

Measurement of fiducial, differential and production cross sections in the H → γγ decay channel with ATLAS

(Young Scientists Forum)

Stephen Menary
University of Manchester
On behalf of the ATLAS Collaboration

Introduction

Aim: measure pp \rightarrow H \rightarrow X properties

Introduction

Aim: measure pp \rightarrow H \rightarrow X properties

Tools: γγ channel (0.2% BR but good efficiency/resolution); 36 fb⁻¹ of 13 TeV data

Introduction

Aim: measure pp \rightarrow H \rightarrow X properties

Tools: γγ channel (0.2% BR but good efficiency/resolution); 36 fb⁻¹ of 13 TeV data

Method: range of most ↔ least model dependent measurements

Direct test of SM

Couplings: μ ggH, μ VBF, κ g, κ γ etc

Simplified Template Cross Sections (STXS) σ prod (kinematic region) \times BR(H $\rightarrow\gamma\gamma$)

Fiducial: o (final-state phase space, differential)

Model independence

arXiv:1802.04146

Inspire/1654582

1. Couplings

Likelihood fit to $m_{\gamma\gamma}$ in 31 object based categories using SM templates

$$\mu^{\text{prod}} \equiv \frac{\sigma^{\text{prod}}}{\sigma_{\text{SM}}^{\text{prod}}} , \quad \mathcal{BR} \times \sigma_{|y^{\text{H}}| < 2.5}^{\text{prod}} , \quad \frac{\sigma_{|y^{\text{H}}| < 2.5}^{\text{prod}}}{\sigma_{|y^{\text{H}}| < 2.5}^{\text{ggH}}} , \quad \frac{\mu^{\text{prod}}}{\mu^{\text{ggH}}} , \quad \kappa_{g,\gamma,F,V,g\gamma} , \quad \frac{\kappa_{V,t}}{\kappa_{g}}$$

2. Simplified Template Cross Sections (STXS)

Production mode x-sections in simplified fiducial phase spaces

Fewer assumptions, specific phase space regions, easy to combine decay channels

3. Fiducial & Differential Cross Sections

Fiducial / differential x-sections defined by final state objects, corrected for detector effects with minimum SM assumptions

phase spaces

4. Effective Field Theory

Constrain effective dimension 6 couplings using differential measurements

Provide correlations to allow after-the-fact constraint of models using multiple distributions

Scan of **CP-even/odd** H V V **Wilson coefficients**

Summary

- \bullet H \rightarrow $\gamma\gamma$ measurements targeting a range of model dependence and SM sensitivity
 - Couplings: model dependent measurement of SM rates / kappas
 - STXS: SM x-sections in simplified fiducial phase spaces, easily combined
 - Fiducial x-sections: minimal model dependence, differential, re-interpretable
 - **EFT interpretation**: limits on dimension 6 effective vertex strengths
- Stat dominated, no clear deviations from the SM

arXiv:1802.04146

<u>Inspire/1654582</u>

36 fb⁻¹ @ 13 TeV

backup

Background

Uncertainties

Stat limited, systematics depend on measurement

$$\mu = 0.99 ^{+0.15}_{-0.14} \begin{cases} \pm 0.12 \text{ (stat.)} \\ ^{+0.06}_{-0.05} \text{ (exp.)} \\ ^{+0.07}_{-0.05} \text{ (theo.)} \end{cases}$$

_	
Uncertainty Group	$\sigma_{\mu}^{ m syst.}$
Theory (QCD)	0.041
Theory $(B(H \to \gamma \gamma))$	0.028
Theory (PDF+ α_S)	0.021
Theory (UE/PS)	0.026
Luminosity	0.031
Experimental (yield)	0.017
Experimental (migrations)	0.015
Mass resolution	0.029
Mass scale	0.006
Background shape	0.027
·	

	Diphoton	VBF-enhanced
Fit (stat.)	17%	22%
Fit (syst.)	6%	9%
Photon efficiency	1.8%	1.8%
Jet energy scale/resolution	-	8.9%
Pileup	1.1%	2.9%
Theoretical modeling	0.1%	4.5%
Luminosity	3.2%	3.2%
Total	18%	26%

E.g. fiducial cross sections

E.g. signal strengths

Signal Model

Signal peak modelled by DSCB

Gaussian core with power-law tails

{ μcΒ, σcΒ, αlow, nlow, αhigh, nhigh} are determined perbin using signal MC and fixed in data fit

Couplings & STXS Categories

Category	Selection
tH lep 0fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 3, N_{b-\text{tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} = 0 \ (p_{\text{T}}^{\text{jet}} > 25 \text{ GeV})$
tH lep 1fwd	$N_{\text{lep}} = 1, N_{\text{jets}}^{\text{cen}} \le 4, N_{b-\text{tag}} \ge 1, N_{\text{jets}}^{\text{fwd}} \ge 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
ttH lep	$N_{\text{lep}} \ge 1$, $N_{\text{jets}}^{\text{cen}} \ge 2$, $N_{b-\text{tag}} \ge 1$, $Z_{\ell\ell}$ veto $(p_{\text{T}}^{\text{jet}} > 25 \text{ GeV})$
ttH had BDT1	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, \text{BDT}_{\text{ttH}} > 0.92$
ttH had BDT2	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, 0.83 < \text{BDT}_{\text{ttH}} < 0.92$
ttH had BDT3	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, 0.79 < \text{BDT}_{\text{ttH}} < 0.83$
ttH had BDT4	$N_{\text{lep}} = 0, N_{\text{jets}} \ge 3, N_{b-\text{tag}} \ge 1, 0.52 < \text{BDT}_{\text{ttH}} < 0.79$
tH had 4j1b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{b-\text{tag}} = 1 \ (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
tH had 4j2b	$N_{\text{lep}} = 0, N_{\text{jets}}^{\text{cen}} = 4, N_{b-\text{tag}} \ge 2 (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
VH dilep	$N_{\text{lep}} \ge 2,70 \text{GeV} \le m_{\ell\ell} \le 110 \text{GeV}$
VH lep High	$N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV}$
VH lep Low	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}$, $p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} < 150 \text{GeV}$, $E_{\text{T}}^{\text{miss}}$ significance > 1 $150 \text{GeV} < E_{\text{T}}^{\text{miss}} < 250 \text{GeV}$, $E_{\text{T}}^{\text{miss}}$ significance $> 9 \text{or}$ $E_{\text{T}}^{\text{miss}} > 250 \text{GeV}$ $80 \text{GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{GeV}$, $E_{\text{T}}^{\text{miss}}$ significance > 8
VH MET High	$150 \text{GeV} < E_{\text{T}}^{\text{miss}} < 250 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 9 \text{or} E_{\text{T}}^{\text{miss}} > 250 \text{GeV}$
VH MET Low	$80 \text{GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{GeV}, E_{\text{T}}^{\text{miss}} \text{significance} > 8$
jet BSM	$p_{\rm T,i1} > 200 {\rm GeV}$
VH had tight	$60\text{GeV} < m_{jj} < 120\text{GeV}, \text{BDT}_{VH} > 0.78$
VH had loose	$60 \text{ GeV} < m_{jj} < 120 \text{ GeV}, 0.35 < \text{BDT}_{VH} < 0.78$
VBF tight, high $p_{T_{***}}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{Hjj} > 25 \text{ GeV}$, BDT _{VBF} > 0.47
VBF loose, high $p_{\rm T}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{Hjj} > 25 \text{ GeV}$, $-0.32 < \text{BDT}_{VBF} < 0.47$
VBF tight, low $p_{\rm T}^{Hjj}$	$ \Delta \eta_{jj} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{i1} + \eta_{i2}) < 5$, $p_{T}^{Hjj} < 25 \text{ GeV}$, BDT _{VBF} > 0.87
VBF loose, low $p_{\rm T}^{Hjj}$	$\begin{split} \Delta \eta_{jj} &> 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, \mathrm{BDT_{VBF}} > 0.47 \\ \Delta \eta_{jj} &> 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, -0.32 < \mathrm{BDT_{VBF}} < 0.47 \\ \Delta \eta_{jj} &> 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}, -0.32 < \mathrm{BDT_{VBF}} < 0.47 \\ \Delta \eta_{jj} &> 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\mathrm{T}}^{Hjj} < 25 \mathrm{GeV}, \mathrm{BDT_{VBF}} > 0.87 \\ \Delta \eta_{jj} &> 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\mathrm{T}}^{Hjj} < 25 \mathrm{GeV}, 0.26 < \mathrm{BDT_{VBF}} < 0.87 \end{split}$
ggH 2J BSM	$\geq 2 \text{ jets}, p_{\text{T}}^{\prime\prime} \geq 200 \text{ GeV}$
ggH 2J High	$\geq 2 \text{ jets}, p_{\text{T}}^{\gamma\gamma} \in [120, 200] \text{ GeV}$
ggH 2J Med	$\geq 2 \text{ jets}, p_{\text{T}}^{\gamma \gamma} \in [60, 120] \text{ GeV}$
ggH 2J Low	$\geq 2 \text{ jets}, p_{\text{T}}^{\gamma \gamma} \in [0, 60] \text{ GeV}$
ggH 1J BSM	$= 1 \text{ jet}, p_{\mathrm{T}}^{\gamma\gamma} \ge 200 \mathrm{GeV}$
ggH 1J High	= 1 jet, $p_{T_{ij}}^{\gamma\gamma} \in [120, 200] \text{ GeV}$
ggH 1J Med	= 1 jet, $p_{T}^{\gamma\gamma} \in [60, 120] \text{ GeV}$
ggH 1J Low	$= 1 \text{ jet, } p_{\text{T}}^{\gamma\gamma} \in [0, 60] \text{ GeV}$
ggH 0J Fwd	= 0 jets, one photon with $ \eta > 0.95$
ggH 0J Cen	= 0 jets, two photons with $ \eta \le 0.95$

Presented STXS Regions

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Process	Measurement region	Particle-level stage-1 region
$\begin{array}{c} 1\text{-jet}, p_{T}^{H} < 60 \text{ GeV} \\ 1\text{-jet}, 60 \leq p_{T}^{H} < 120 \text{ GeV} \\ 1\text{-jet}, 60 \leq p_{T}^{H} < 200 \text{ GeV} \\ 1\text{-jet}, 120 \leq p_{T}^{H} < 200 \text{ GeV} \\ 2\text{-jet}, p_{T}^{H} > 200 \text{ GeV} \\ 2\text{-jet}, p_{T}^{H} < 200 \text{ GeV} \\ 2\text{-jet}$			
$\begin{array}{c} 1\text{-jet, }6\hat{0} \leq p_{T}^{H} < 120 \text{ GeV} \\ 1\text{-jet, }120 \leq p_{T}^{H} < 200 \text{ GeV} \\ 2\text{-jet, }p_{T}^{H} > 200 \text{ GeV} \\ 2\text{-jet, }p_{T}^{H} > 200 \text{ GeV} \\ 2\text{-jet, }p_{T}^{H} > 200 \text{ GeV} \\ 2\text{-jet, }p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV} \\ 2\text{-jet, }100 \leq p_{T}^{H} < 120 \text{ GeV}$	$ggII + gg \rightarrow Z(\rightarrow qq)II$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	
$ \geq 2 \text{-jet}, p_{\mathrm{T}}^{H} < 200 \text{ GeV or VBF-like} \\ \geq 2 \text{-jet}, p_{\mathrm{T}}^{H} < 200 \text{ GeV or VBF-like} \\ \geq 2 \text{-jet}, p_{\mathrm{T}}^{H} < 60 \text{ GeV} \\ \geq 2 \text{-jet}, 60 \leq p_{\mathrm{T}}^{H} < 120 \text{ GeV} \\ \geq 2 \text{-jet}, 120 \leq p_{\mathrm{T}}^{H} < 200 \text{ GeV} \\ \text{VBF-like}, p_{\mathrm{T}}^{H} \neq 25 \text{ GeV} \\ \text{VBF-like}, p_{\mathrm{T}}^{H} \geq 25 Ge$			
$ \geq 2 \text{-jet}, p_{\mathrm{T}}^{H} < 200 \text{ GeV or VBF-like} \\ \geq 2 \text{-jet}, 0 \leq p_{\mathrm{T}}^{H} < 60 \text{ GeV} \\ \geq 2 \text{-jet}, 0 \leq p_{\mathrm{T}}^{H} < 120 \text{ GeV} \\ \geq 2 \text{-jet}, 120 \leq p_{\mathrm{T}}^{H} < 200 \text{ GeV} \\ \vee \text{BF-like}, p_{\mathrm{T}}^{Hj} < 25 \text{ GeV} \\ \vee \text{BF-like}, p_{\mathrm{T}}^{Hj} < 25 \text{ GeV} \\ \vee \text{BF-like}, p_{\mathrm{T}}^{Hj} \geq 25 \text{ GeV} \\ \vee \text{BF-like}, p_{\mathrm{T}}^{Hj} \geq 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} < 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hj} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{J} < 250 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{J} < 250 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{J} < 200 \text{ GeV} $		- 3 711	
$ \begin{array}{c} \geq 2\text{-jet}, 60 \leq p_{\mathrm{T}}^{H} < 120 \text{ GeV} \\ \geq 2\text{-jet}, 120 \leq p_{\mathrm{T}}^{H} < 200 \text{ GeV} \\ \forall \mathrm{BF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV} \\ \forall \mathrm{BF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV} \\ \forall \mathrm{BF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV} \\ \forall \mathrm{BF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \mathrm{VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \mathrm{VB-like}, p_{\mathrm{T}}^{J} > 25 \text{ GeV} \\ p_{\mathrm{T}}^{J} < 200 \text{ GeV}, \mathrm{VH-like} \\ p_{\mathrm{T}}^{J} > 200 \text{ GeV} \\ p_{\mathrm{T}}^{J} > 200 \text{ GeV} \\ p_{\mathrm{T}}^{J} > 200 \text{ GeV} \\ p_{\mathrm{T}}^{J} > 250 \text{ GeV} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} < 150 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow ZH, 150 < p_{\mathrm{T}}^{J} < 250 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} < 250 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{J} > 150 $		≥ 2 -jet, $p_{\rm T}^H < 200$ GeV or VBF-like	≥ 2 -jet, $p_{\mathrm{T}}^{H} < 60 \text{ GeV}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			≥ 2 -jet, $120 \leq p_{\rm T}^H < 200 \text{ GeV}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			VBF-like, $p_{\rm T}^{Hjj}$ < 25 GeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			VBF-like, $p_{\rm T}^{Hjj} \ge 25 \text{ GeV}$
$\begin{array}{c} p_{\rm T}^{j} < 200~{\rm GeV},~{\rm VBF-like},~p_{\rm T}^{Hjj} \geq 25~{\rm GeV} \\ p_{\rm T}^{j} < 200~{\rm GeV},~VH-like} \\ p_{\rm T}^{j} < 200~{\rm GeV},~{\rm Rest} \\ p_{\rm T}^{j} > 200~{\rm GeV} \\ \end{array}$	$qq' \rightarrow Hqq' \text{ (VBF + }VH)$	$p_{\rm T}^{j} < 200 \; {\rm GeV}$	$p_{\mathrm{T}}^{j} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hjj} < 25 \text{ GeV}$
$\begin{array}{c} p_{\mathrm{T}}^{j} < 200~\mathrm{GeV}, VH\text{-like} \\ p_{\mathrm{T}}^{j} < 200~\mathrm{GeV}, \mathrm{Rest} \\ p_{\mathrm{T}}^{j} > 200~\mathrm{GeV} \\ \end{array}$ $\begin{array}{c} p_{\mathrm{T}}^{j} > 200~\mathrm{GeV} \\ p_{\mathrm{T}}^{j} > 200~\mathrm{GeV} \\ \end{array}$ $\begin{array}{c} VH~\mathrm{(leptonic decays)} \\ VH~\mathrm{(leptonic decays)} \\ \end{array}$ $\begin{array}{c} Q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150~\mathrm{GeV} \\ Q\bar{q} \rightarrow ZH, 150 < p_{\mathrm{T}}^{Z} < 250~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{Z} < 150~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150~\mathrm{GeV}, 0\text{-jet} \\ Q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150~\mathrm{GeV}, 0\text$		•	$p_{\mathrm{T}}^{j} < 200 \text{ GeV}, \text{VBF-like}, p_{\mathrm{T}}^{Hjj} \geq 25 \text{ GeV}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7
$VH \text{ (leptonic decays)} \qquad VH \text{ leptonic} \qquad \begin{array}{l} q\bar{q} \rightarrow ZH, p_T^Z < 150 \text{ GeV} \\ q\bar{q} \rightarrow ZH, 150 < p_T^Z < 250 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow ZH, 150 < p_T^Z < 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^Z > 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W < 150 \text{ GeV} \\ q\bar{q} \rightarrow WH, 150 < p_T^W < 250 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow WH, 150 < p_T^W < 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow ZH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar$			3
$VH \text{ (leptonic decays)} \qquad VH \text{ leptonic} \qquad \qquad \begin{array}{l} q\bar{q} \rightarrow ZH, p_T^Z < 150 \text{ GeV} \\ q\bar{q} \rightarrow ZH, 150 < p_T^Z < 250 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow ZH, 150 < p_T^Z < 250 \text{ GeV}, 2\text{ 1-jet} \\ q\bar{q} \rightarrow ZH, p_T^Z > 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W < 150 \text{ GeV} \\ q\bar{q} \rightarrow WH, p_T^W < 250 \text{ GeV}, 0\text{-jet} \\ q\bar{q} \rightarrow WH, 150 < p_T^W < 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 250 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} \rightarrow WH, p_T^W > 150 \text{ GeV}, \geq 1\text{-jet} \\ q\bar{q} $		$p_{\rm T}^{j} > 200 {\rm GeV}$	-
$q\bar{q} \rightarrow ZH, 150 < p_{\mathrm{T}}^{Z} < 250 \ \mathrm{GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{Z} > 250 \ \mathrm{GeV}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} < 150 \ \mathrm{GeV}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \ \mathrm{GeV}, 0\text{-jet}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \ \mathrm{GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \ \mathrm{GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \ \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \ \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \ \mathrm{GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \ \mathrm{GeV}, \geq 1\text{-jet}$ $Top\text{-associated production} \qquad top$ $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHq)$	VH (leptonic decays)		$q\bar{q} \rightarrow ZH, p_{\rm T}^Z < 150 \text{ GeV}$
$q\bar{q} \rightarrow ZH, p_{\mathrm{T}}^{Z} > 250 \text{ GeV}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} < 150 \text{ GeV}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \text{ GeV}, 0\text{-jet}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \text{ GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \text{ GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \text{ GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \text{ GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \text{ GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \text{ GeV}, \geq 1\text{-jet}$ Top-associated production top $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHW)$			
$q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} < 150 \; \mathrm{GeV}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \; \mathrm{GeV}, 0\text{-jet}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \; \mathrm{GeV}, 2\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \; \mathrm{GeV}, 2\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \; \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \; \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, 2\text{-jet}$ $Top\text{-associated production} top$ $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHQ)$			
$q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \; \mathrm{GeV}, 0\text{-jet}$ $q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \; \mathrm{GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \; \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \; \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, \geq 1\text{-jet}$ $Top\text{-associated production} top$ $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHW)$			
$q\bar{q} \rightarrow WH, 150 < p_{\mathrm{T}}^{W} < 250 \mathrm{GeV}, \geq 1\text{-jet}$ $q\bar{q} \rightarrow WH, p_{\mathrm{T}}^{W} > 250 \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} < 150 \mathrm{GeV}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \mathrm{GeV}, 0\text{-jet}$ $gg \rightarrow ZH, p_{\mathrm{T}}^{Z} > 150 \mathrm{GeV}, 2\text{-jet}$ Top-associated production top $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHq)$			- 1
$\begin{array}{c} q\bar{q} \rightarrow WH, p_{\mathrm{T}}^W > 250~\mathrm{GeV} \\ gg \rightarrow ZH, p_{\mathrm{T}}^Z < 150~\mathrm{GeV} \\ gg \rightarrow ZH, p_{\mathrm{T}}^Z > 150~\mathrm{GeV}, 0\text{-jet} \\ gg \rightarrow ZH, p_{\mathrm{T}}^Z > 150~\mathrm{GeV}, 2\text{-jet} \\ \end{array}$ Top-associated production top $\begin{array}{c} t\bar{t}H \\ W\text{-associated } tH(tHW) \\ t\text{-channel } tH(tHq) \end{array}$			
$\begin{array}{c} gg \to ZH, p_{\mathrm{T}}^{Z} < 150 \mathrm{GeV} \\ gg \to ZH, p_{\mathrm{T}}^{Z} > 150 \mathrm{GeV}, 0\text{-jet} \\ gg \to ZH, p_{\mathrm{T}}^{Z} > 150 \mathrm{GeV}, 2\text{-jet} \\ \end{array}$ Top-associated production top $\begin{array}{c} t\bar{t}H \\ W\text{-associated } tH(tHW) \\ t\text{-channel } tH(tHq) \end{array}$			
$gg \to ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, 0\text{-jet}$ $gg \to ZH, p_{\mathrm{T}}^{Z} > 150 \; \mathrm{GeV}, \geq 1\text{-jet}$ Top-associated production top $t\bar{t}H$ $W\text{-associated } tH(tHW)$ $t\text{-channel } tH(tHq)$			
$gg \to ZH, p_{\rm T}^{\rm Z} > 150~{\rm GeV}, \geq 1{\rm -jet}$ Top-associated production top $t\bar{t}H$ $W{\rm -associated}~tH(tHW)$ $t{\rm -channel}~tH(tHq)$			- I
Top-associated production top $t\bar{t}H$ W -associated $tH(tHW)$ t -channel $tH(tHq)$			$gg \rightarrow ZH$, $p_T^Z > 150 \text{ GeV} > 1 \text{ jet}$
W-associated $tH(tHW)t$ -channel $tH(tHq)$	Top-associated production	ton	
t-channel $tH(tHq)$	rop-associated production	ЮР	
bbH merged W/ ggH bbH	$b\bar{b}H$	merged w/ ggH	$b\bar{b}H$

Couplings: VH and tH+ttH signal strengths

Measurement	Exp. Z_0	Obs. Z_0
$\mu_{ m VBF}$	2.6σ	4.9σ
$\mu_{ m VH}$	1.4σ	$0.8 \ \sigma$
$\mu_{ ext{top}}$	1.8σ	1.0σ

Measurement	Observed	Exp. Limit	Exp. Limit	+2\sigma	+1 σ	-1σ	-2σ
		$(\mu_i = 1)$	$(\mu_i = 0)$				
$\mu_{ m VH}$	2.3	2.5	1.5	3.1	2.2	1.1	0.8
$\mu_{ ext{top}}$	1.7	2.3	1.2	2.6	1.8	0.9	0.6

Couplings: prod mode $\sigma^{(|yH|<2.5)} \times BR(H \rightarrow \gamma \gamma)$

Process	Result	Uncertainty			SM prediction	
$(y_H <2.5)$		Total	Stat.	Exp.	Theo.	
$\sigma_{ m VBF}/\sigma_{ m ggH}$	0.20	+0.10 -0.07	(+0.09 -0.06	+0.04 -0.02	+0.04 -0.02	$0.078^{+0.005}_{-0.006}$
$\sigma_{ m VH}/\sigma_{ m ggH}$	0.04	$+0.06 \\ -0.05$	$\begin{pmatrix} +0.06 \\ -0.04 \end{pmatrix}$	+0.01 -0.01	$+0.01 \\ -0.01$	$0.045^{+0.004}_{-0.005}$
$\sigma_{ m top}/\sigma_{ m ggH}$	0.009	+0.010 -0.009	$\begin{pmatrix} +0.010 \\ -0.009 \end{pmatrix}$	+0.002 -0.001	+0.002 -0.001	$0.012^{+0.001}_{-0.002}$

$$\frac{\sigma_{\text{VBF}}/\sigma_{\text{ggH}}}{(\sigma_{\text{VBF}}/\sigma_{\text{ggH}})^{\text{SM}}} = 2.5^{+1.3}_{-0.9} = 2.5^{+1.1}_{-0.8} (\text{stat.})^{+0.5}_{-0.3} (\text{exp.})^{+0.5}_{-0.3} (\text{theo.})$$

$$\frac{\sigma_{\text{VH}}/\sigma_{\text{ggH}}}{(\sigma_{\text{VH}}/\sigma_{\text{ggH}})^{\text{SM}}} = 0.9^{+1.3}_{-1.0} = 0.9^{+1.2}_{-0.9} (\text{stat.})^{+0.3}_{-0.3} (\text{exp.})^{+0.2}_{-0.1} (\text{theo.})$$

$$\frac{\sigma_{\text{top}}/\sigma_{\text{ggH}}}{(\sigma_{\text{top}}/\sigma_{\text{ggH}})^{\text{SM}}} = 0.7^{+0.8}_{-0.7} = 0.7^{+0.8}_{-0.7} (\text{stat.})^{+0.2}_{-0.1} (\text{exp.})^{+0.2}_{-0.0} (\text{theo.})$$

Couplings: ratios

Table 9: Best-fit values and uncertainties of the production-mode cross sections times branching ratio. The SM predictions [7] with their uncertainties are shown for each production process. Uncertainties smaller than 0.05 are displayed as 0.0.

Process	Result	Uncertainty [fb]			SM prediction	
$(y_H < 2.5)$	[fb]	Total	Stat.	Exp.	Theo.	[fb]
ggH	82	+19 -18	(±16	+7 -6	+5 -4)	102+5
VBF	16	+5 -4	(±4	±2	+3 -2	8.0 ± 0.2
VH	3	±4	(+4 -3	±1	$\begin{pmatrix} +1 \\ -0 \end{pmatrix}$	4.5 ± 0.2
Тор	0.7	+0.9 -0.7	$\begin{pmatrix} +0.8 \\ -0.7 \end{pmatrix}$	+0.2 -0.1	+0.2 -0.0	1.3 ± 0.1

Couplings: kappa framework

1.8 ATLAS Best fit	
1.6 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ — 68% C	
$H \rightarrow \gamma \gamma, m_H = 125.09 \text{ GeV} \qquad95\% \text{ C}$	L 🖠
1.4 _ SM	
$1.2 \frac{1}{\kappa_V} = \kappa_W = \kappa_Z$	=
$1 - \kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_\mu$	\exists
0.8	\exists
	\exists
0.6	
0.4	\exists
0.2	\exists
E	
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3	1.4
	κ_{V}

Parameter	Result	Uncertainty				
1 arameter	Result	Total	Stat.	Exp.	Theo.	
$\kappa_{g\gamma}$	0.90	±0.10	(±0.09	±0.04	$+0.04 \\ -0.03$	
λ_{Vg}	1.41	+0.31 -0.26	$\begin{pmatrix} +0.28 \\ -0.23 \end{pmatrix}$	$^{+0.10}_{-0.07}$	$\begin{array}{c} +0.04 \\ -0.03 \end{array}$	
λ_{tg}	0.8	+0.4 -0.6	$\begin{pmatrix} +0.4 \\ -0.6 \end{pmatrix}$	±0.1	+0.1 -0.0	

Fiducial Cross Sections

Table 14: Summary of the particle-level definitions of the five fiducial integrated regions described in the text. The photon isolation $p_{\rm T}^{\rm iso,0.2}$ is defined analogously to the reconstructed-level track isolation as the transverse momentum of the system of charged particles within $\Delta R < 0.2$ of the photon.

Objects	Definition
Photons	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37, \ p_{\rm T}^{\rm iso,0.2}/p_{\rm T}^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{GeV}$, $ y < 4.4$
Leptons, ℓ	<i>e</i> or μ , $p_{\rm T} > 15$ GeV, $ \eta < 2.47$ for <i>e</i> (excluding 1.37 < $ \eta < 1.52$) and $ \eta < 2.7$ for μ
Fiducial region	Definition
Diphoton fiducial	$N_{\gamma} \ge 2$, $p_{\rm T}^{\gamma_1} > 0.35 m_{\gamma\gamma} = 43.8 {\rm GeV}$, $p_{\rm T}^{\gamma_2} > 0.25 m_{\gamma\gamma} = 31.3 {\rm GeV}$
VBF-enhanced	Diphoton fiducial, $N_j \ge 2$ with $p_T^{\text{jet}} > 25$ GeV,
	$m_{jj} > 400 \text{ GeV}, \ \Delta y_{jj} > 2.8, \ \Delta \phi_{\gamma\gamma,jj} > 2.6$
$N_{\text{lepton}} \ge 1$	Diphoton fiducial, $N_{\ell} \ge 1$
High $E_{ m T}^{ m miss}$	Diphoton fiducial, $E_{\rm T}^{\rm miss} > 80 \text{ GeV}, \ p_{\rm T}^{\gamma\gamma} > 80 \text{ GeV}$
<i>tīH</i> -enhanced	Diphoton fiducial, $(N_j \ge 4, N_{b-jets} \ge 1)$ or $(N_j \ge 3, N_{b-jets} \ge 1, N_{\ell} \ge 1)$

Fiducial region	Measured cross section	SM prediction		
Diphoton fiducial	$55 \pm 9 \text{ (stat.)} \pm 4 \text{ (exp.)} \pm 0.1 \text{ (theo.) fb}$	$64 \pm 2 \text{fb}$	$[N^3LO + XH]$	
VBF-enhanced	$3.7 \pm 0.8 \text{ (stat.)} \pm 0.5 \text{ (exp.)} \pm 0.2 \text{ (theo.)} \text{ fb}$	$2.3 \pm 0.1 \text{fb}$	[default MC + XH]	
$N_{\text{lepton}} \ge 1$	$\leq 1.39 \text{ fb } 95\% \text{ CL}$	$0.57 \pm 0.03 \text{ fb}$	[default MC + XH]	
High $E_{\mathrm{T}}^{\mathrm{miss}}$	$\leq 1.00 \text{ fb } 95\% \text{ CL}$	$0.30 \pm 0.02 \text{ fb}$	[default MC + XH]	
$t\bar{t}H$ -enhanced	≤ 1.27 fb 95% CL	$0.55 \pm 0.06 \text{ fb}$	[default MC + XH]	

Fiducial Cross Sections

Fraction of Signal Process / Fiducial Region (after reconstruction)

Fraction of Signal Process / Fiducial Region (particle level)

Differential Cross Sections

+ more in paper

EFT: overview

$$\mathcal{L}_{\text{eff}} = \frac{\bar{c}_g O_g + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}}{+ \tilde{c}_g \tilde{O}_g + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}}$$

O_{HB} —> HZZ, HZY

Additional effective CP-even and CP-odd

dimension 6 operators in SILH basis

Operators are modulated by c_i and modify rate + shape of differential distributions

Construct templates for different c_i with FeynRules+MadGraph+Pythia8+Rivet and interpolate with Professor

Constrain c_i by maximising likelihood

$$\mathcal{L} = \frac{1}{\sqrt{(2\pi)^k |C|}} \exp\left(-\frac{1}{2} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)^T C^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)\right)$$

EFT: 1D scans

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\bar{c}_g	$[-0.8, 0.1] \times 10^{-4} \cup [-4.6, -3.8] \times 10^{-4}$	$[-0.4, 0.5] \times 10^{-4} \cup [-4.9, -4.1] \times 10^{-4}$
$ ilde{c}_g$	$[-1.0, 0.9] \times 10^{-4}$	$[-1.4, 1.3] \times 10^{-4}$
$ar{c}_{HW}$	$[-5.7, 5.1] \times 10^{-2}$	$[-5.0, 5.0] \times 10^{-2}$
$ ilde{c}_{HW}$	[-0.16, 0.16]	[-0.14, 0.14]

Signal strengths from elsewhere

Process	Result	Uncertainty [pb]			SM prediction	
$(y_H <2.5)$	[pb]	Total	Stat.	Exp.	Th.	[pb]
ggF	43.9	+6.2 -6.0	(+5.5 -5.4	+2.7 -2.3	±1.2)	$44.5^{+2.0}_{-3.0}$
VBF	7.9	+2.1 -1.8	$\begin{pmatrix} +1.7 \\ -1.6 \end{pmatrix}$	$^{+0.8}_{-0.6}$	$^{+1.0}_{-0.7}$	$3.52^{+0.08}_{-0.07}$
VH	0.3	+1.6 -1.4	$\begin{pmatrix} +1.5 \\ -1.3 \end{pmatrix}$	±0.4	$+0.3 \\ -0.2$	$1.99^{+0.06}_{-0.05}$
t̄tH	0.27	+0.37 -0.32	(+0.36 -0.31	+0.06 -0.05	$+0.05 \\ -0.02$	$0.59^{+0.03}_{-0.05}$

~2.4σ

ATLAS + CMS Run-1

JHEP08(2016)045

ATLAS yy+4l Run-2

ATLAS-CONF-2017-047

Signal strengths from elsewhere

CMS yy Run-2 CMS PAS HIG-16-040

CMS 4I Run-2
CMS PAS HIG-16-041

Signal strengths from elsewhere

ATLAS 4I Run-2

arXiv:1712.02304