

53rd Rencontres de Moriond ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES La Thuile March 10th - March 17th, 2018.

Interferometric detectors of gravitational Waves • The description of interaction betwee

- The description of interaction between detector and GW is coordinate dependent
- Physical effect is not.
- Intuitive picture ($\lambda_{GW} \gg L$) $F_i = \frac{1}{2}m \frac{d^2 h_{ij}^{TT}}{dt^2} L_j$

Advanced detectors

- Larger beams (× 2.5)
- Heavier mirrors (× 2)
- Optical quality improved (residual rugosity < 0.5 nm)
- Improved coating
 - absorption < 0.5 ppm
 - scattering < 10 ppm
- Larger Finesse (× 3)
- Thermal control of optical aberrations
- Diffused light mitigation
- Improved vacuum $(\times 10^{-2}, 1 \times 10^{-9} \text{ mbar})$
- Laser 200 W
- Signal recycling

A network of detectors

Living Rev. Relativity 19 (2016), 1

GW150914

Primary black hole mass	$36^{+5}_{-4}{\rm M}_{\odot}$
Secondary black hole mass	$29^{+4}_{-4}{\rm M}_{\odot}$
Final black hole mass	$62^{+4}_{-4}{\rm M}_{\odot}$
Final black hole spin	$0.67^{+0.05}_{-0.07}$
Luminosity distance	$410^{+160}_{-180} \mathrm{Mpc}$
Source redshift, z	$0.09^{+0.03}_{-0.04}$

- P_{FA} = 1/203000 yr⁻¹
- Significativity > 5.3σ

Interpretation: BBH coalescence Other similar events in the following:

- GWI5I226 (December 26 2015)
- GW170104 (January 4 2016)

Phys. Rev. Lett. 116, 131103 (2016)
Phys. Rev. D 93, 122003 (2016)
Phys. Rev. Lett. 116, 241103 (2016)
Phys. Rev. X 6, 041015 (2016)
Phys. Rev. Lett. 118, 221101 (2017)

Parameters of the BBH systems

Phys. Rev. X 6, 041015 (2016)

Phys. Rev. Lett. 116, 241103 (2016)

GW170814

- «Still» a BBH coalescence.
- <u>Three detectors</u> <u>detection:</u>
 - Localization
 - Polarization

Phys. Rev. Lett. 119, 141101 (2017)

Localization

Astrophys.J. 826 (2016) no.1, L13

Consistence between different regimes

 \bigcirc

- I. Mass & final spin estimation using only the inspiral signal $SNR_{det} \simeq 19.5$
- 2. Mass & final spin estimation using only the inspiral signal & ringdown signal

 $SNR_{det} \simeq 16$

Comparison

3.

Quasi Normal Modes

Phys. Rev. Lett. 116, 221101 (2016)

Only I mode (Higher Q factor one)

$$h(t) = A \theta(t - t_0) e^{-(t - t_0)/\tau} \cos \left[\omega_0(t - t_0) + \phi_0\right]$$

 $t_0 = t_M + \Delta t$

- Contours: 90% confidence
- Variation of Δt
- Black contour: prediction based on parameters estimated from Inspiral+Merger+Ringdown

GW170817

 Phys. Rev. Lett. 119, 161101 (2017)

 Astrophys. J. Lett. 848, L13 (2017)

 Astrophys. J. Lett. 848, L12 (2017)

Parameter estimation

Phys. Rev. Lett. 119, 161101 (2017)

SNR 32.4 P_{FA}=1/80000 yr⁻¹ D₁=85-160 Mly

- GRB170817A: matter is present
- Mass consistent with binary NS
- Deformability

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m ₁	1.36−1.60 M _☉	1.36−2.26 M _☉
Secondary mass m ₂	1.17−1.36 M _☉	0.86-1.36 M
Chirp mass M	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0	0.4-1.0
Total mass m _{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$	$2.82^{+0.47}_{-0.09}M_{\odot}$
Radiated energy Erad	$> 0.025 M_{\odot} c^2$	$> 0.025 M_{\odot} c^2$
Luminosity distance DL	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

Nuclear matter EOS

f (Hz)

Phys. Rev. Lett. 111, 071101

Deformabilità: informazioni sulla equazione di stato

$$\lambda = \frac{2}{3}k_2R^5$$

$$\Lambda = \lambda \left(\frac{c^2}{GM}\right)^5$$

Hubble parameter

Nature 551, 85 (2017)

Counterparts

Radio

Astrophys. J. Lett. 848, L12 (2017)

Kilonova

Siegel & Metzger 2017b, arXiv:1711.00868

Siegel & Metzger 2017a, PRL, arXiv:1705.05473

E Pian et al. Nature **551**, 67–70 (2017) doi:10.1038/nature24298

Matter ejected in the post-merger phase undergoes r-process

ePessto Credits: Eso/E. Pian et al./S. Smartt & Brightness

Stochastic background

- Upper limits and GW observations set constraints in very different frequency bands
- Still no detections
- Interseting upper limits (improving)
- Interesting perspectives
- Future:
 - Anisotropies
 - Astrophysical SB
 - Correlations

Phys. Rev. X 6, 011035 (2016)

Isotropic upper limits

FIG. 1. We show the estimator for Ω_0 in each frequency bin, along with $\pm 2\sigma$ error bars, in the frequency band that contains 99% of the sensitivity for $\alpha = 0$. The loss of sensitivity at around 65 Hz is due to a zero in the overlap reduction function. There are several lines associated with known instrumental artifacts which do not lead to excess cross-correlation. The data are consistent with Gaussian noise, as described in the Results section.

TABLE I. The frequency bands with 99% of the sensitivity are shown, along with the point estimate and standard deviation for the amplitude of the background, and 95% confidence level upper limits using O1 data for three values of the spectral index, $\alpha = 0, 2/3, 3$. We also show the previous upper limits using Initial LIGO-Virgo data.

Spectral index α	Frequency band with 99% sensitivity	Amplitude Ω_{α}	95% C.L. upper limit	Previous limits [36]
0	20–85.8 Hz	$(4.4 \pm 5.9) \times 10^{-8}$	$1.7 imes10^{-7}$	$5.6 imes10^{-6}$
2/3	20–98.2 Hz	$(3.5 \pm 4.4) \times 10^{-8}$	$1.3 imes 10^{-7}$	-
3	20–305 Hz	$(3.7 \pm 6.5) \times 10^{-9}$	$1.7 imes10^{-8}$	$7.6 imes10^{-8}$

Phys. Rev. Lett. 118, 121101 (2017)

GW170817 : implications for the stochastic background

10.1103/PhysRevLett.120.091101

Conclusions

August 2017:

- First detection of BNS coalescence
- Multi-messenger astronomy: gravitational channel opened
- Association between BNS short γ ray burst
- Kilonova
- No-degenerate network of GW detectors available

• Tomorrow?

- O3 run with improved sensitivity
- Design sensitivity
 - Higher event rates
 - Best parameter estimation

• The day after tomorrow?

- Precision gravitational astronomy
- New sources: pulsar, supernovae, fondi stocastici (maybe tomorrow!)

A new way of looking at the universe is born

