Testable leptogenesis scenarios and phenomenological implications

Jacobo López-Pavón

53rd Rencontres de Moriond-EW 2018 La Thuile March 10- March 17 2018

Minimal Seesaw Model

Heavy fermion singlet: N_R . Type I seesaw. Minkowski 77; Gell-Mann, Ramond, Slansky 79; Yanagida 79; Mohapatra, Senjanovic 80.

We will focus on the simplest extension of SM able to account for neutrino masses:

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{K}} - \frac{1}{2} \overline{N_i} M_{ij} N_j - Y_{i\alpha} \overline{N_i} \widetilde{\phi}^{\dagger} L_{\alpha} + h.c.$$

Minimal Seesaw Model

Heavy fermion singlet: N_R . Type I seesaw. Minkowski 77; Gell-Mann, Ramond, Slansky 79; Yanagida 79; Mohapatra, Senjanovic 80.

We will focus on the simplest extension of SM able to account for neutrino masses:

$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \mathcal{L}_{\mathcal{K}} - \frac{1}{2} \overline{N_i} M_{ij} N_j - Y_{i\alpha} \overline{N_i} \widetilde{\phi}^\dagger L_{\alpha} + h.c.$$

New Physics Scale $(m_{\nu} \sim Y^2 v^2/M)$

The New Physics Scale

The New Physics Scale

Minimal Type-I seesaw with N_R=2

(or Type-I seesaw with NR=3 & $m_{lightest} \gtrsim 10^{-3} eV$)

The New Physics Scale

- Resonant Leptogenesis M>100GeV
 Pilaftsis
- Leptogenesis via Oscillations M=0.1-100GeV
 Akhmedov, Rubakov, Smirnov (ARS); Asaka, Shaposnikov (AS)

GeV Scale Leptogenesis

Hernandez, Kekic, JLP, Racker, Rius 1508.03676; **Hernandez, Kekic, JLP, Racker, Salvado 1606.06719**

See also talks by Valerie **Domcke** and Juraj **Klaric**

Asaka, Shaposhnikov; Shaposhnikov; Asaka, Eijima, Ishida; Canetti, Drewes, Frossard, Shaposhnikov; Drewes, Garbrecht; Shuve, Yavin; Abada, Arcadi, Domcke, Lucente...

Full parameter space exploration Nr=2

$$Y_B^{\text{exp}} \simeq 8.65(8) \times 10^{-11}$$

Bayesian posterior probabilities (using nested sampling Montecarlo MultiNest)

$$\log \mathcal{L} = -rac{1}{2} \left(rac{Y_B(t_{
m EW}) - Y_B^{
m exp}}{\sigma_{Y_B}}
ight)^2.$$
 Casas-Ibarra $R\left(heta + i\gamma
ight)$

Parameters of the model

$$\theta_{23}, \theta_{12}, \theta_{13}, m_2, m_3, M_1, M_2, \delta, \phi_1, \theta, \gamma$$

Fixed by neutrino oscillation experiments

Free parameters

Non degenerated solutions

Inverted light neutrino ordering (IH)

Non very degenerate solutions

Inverted light neutrino ordering (IH)

Non very degenerate solutions

Inverted light neutrino ordering (IH)

Inverted light neutrino ordering

What if the N_R are within reach of SHiP?

Can we estimate YB from the experiments?

Baryon asymmetry depends on all the unknown parameters

• SHiP
$$\Longrightarrow |U_{\alpha j}^2|\gg m_{
u}/M \Longrightarrow {\bf R}_{ij}\gg {\bf 1} \Longrightarrow {\bf 1}$$
 sensitivity

$$(U_{\alpha j})^2 \propto e^{-2\theta i} e^{2\gamma} f(\delta, \phi_1, M_j)$$

Baryon asymmetry depends on all the unknown parameters

• SHiP
$$\Longrightarrow |U_{\alpha j}^2| \gg m_{
u}/M \Longrightarrow {\bf R}_{ij} \gg {\bf 1} \Longrightarrow {\bf 1}$$
 sensitivity

SHiP sensitive to
$$|U_{\alpha j}|(\delta,\phi_1,\gamma),\,M_j$$
 $(U_{\alpha j})^2 \propto e^{-2\theta i} e^{2\gamma} f\left(\delta,\phi_1,M_j
ight)$

Baryon asymmetry depends on all the unknown parameters

• SHiP
$$\Longrightarrow |U_{\alpha j}^2| \gg m_{
u}/M \Longrightarrow \mathbf{R}_{ij} \gg \mathbf{1} \Longrightarrow \mathbf{1}$$
 sensitivity

SHIP sensitive to
$$|U_{\alpha j}|(\delta,\phi_1,\gamma),\,M_j$$

$$(U_{\alpha j})^2 \propto e^{-2\theta i} e^{2\gamma} f\left(\delta,\phi_1,M_j\right)$$

Neutrinoless double beta decay sensitive to θ through interference between light and heavy contribution

CP-violation in Minimal Model

Measurment of PMNS phases from FCC-ee and SHiP?

Caputo, Hernandez, Kekic, JLP, Salvado arXiv:1611.05000

CP-violation in minimal model

• SHiP and FCC-ee can measure:

$$M_1, M_2, |U_{e4}|, |U_{e5}|, |U_{\mu 4}|, |U_{\mu 5}|$$
 Sensitivity to PMNS CP-phases!
$$\bullet |U_{e4}|^2/|U_{\mu 4}|^2 \simeq |U_{e5}|^2/|U_{\mu 5}|^2 \simeq \delta, \phi_1$$

$$(1+s_{\phi_1}\sin 2\theta_{12})(1-\theta_{13}^2) + \frac{1}{2}r^2s_{12}(c_{12}s_{\phi_1}+s_{12})$$

$$\overline{ \left(1-\sin 2\theta_{12}s_{\phi_1}\left(1+\frac{r^2}{4}\right)+\frac{r^2c_{12}^2}{2}\right)c_{23}^2+\theta_{13}(c_{\phi_1}s_{\delta}-\cos 2\theta_{12}s_{\phi_1}c_{\delta})\sin 2\theta_{23}+\theta_{13}^2(1+\sin 2\theta_{12})s_{23}^2s_{\phi_1}} }$$

•
$$|U_{e4}|^2$$
, $|U_{\mu 4}|^2$, $|U_{e5}|^2$, $|U_{\mu 5}|^2 \propto e^{2\gamma}$

CP-violation in minimal model

5σ discovery CP-violation

Previous predictions rely to a large extent on the minimality

Caputo, Hernandez, JLP, Salvado arXiv:1704.08721

Minimal Model

Caputo, Hernandez, JLP, Salvado arXiv:1704.08721

$$|U_{e4}|^2/ar{U}^2$$

Conclusions: Minimal Model

· HIGH PREDICTIVITY!!

- Successful baryogenesis is possible with a mild heavy neutrino degeneracy in the minimal model.
- These less fine-tuned solutions prefer smaller masses M ≤ 1GeV (target region of SHiP) and significant non-standard contributions to neutrinoless double beta decay.
- If O(GeV) heavy neutrinos would be discovered in SHiP and the neutrino ordering is inverted, predicting the baryon asymmetry looks in principle viable, in contrast with previous beliefs.
- 5σ measurement of leptonic CP violation from SHiP and FCC-ee would be possible in a very significant fraction of parameter space! (regardless the baryon asymmetry generation).

Thank you!

To what extent can the predictions be modified in the presence of additional New Physics?

Model Independent Approach: EFT

• The leading NP effects are encoded in effective d=5 operators that can be constructed in a gauge invariant way with the SM fields and the N_j

$$\mathcal{O}_{W} = \sum_{\alpha,\beta} \frac{(\alpha_{W})_{\alpha\beta}}{\Lambda} \overline{L}_{\alpha} \tilde{\Phi} \Phi^{\dagger} L_{\beta}^{c} + h.c.,$$

$$\mathcal{O}_{N\Phi} = \sum_{i,j} \frac{(\alpha_{N\Phi})_{ij}}{\Lambda} \overline{N}_{i} N_{j}^{c} \Phi^{\dagger} \Phi + h.c.,$$

$$\mathcal{O}_{NB} = \sum_{i \neq j} \frac{(\alpha_{NB})_{ij}}{\Lambda} \overline{N}_{i} \sigma_{\mu\nu} N_{j}^{c} B_{\mu\nu} + h.c.$$

Graesser 2007; del Aguila, Bar-Shalom, Soni, Wudka 2009; Aparici, Kim, Santamaria, Wudka 2009.

Model Independent Approach: EFT

• The leading NP effects are encoded in effective d=5 operators that can be constructed in a gauge invariant way with the SM fields and the N_j

$$\mathcal{O}_W = \sum_{\alpha,\beta} \frac{(\alpha_W)_{\alpha\beta}}{\Lambda} \overline{L}_{\alpha} \tilde{\Phi} \Phi^{\dagger} L_{\beta}^c + h.c.,$$

- Generates a third light neutrino mass and a new Majorana CP-phase

$$\frac{v^2 \alpha_W}{\Lambda} \sim \mathcal{O}(1) m_{1(3)}$$

- Modification of the heavy neutrino mixing flavour structure controlled by the magnitude of the lightest neutrino mass generated.

Contours of constant ratio $|U_{es}|^2/|U_{\mu s}|^2$

Model Independent Approach: EFT

- The leading NP effects are encoded in effective d=5 operators that can be constructed in a gauge invariant way with the SM fields and the N_j
 - The higgs can decay to a pair of long-lived heavy neutrinos!
 (powerful signal of two displaced vertices)

$$\mathcal{O}_{N\Phi} = \sum_{i,j} \frac{(\alpha_{N\Phi})_{ij}}{\Lambda} \overline{N}_i N_j^c \Phi^{\dagger} \Phi + h.c.,$$

Accomando, Delle Rose, Moretti, Olaiya, Shepherd-Themistocleous 2017 Caputo, Hernandez, JLP, Salvado 2017

Seesaw Portal

- i) Search of displaced tracks in the inner tracker where at least one displace lepton, e or μ , is reconstructed from each vertex.
- ii) Search for displaced tracks in the muon chambers and outside the inner tracker, where at least one μ is reconstructed from each vertex.

Accomando, Delle Rose, Moretti, Olaiya, Shepherd-Themistocleous 2017 CMS Collaboration 1411.6977, CMS-PAS-EXO-14-012

Seesaw Portal

Approximated LNC

Approximated LNC

$$M_{\nu} = \begin{pmatrix} 0 & Y_1^T v / \sqrt{2} & \epsilon Y_2^T v / \sqrt{2} \\ Y_1 v / \sqrt{2} & \mu' & \Lambda \\ \epsilon Y_2 v / \sqrt{2} & \Lambda & \mu \end{pmatrix}$$

Mohapatra 1986; Mohapatra, Valle 1986; Bernabeu, Santamaria, Vidal, Mendez, Valle 1987; Malinsky, Romao, Valle 2005...

Light nu masses suppressed with LNV parameters

$$m_{\nu} = \mu \frac{v^2}{2\Lambda^2} Y_1^T Y_1 + \frac{v^2}{2\Lambda} \epsilon Y_2^T Y_1 + \frac{v^2}{2\Lambda} Y_1^T \epsilon Y_2$$

Quasi-Dirac heavy neutrinos:

$$M_2 \approx M_1 \approx \Lambda$$
 $\Delta M \approx \mu' + \mu$

Conclusions: Minimal Model + NP

- Previous predictions relay to a large extent on its minimality.
 We studied the impact of NP encoded on d=5 effective operators
- If coefficients are of the same order, strongest bounds come from the bounds on the lightest neutrino mass:

$$\frac{v^2 \alpha_W}{\Lambda} \sim \mathcal{O}(1) m_{lightest} \leq 0.2 \, eV \leftrightarrow \frac{\alpha_W}{\Lambda} \leq 3 \cdot 10^{-9} \, TeV^{-1}$$

In order to keep the minimal model predictions on flavour mixing the bound should be much stronger (at least one order of magnitude)

$$\frac{v^2 \alpha_W}{\Lambda} \le 0.1 \sqrt{\Delta m_{sol}^2} \sim 10^{-3} eV$$

Conclusions: Minimal Model + NP

- Previous predictions relay to a large extent on its minimality.
 We studied the impact of NP encoded on d=5 effective operators
- In the presence, instead, of large hierarchies:

$$\alpha_W \ll \alpha_{N\Phi} \sim \alpha_{NB}$$

which could be protected by global symmetries $(U_L(1), MFV)$

LHC:
$$\frac{\alpha_{N\Phi}}{\Lambda} \le 6 \times (10^{-3} - 10^{-2}) \, TeV^{-1}$$

Caputo, Hernandez, JLP, Salvado 2017

$$\frac{\alpha_{NB}}{\Lambda} < 10^{-2} - 10^{-1} \, TeV^{-1}$$

Aparici, Kim, Santamaria, Wudka 2009.

Seesaw Portal

LHC (13 TeV, 300 fb⁻¹)

 $M_1 = 20 \, GeV$

Production Branching Ratio

Production Cross Section

Predicting YB in minimal model NR=2

Neutrinoless double beta decay effective mass in the IH case

$$|m_{\beta\beta}|_{IH} \simeq \frac{\text{LIGHT NEUTRINO}}{\text{contribution}}$$

$$\simeq \sqrt{\Delta m_{atm}^2} \left[c_{13}^2 \left(c_{12}^2 + e^{2i\phi_1} s_{12}^2 \left(1 + \frac{r^2}{2} \right) \right) \right]$$

$$- f(A e^{2i\theta} e^{2\gamma} (c_{12} - ie^{i\phi_1} s_{12})^2 (1 - 2e^{i\delta} s_{23} \theta_{13}) \frac{(0.9 \, \text{GeV})^2}{4M_1^2} \left(1 - \left(\frac{M_1}{M_1 + \Delta M_{12}} \right)^2 \right)$$

$$\theta$$
HEAVY NEUTRINO contribution

 \bullet Heavy neutrino contribution can be sizable for $M \sim O\left(GeV\right)$

Mitra, Senjanovic, Vissani 2011 JLP, Pascoli, Wong 2012 In order to quantify the discovery CP potential we consider that SHiP or FCC-ee will measure the number of electron and muon events in the decay of one of the heavy neutrino states (without loss of generality we assume to be that with mass M_1), estimated as explained in the previous section. We will only consider statistical errors.

The test statistics (TS) for leptonic CP violation is then defined as follows:

$$\Delta \chi^{2} \equiv -2 \sum_{\alpha = \text{channel}} N_{\alpha}^{\text{true}} - N_{\alpha}^{CP} + N_{\alpha}^{\text{true}} \log \left(\frac{N_{\alpha}^{\text{CP}}}{N_{\alpha}^{\text{true}}} \right) + \left(\frac{M_{1} - M_{1}^{\text{min}}}{\Delta M_{1}} \right)^{2}.$$
(10)

where $N_{\alpha}^{\text{true}} = N_{\alpha}(\delta, \phi_1, M_1, \gamma, \theta)$ is the number of events for the true model parameters, and $N_{\alpha}^{CP} = N_{\alpha}(CP, \gamma^{\min}, \theta^{\min}, M_1^{\min})$ is the number of events for the CP-conserving test hypothesis that minimizes $\Delta \chi^2$ among the four CP conserving phase choices $CP = (0/\pi, 0/\pi)$ and over the unknown test parameters. ΔM_1 is the uncertainty in the mass, which is assumed to be 1%.

Fig. 4 Distribution of the test statistics for $\mathcal{O}(10^7)$ number of experimental measurements of the number of events for true values of the phases $(\delta, \phi_1) = (0,0)$ for IH and $(\gamma, \theta, M_1) = (3.5,0,1)$ GeV, compared to the χ^2 distribution for 1 or 2 degrees-of-freedom.

Kinematical Cuts

$$p_T(l) > 26 \text{ GeV}, \ |\eta| < 2, \ \Delta R > 0.2, \cos \theta_{\mu\mu} > -0.75.$$

ee	$M_1 = 10 \text{GeV}$	$M_1 = 20 \text{GeV}$	$M_1 = 30 \text{GeV}$	$M_1 = 40 \text{GeV}$
p_T	6.4%	7.0%	5.6%	4.5%
η	4.2%	4.8%	4%	2.9%
ΔR	4.2%	4.8%	4%	2.9%

Table 1. Signal efficiencies after consecutive cuts on p_T , η and ΔR for the ee channel in the inner tracker, for various heavy neutrino masses. (Independent of U)

$\mu\mu$	$M_1 = 10 \text{GeV}$	$M_1 = 20 \text{GeV}$	$M_1 = 30 \text{GeV}$	$M_1 = 40 \text{GeV}$
p_T	7.0%	6.8%	6.0%	4.7 %
η	4.7%	4.9%	4%	3.2%
ΔR	4.7%	4.9%	4%	3.2%
$\cos \theta_{\mu\mu}$	3.2%	3.6%	3.0%	2.7%

Table 2. Signal efficiencies after consecutive cuts on p_T , η and ΔR for the $\mu\mu$ channel in the muon chamber for various heavy neutrino masses.

Cuts associated to displaced tracks

• Inner tracker (IT):

$$10 \text{cm} < |L_{xy}| < 50 \text{cm}, |L_z| \le 1.4 \text{m}, d_0/\sigma_d^t > 12,$$

where $\sigma_d^t \simeq 20 \mu \text{m}$ is the resolution in the tracker.

• Muon chambers (MC):

$$|L_{xy}| \le 5$$
m, $|L_z| \le 8m$, $d_0/\sigma_d^{\mu} > 4$,

where the impact parameter resolution in the chambers is $\sigma_d^{\mu} \sim 2 \text{cm}$.

Cuts associated to displaced tracks

$$< L^{-1} > \propto U^2 M^6$$

5σ discovery CP-violation

Predicting YB in minimal model NR=2

• Baryon asymmetry for IH and in the weak wash out regime:

$$[Y_B]_{IH} \propto e^{4\gamma} \frac{(\Delta m_{atm}^2)^{3/2}}{4v^6} M_1 M_2 (M_1 + M_2) \\ \left[(\sin 2\theta \cos 2\theta_{12} - \cos \phi_1 \cos 2\theta \sin 2\theta_{12}) \left(\sin^2 2\theta_{23} + (4 + \cos 4\theta_{23}) \sin \phi_1 \sin 2\theta_{12} \right) + \mathcal{O}(\epsilon) \right]$$

- Baryon asymmetry depends on all the unknown parameters (also on δ at $\mathcal{O}\left(\epsilon\right)$

1-loop contribution of $\mathcal{O}_{N\Phi}$ to nu masses

$$\frac{\alpha_{N\phi}}{\Lambda} \lesssim \frac{2 \cdot 10^{13}}{\log \frac{\mu^2}{M^2}} \left(\frac{10^{-6}}{\theta^2}\right) \left(\frac{\text{GeV}}{M}\right)^2 \frac{\alpha_W}{\Lambda}$$

Kinematic Equations

We have solved the equations for the density matrix in the Raffelt-Sigl formalism

$$\frac{d\rho_N(k)}{dt} = -i[H, \rho_N(k)] - \frac{1}{2} \{\Gamma_N^a, \rho_N\} + \frac{1}{2} \{\Gamma_N^p, 1 - \rho_N\}$$

- Fermi-Dirac or Bose-Einstein statistics is kept throughout
- Leptonic chemical potentials are kept in all collision terms to linear order
- Include spectator processes

Kinematic Equations

We have solved the equations for the density matrix in the Raffelt-Sigl formalism using the code SQuIDS

Arguelles Delgado, Salvado, Weaver 2015 https://github.com/jsalvado/SQuIDS

$$xH_{u}\frac{dr_{+}}{dx} = -i[\langle H_{\text{re}}\rangle, r_{+}] + [\langle H_{\text{im}}\rangle, r_{-}] - \frac{\langle \gamma_{N}^{(0)}\rangle}{2} \{\text{Re}[Y^{\dagger}Y], r_{+} - 1\}$$

$$+i\langle \gamma_{N}^{(1)}\rangle \text{Im}[Y^{\dagger}\mu Y] - i\frac{\langle \gamma_{N}^{(2)}\rangle}{2} \{\text{Im}[Y^{\dagger}\mu Y], r_{+}\} - i\frac{\langle \gamma_{N}^{(0)}\rangle}{2} \{\text{Im}[Y^{\dagger}Y], r_{-}\},$$

$$xH_{u}\frac{dr_{-}}{dx} = -i[\langle H_{\text{re}}\rangle, r_{-}] + [\langle H_{\text{im}}\rangle, r_{+}] - \frac{\langle \gamma_{N}^{(0)}\rangle}{2} \{\text{Re}[Y^{\dagger}Y], r_{-}\}$$

$$+\langle \gamma_{N}^{(1)}\rangle \text{Re}[Y^{\dagger}\mu Y] - \frac{\langle \gamma_{N}^{(2)}\rangle}{2} \{\text{Re}[Y^{\dagger}\mu Y], r_{+}\} - i\frac{\langle \gamma_{N}^{(0)}\rangle}{2} \{\text{Im}[Y^{\dagger}Y], r_{+} - 1\},$$

$$\frac{d\mu_{B/3-L_{\alpha}}}{dx} = \frac{\int_{k} \rho_{F}}{\int_{k} \rho_{F}'} \{\langle \gamma_{N}^{(0)}\rangle \text{Tr}[r_{-}\text{Re}(Y^{\dagger}I_{\alpha}Y) + ir_{+}\text{Im}(Y^{\dagger}I_{\alpha}Y)]$$

$$+ \mu_{\alpha} \left(\langle \gamma_{N}^{(2)}\rangle \text{Tr}[r_{+}\text{Re}(Y^{\dagger}I_{\alpha}Y)] - \langle \gamma_{N}^{(1)}\rangle \text{Tr}[YY^{\dagger}I_{\alpha}]\right)\},$$

$$\mu_{\alpha} = -\sum_{\beta} C_{\alpha\beta}\mu_{B/3-L_{\beta}},$$

Figure 11. Regions on the plane (M, U^2) where LHC displaced track selection efficiency (eq. (3.20) and (3.21)) is above 10% in the IT (blue band) and MC (red band). The grey shaded region cannot explain the light neutrino masses and the green lines correspond to the upper limits of the 90%CL bayesian region for successful baryogenesis in the minimal model for NH (solid) and IH (dashed), taken from [13].

Model Independent Approach: EFT

• The leading NP effects are encoded in effective d=5 operators that can be constructed in a gauge invariant way with the SM fields and the N_j

- Electroweak moment Nj couplings.
$$\ \, \frac{\alpha_{NB}}{\Lambda} < 10^{-2} - 10^{-1} TeV$$

- Generated only at the 1-loop level (suppression with respect to other operators expected)

$$\mathcal{O}_{NB} = \sum_{i \neq j} \frac{(\alpha_{NB})_{ij}}{\Lambda} \overline{N}_i \sigma_{\mu\nu} N_j^c B_{\mu\nu} + h.c.$$

Aparici, Kim, Santamaria, Wudka 2009.

SHIP sensitive to PMNS CP phases

Recall, neutrino oscillation experiments sensitive to $\,\delta\,$

Predicting YB in minimal model NR=2

Hernandez, Kekic, JLP, Racker, Salvadò 2016 arXiv:1606.06719

Leptogenesis in Minimal Model

θ

Hernandez, Kekic, JLP, Racker, Salvadò 2016 ArXiv:1606.06719