

Searches for Tau Neutrinos from Oscillations with IceCube/DeepCore

Michael Larson Niels Bohr Institute, University of Copenhagen March 16, 2018

The IceCube-DeepCore Detector

Atmospheric Neutrino Oscillations

- Cosmic ray interactions in the Earth's atmosphere lead to significant neutrino flux
- Oscillations result in changes to flavor composition of flux
 - Approximately parametrized in terms of mixing angles and mass splittings

$$P\left(\nu_{\mu} \to \nu_{\mu}\right) \approx 1 - \sin^2 2\theta_{23} \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

IceCube (and Others) Measures $v_{\mu} \rightarrow v_{\tau}$ Oscillations

- New result using 3 years of DeepCore data recently published
- Search for v_{μ} disappearance with full-sky sample, 5.6-56 GeV
- Separation into cascade-like, tracklike events provides control region for systematics
- Observed 40962 events
- Good data/MC agreement
- Competitive constraints consistent
 with other experiments

Atmospheric Neutrino Oscillations

Approximately parametrized in terms of mixing angles and mass splittings

$$P\left(\nu_{\mu} \to \nu_{\mu}\right) \approx 1 - \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$
$$P\left(\nu_{\mu} \to \nu_{\tau}\right) \approx \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)$$

Why Measure Tau Neutrinos?

Parke and Ross-Lonergan, Phys. Rev. D 93, 113009 (2016)

 Mixing between flavors described by PMNS mixing matrix

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

- Matrix is **assumed** to be unitary for oscillation experiments
- Unitarity can be **tested** with existing experimental data
- Largest uncertainties in unitarity measurements in τ-related elements

- Strong experimental constraints on v_e and v_μ terms even without unitarity
- Large uncertainties on v_{τ} related terms without unitarity constraints

Why Measure Tau Neutrinos?

Parke and Ross-Lonergan, Phys. Rev. D 93, 113009 (2016)

- Appearance and disappearance are sensitive to different elements
 - Appearance depends on multiple elements
 - Measure both simultaneously in full 3-flavor framework

Previous Limits on Appearance

- Measurement of individual v_τ events
- Identified 5 events
- 5.1σ rejection of no-appearance

- Statistical fit to identify v_τ events
- Found (1.47±0.32) x expectation

Parametrizing v_{τ} Appearance

• Define "tau normalization", N_{τ} , as modification of expected tau neutrino event rate from standard muon neutrino flux, cross section, oscillations, etc.

$$R'_{\nu_{\tau}} = N_{\nu_{\tau}} R_{\nu_{\tau}}(\theta_{23}, \theta_{13}, \Delta m_{31}^2, \dots)$$

- Fitting systematics (including disappearance) simultaneously
 - N_T always with respect to current expectation
- Can apply this to just CC v_τ or both (NC+CC) v_τ interactions
 - Super-K, OPERA performed CC-only measurement
 - Showing the NC+CC measurement today. CC-only in backup

Using an Existing Selection

- New result using 3 years of DeepCore data recently published
- Search for v_{μ} disappearance with full-sky sample, 5.6-56 GeV
- Separation into cascade-like, tracklike events provides control region for systematics
- Observed 40962 events
- Good data/MC agreement
- Can be used for v_τ appearance search as well!

Increasing Sensitivity to Appearance

- The existing event sample was designed for a very clean muon neutrino disappearance measurement
 - v_{τ} were not actively rejected
 - ... but also not actively selected for.
- Can we build a more sensitive dataset for appearance? Yes!

Analysis 1

- Developed for v_{μ} disappearance measurement
- Uses data to model background muons
- Strong containment on starting, stopping vertex
- Observed 41k events/3 years

Analysis 2

- Developed for v_{τ} appearance measurement
- Uses simulation to model background muons
- Strong containment on starting vertex only
- Recently unblinded
- Found 62k events/3 years

Analysis 2: Higher Statistics

- Independently developed sample with wide energy reach
- Similar reconstruction algorithms
- Use of direct MC simulation to model backgrounds
- 62212 events observed in data
 - ~50% more total neutrinos than previously used selection
- Including 3 years of detector data
- For this work, match energy range of previous analysis
- Events separated into "cascade-like", "track-like" based on reconstructed muon length

Parameter Type	Fit Parameter	Analysis 1	Analysis 2
Oscillations	Δm_{32}^2	✓	√
	$\sin^2(\theta_{23})$	~	~
	$\sin^2(\theta_{13})$	~	
	$N_{ au}$	√	\checkmark
Cross-section	Axial Mass (QE)	✓	✓
	Axial Mass (RES)	~	~
	N_{NC}/N_{CC}	✓	✓
Neutrino Flux	ν_{μ} Normalization	✓	√
	ν_e/ν_μ Ratio	~	~
	γ_{ν}	✓	~
	$\nu/\bar{\nu}$ Ratio	~	~
	Up/Horizontal Ratio	~	~
	$f_{Coincident}$		√
Muon Flux	μ Norm	√	√
	γ_{CR}	-	\checkmark
Detector	DOM Efficiency	✓	1
	Hole Ice Model	~	
	Lateral Sensitivity	~	~
	Forward Sensitivity	~	~
	Absorption	~	~
	Scattering	~	~

Systematics Included for Appearance Fits

- Wide range of systematics included
- Similar systematics used between analyses
- Differences only in parameters with very weak sensitivity
- Note: Analysis 1 uses data-driven background estimate

Expected Precision of the Two Analyses

Expected Precision of the Two Analyses

Expected Precision of the Two Analyses

Appearance Best-Fit Values from DeepCore

Tau Appearance Results from DeepCore

• Analysis 1:

$$N_{\tau}^{NC+CC} = 0.58^{+0.31}_{-0.25}$$

- Analysis 2: $N_{\tau}^{NC+CC} = 0.73^{+0.31}_{-0.24}$
- Consistent results from both analyses
- \bullet First results with $N_{\tau} < 1$
- Results consistent with unitary oscillations, cross section, ect

Best-Fit Event Rates (NC+CC Fit)

- Large number of tau neutrinos detected in each analysis
- Analysis 1: Data-driven atmospheric muon background, larger statistics
- Analysis 2: Simulated atmospheric muon background

Type	Analysis Events	$s = 1 + 1\sigma$	Analysis 2 Events	$+1\sigma$
$\overline{\nu_e + \bar{\nu_e} \text{ CC}}$	9548	23	13462	29
$ u_{\mu} + \bar{ u_{\mu}} CC $	23854	39	35706	48
$\nu_e + \bar{\nu_e} + \nu_\mu + \bar{\nu_\mu} \text{ NC}$	4295	19	5559	21
$\nu_{\tau} + \bar{\nu_{\tau}} CC$	927	5	1804	9
$\nu_{\tau} + \bar{\nu_{\tau}} NC$	442	4	759	5
Atmospheric μ	1890	45	5023	167
Accidental Triggers	-	-	93	27
Total Expected (NC+CC Best Fit)	40958	68	62406	180
Observed	40902	202	62112	249

Good Data/MC Agreement with Both Analyses

Analysis 1

Analysis 2

- Both analyses show good data/MC agreement
- Best fit values are consistent with unitary oscillations

Future Measurements with Upgrades to IceCube

- How can we further improve sensitivity to v_τ appearance?
 - Perform an upgrade to IceCube-DeepCore
- Initial studies are very promising
 - 7 additional strings
 - More precise calibrations
 - Significantly more GeVscale events
- Using existing tools, perform a simple event selection to search for oscillations

Future Measurements with Upgrades to IceCube

- Upgrading the low-energy portion of IceCube will significantly improve measurements of both disappearance and appearance
- Awaiting response from NSF in the US

Summary

- New atmospheric oscillation results out of IceCube
 - Disappearance result published gives competitive constraints on oscillation parameters
- Published event selection shows reasonable sensitivity
- New oscillation event selection is available within IceCube
 - 50% more events
 - Better sensitivity to oscillations
- Both selections fit to data
 - Good data/MC agreement in both analyses
 - First results with $N_{\tau} < 1$

Backup Slides

v_T Signal (Analysis 1)

Disappearance with the New Sample

- Disappearance also fit with new selection
- Improved sensitivity over published result
- Feldman-Cousins tests currently running
- Details at Neutrino 2018
- Results in good agreement with other experiments
- First DeepCore results off maximal mixing

Preliminary

CC-Only Results

- Weaker sensitivity than NC+CC
- Analysis 1:

$$N_{\tau}^{CC} = 0.43^{+0.35}_{-0.31}$$

• Analysis 2:

 $N_{\tau}^{CC} = 0.57^{+0.36}_{-0.30}$

- Consistent results from both analyses
- Results consistent with unitary oscillations

Good Data/MC Agreement in Analysis 2

- Good agreement in both cascade-like and track-like events
- Clear appearance effect in cascade-like histogram

