

白色沙点图

53rd Moriond, La Thuile, 10-17 March 2018

DAMPE Mission and Its First Result

Purple Mountain Observatory, CAS (on behalf of the DAMPE collaboration)

The collaboration

Pl of DAMPE: Jin Chang from PMO

CHINA

- Purple Mountain Observatory, CAS, Nanjing
- University of Science and Technology of China, Hefei
- Institute of High Energy Physics, CAS, Beijing
- Institute of Modern Physics, CAS, Lanzhou
- National Space Science Center, CAS, Beijing

ITALY

- INFN Perugia
- INFN Bari
- INFN Lecce

SWITZERLAND

University of Geneva

Outline

- Background
- DAMPE mission
- First Result

Dark matter

- Compelling astrophysical evidence for dark matter
- New particle or modified gravity?
- Three detection methods

AMP E Dark matter indirect detection

Dark matter particles may annihilate and then generate pairs of particles and anti-particles (gamma-rays, electrons/positrons, proton and antiprotons), see e.g., Bergström & Snellman 1988, Turner & Wilczek 1990

Dark matter indirect detection

DM signal in anti-particles (AMS-02 like detectors): lower background

Electrons: relatively small contrast between the electron and positron flux

Gamma-rays and neutrinos: trace the source

Dark matter indirect detection

Possible DM signal in γ -rays and electrons

- The γ -ray line
- Continual γ-ray emission spatially correlated with the DM distribution
- Electrons with unusual spectrum

AMI E Dark matter indirect detection

Some previous/current experiments and hints

DArk Matter Particle Explorer

Proposed: 2005

Founded: 23 Dec. 2011

Launched: 17 Dec. 2015

- Scientific objectives:
- (a)Probing the nature of dark matter
- (b)Understanding acceleration and propagation of cosmic rays
- (c)Studying γ-ray emission from Galactic and extragalactic sources

The payload

- Charge measurement (dE/dx in PSD, STK and BGO)
- Pair production and tracking (STK and BGO)
- Precise energy measurement (BGO bars)
- Hadron rejection (BGO and neutron detector)

Signals for different particles

electron

gamma

proton

Beam test @ CERN

(Chang et al. [DAMPE collaboration] 2017 Astropart. Phys.)

Expected performance

Parameter	Value
Energy range of gamma-rays/electrons	5 GeV to 10 TeV
Energy resolution(electron and gamma)	1.5% at 800 GeV
Energy range of protons/heavy nuclei	50 GeV to 500 TeV
Energy resolution of protons	40% at 800 GeV
Eff. area at normal incidence (gamma)	1100 cm ² at 100 GeV
Geometric factor for electrons	0.3 m ² sr above 30 GeV
Photon angular resolution	0.1 degree at 100 GeV
Field of View	1.0 sr

DAMPE mission

- Launch: December 17th 2015, CZ-2D rocket
 - Total weight ~1850 kg, power consumption ~640 W
 - Scientific payload ~1400 kg, ~400 W

– Lifetime > 3 year

Altitude: 500 km

• Inclination: 97.4065°

Period: 95 minutes

Orbit: sun-synchronous

16 GB/day downlink

On-orbit trigger rate

~60 Hz average trigger rate →100GB (H.L.)/day on ground (about 5 M events)

BGO on-orbit calibration: MIPs

Deposited Energy (MeV)

After temperature correction

(DAMPE collaboration. 2018, to be submitted to Astropart. Phys.)

Satbility of on-orbit performance

On-orbit performance: Charge measurement by PSD

On-orbit performance: energy measurement by BGO

The ratio of the energies reconstructed with positive and negative side readout data of BGO crystals, for CRE candidates with deposit energy of 0.5-1.0 TeV

On-orbit performance: Absolute energy scale

On-orbit performance: e/p separation

For events with deposit energy of 0.5-1.0 TeV; the proton contamination fraction is found to be <3% below 1TeV and <6% in the energy range of 1-2 TeV.

Summary of current data

Full sky survey: 4 times

3.7 billion CRs (~5 million/day)

up to the end of 2017

Event: ~5 TeV electron candidate

First result: CRE spectrum

Some high energy CRE spectra

Error bars: systematic and statistical uncertainties added in quadrature for direct measurements. For H.E.S.S the grey band represents its systematic errors apart from the approximately 15% energy scale uncertainty.

Summary

The detector

- Large geometric factor instrument (0.3 m² sr for electrons)
- Precision Si-W tracker (40μm, 0.2°)
- Thick calorimeter (32 X_0 , σ_E/E better than 1.5% above 50 GeV for e/γ , (20~35)% for hadrons)
- "Mutiple" charge measurements (0.1-0.3 e resolution)
- e/p rejection power ~10⁵ (topology alone, higher with neutron detector)

Launch and performances

- Successfully launched on Dec 17, 2015
- On orbit operation steady and with high efficiencies
- The first CRE spectrum has been published in Dec. 2017
- More results will be released in the future

Some members and partners

Thank you for your attention!

Back up

Flight Model: four sub-detectors

Flight model: environmental tests

Beam test @ CERN

METHODS

Discrimination between electrons and protons. The method of electron selection in this work relies on the differences in the development of showers initiated by protons and electrons^{23,31,32}. The procedure is as follows. First, we search for events passing through the entire BGO calorimeter. We select events with hit positions from -28.5 cm to 28.5 cm for the top layer and -28 cm to 28 cm for the bottom layer (each BGO bar lies between -30 cm and 30 cm). Second, we calculate the shower spread, expressed by the energy-weighted root-mean-square value of hit positions in the calorimeter. The root-mean-square value of the *i*th layer is calculated as:

$$RMS_{i} = \sqrt{\frac{\sum_{j} (x_{j,i} - x_{c,i})^{2} E_{j,i}}{\sum_{j} E_{j,i}}}$$
 (1)

where $x_{j,i}$ and $E_{j,i}$ are the coordinates and deposited energy of the jth bar in the ith layer, and $x_{c,i}$ is the coordinate of the shower centre of the ith layer. Figure 1 shows the deposited energy fraction in the last BGO layer (\mathcal{F}_{last}) versus the total root-mean-square value of all 14 BGO layers (that is, $\sum_i RMS_i$). We can see that electrons are well separated from protons. Note that in Fig. 1 and Extended Data Fig. 1, heavy ions have already been effectively removed by selection through the plastic scintillator detector, on the basis of the charge measurement.

For a better evaluation of the electron/proton discrimination capabilities, we introduce a dimensionless variable, ζ , defined as

$$\zeta = \mathcal{F}_{last} \times (\Sigma_i RMS_i / mm)^4 / (8 \times 10^6)$$
 (2)