in preparation)

- Results compatible with neither CP nor P asymmetry.
- Same conclusion is reached when looking at per-bin asymmetries.

Julián García Pardiñas (UZH)

CPV in beauty at LHC

Summary and prospects

- Several **new measurements** of CP violation in beauty decays and more to come in the near future.
 - \rightarrow So far, results are compatible with the SM.
- The role of the LHC experiments is crucial, in particular the one of LHCb, leading the World sensitivity in several of these measurements.
- Precision will improve in the next years, with more data and upgraded detectors.

Some specific prospects

- Measurement of γ in LHCb: precision of 4° by the end of Run 2 and better than 0.4° with phase-2 upgrade.
- Measurement of β in LHCb: precision of $0.6^{\circ}(0.2^{\circ})$ with Run 2 (phase-1 upgrade).
- Measurement of $\phi_s^{c\overline{c}s}$:
 - ATLAS: increase in sensitivity with a new innermost pixel detector.
 - LHCb: sensitivity with phase-2 upgrade expected to be \leq 3 mrad.

LHCb phase-2 upgrade: [CERN-LHCC-2017-003 (2017)]

Julián García Pardiñas (UZH)

メロマ メロマ メロマ メロ

Backup slides

Julián García Pardiñas (UZH)

CPV in beauty at LHC

< ヨシ く ヨシ 目 11 March 2018 17

< 17 >

CPV in $B^+ \to D^+_{(s)}\overline{D}^0$

New result! Preliminary!

LHCb-PAPER-2018-007 (in preparation)

Julián García Pardiñas (UZH)

CPV in beauty at LHC

11 March 2018 18

200

・ロン ・四 と ・ ヨン ・ ヨン

LHCb-PAPER-2018-001 (in preparation)

The triple products of final state particle momenta in the Λ_b^0 (Ξ_b^0) centre-of-mass frame are defined as $C_{\widehat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^+})$ for Λ_b^0 (Ξ_b^0) and $\overline{C}_{\widehat{T}} = \vec{p}_{\overline{p}} \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^-})$ for $\overline{\Lambda}_b^0$ ($\overline{\Xi}_b^0$), where $h_1 = K$, $h_2 = \pi$ for the $\Lambda_b^0 \to pK^-\pi^+\pi^-$ decay, $h_1 = K_{\text{fast}}$, $h_2 = K$ for the $\Lambda_b^0 \to pK^-K^+K^-$ decay and $h_1 = K_{\text{fast}}$, $h_2 = \pi$ for the $\Xi_b^0 \to pK^-\pi^+\pi^+$ decay, and K_{fast} denotes the K with the highest momentum among those kaons that have the same charge.

< 🗇 >

CPV in baryon decays

New result! Preliminary!

LHCb-PAPER-2018-001 (in preparation)

Figure 4: The asymmetries in each region using binning schemes (left) A and (right) B for the $A_b^0 \rightarrow p K^- \pi^+ \pi^-$ decay. For $\hat{a}_{P}^{\hat{f},\text{odd}}$, the values of the χ^2 /ndf for the *P*-symmetry (*CP*-symmetry) hypothesis, represented by a dashed line, are quoted.

Julián García Pardiñas (UZH)

CPV in beauty at LHC

11 March 2018 20

- T

CPV in baryon decays

New result! Preliminary!

LHCb-PAPER-2018-001 (in preparation)

Figure 5: The asymmetries in each region using binning schemes (left) C and (right) D for $A_b^0 \rightarrow pK^-K^+K^-$ decay. For $a_P^{\hat{T}odd}$ ($a_{CP}^{\hat{T}odd}$), the values of the χ^2 /ndf for the *P*-symmetry (*CP*-symmetry) hypothesis, represented by a dashed line, are quoted.

Julián García Pardiñas (UZH)

CPV in beauty at LHC

11 March 2018 21

New result! Preliminary!

LHCb-PAPER-2018-001 (in preparation)

Table 3: Definition of the 14 regions that form scheme A for the $A_b^0 \to pK^-\pi^+\pi^-$ decay. Bins 1-4 focus on the region dominated by the $\Delta(1232)^{++} \to p\pi^+$ resonance. The other 10 bins are defined to study regions where pK^- resonances are present on either side of the $f_0(980) \to \pi^+\pi^-$ or $\overline{K}^*(892)^0 \to K^-\pi^+$ resonances. Further splitting depending on $|\Phi|$ is performed to reduce potential dilution of asymmetries, as suggested in Ref. [8]. Masses are in units of GeV/ c^2 .

Region	$m(p\pi^+)$	$m(pK^{-})$	$m(\pi^+\pi^-)$	$m(K^-\pi^+)$	$ \Phi $
1	(1.00, 1.23)				$(0, \frac{\pi}{2})$
2	(1.00, 1.23)				$\left(\frac{\pi}{2},\pi\right)$
3	(1.23, 1.35)				$(\bar{0}, \frac{\pi}{2})$
4	(1.23, 1.35)				$(\frac{\pi}{2},\pi)$
5	(1.35, 5.40)	(1.00, 2.00)	(0.27, 0.99)		$(0, \frac{\pi}{2})$
6	(1.35, 5.40)	(1.00, 2.00)	(0.27, 0.99)		$(\frac{\pi}{2}, \overline{\pi})$
7	(1.35, 5.40)	(1.00, 2.00)	(0.99, 4.50)		$(0, \frac{\pi}{2})$
8	(1.35, 5.40)	(1.00, 2.00)	(0.99, 4.50)		$(\frac{\pi}{2},\pi)$
9	(1.35, 5.40)	(2.00, 5.00)	(0.27, 0.99)	(0.63, 0.89)	$(0, \frac{\pi}{2})$
10	(1.35, 5.40)	(2.00, 5.00)	(0.27, 0.99)	(0.89, 4.50)	$(0, \frac{\pi}{2})$
11	(1.35, 5.40)	(2.00, 5.00)	(0.27, 0.99)		$(\frac{\pi}{2},\pi)$
12	(1.35, 5.40)	(2.00, 5.00)	(0.99, 4.50)	(0.63, 0.89)	$(0, \frac{\pi}{2})$
13	(1.35, 5.40)	(2.00, 5.00)	(0.99, 4.50)	(0.89, 4.50)	$(0, \frac{\pi}{2})$
14	(1.35, 5.40)	(2.00, 5.00)	(0.99, 4.50)		$(\frac{\pi}{2}, \pi)$

Julián García Pardiñas (UZH)

< 1 >

Table 5: Definition of the seven regions that form scheme C for the $A_b^0 \rightarrow pK^-K^+K^-$ decay. The scheme C, is defined to study regions where pK_{slow}^- resonances are present (1-3) on either side of the $\Phi \rightarrow K^+K^-$ resonances. Masses are in units of GeV/c^2 .

Region	$m(pK_{\rm slow}^-)$	$m(K^+K^{slow}), m(K^+K^{fast})$	$ \Phi $
1	(0.9, 2.0)	$m(K^+K^{\rm slow}) < 1.02$ or $m(K^+K^{\rm fast}) < 1.02$	
2	(0.9, 2.0)	$m(K^+K^{slow}) > 1.02$ and $m(K^+K^{fast}) > 1.02$	$(0, \frac{\pi}{2})$
3	(0.9, 2.0)	$m(K^+K^{\text{slow}}) > 1.02 \text{ and } m(K^+K^{\text{fast}}) > 1.02$	$(\frac{\pi}{2}, \pi)$
4	(2.0, 4.0)	$m(K^+K^{slow}) < 1.02$ or $m(K^+K^{fast}) < 1.02$	$(\bar{0}, \frac{\pi}{2})$
5	(2.0, 4.0)	$m(K^+K_{\rm slow}^-) < 1.02$ or $m(K^+K_{\rm fast}^-) < 1.02$	$(\frac{\pi}{2}, \pi)$
6	(2.0, 4.0)	$m(K^+K^{slow}) > 1.02$ and $m(K^+K^{fast}) > 1.02$	$(0, \frac{\pi}{2})$
7	(2.0, 4.0)	$m(K^+K^{\text{slow}}) > 1.02 \text{ and } m(K^+K^{\text{fast}}) > 1.02$	$(\frac{\pi}{2}, \pi)$

< E.

< D > < P >