# First results from CUORE

Claudia Tomei on behalf of Marco Vignati INFN Roma for the CUORE Collaboration

Moriond EW, La Thuile, 15 March 2018

arXiv:1710.07988

# Double $\beta$ decay



### Sensitivity challenges



Background (< counts/keV/kg/y)

| $\beta\beta$ Decay Reaction                       | Isotopic Abundance | Q-value          |
|---------------------------------------------------|--------------------|------------------|
|                                                   | [atomic $\%$ ]     | $[\mathrm{keV}]$ |
| <sup>48</sup> Ca→ <sup>48</sup> Ti                | 0.2                | 4274             |
| $^{76}\text{Ge}{\rightarrow}^{76}\text{Se}$       | 7.6                | 2039             |
| $^{82}\text{Se}{\rightarrow}^{82}\text{Kr}$       | 8.7                | 2996             |
| $^{96}\text{Zr} \rightarrow ^{96}\text{Mo}$       | 2.8                | 3348             |
| $^{100}Mo \rightarrow ^{100}Ru$                   | 9.6                | 3034             |
| $^{116}Cd \rightarrow ^{116}Sn$                   | 7.5                | 2814             |
| $^{124}\text{Sn} \rightarrow ^{124}\text{Te}$     | 5.8                | 2288             |
| $^{128}\text{Te} \rightarrow ^{128}\text{Xe}$     | 31.8               | 866              |
| $^{130}\mathrm{Te}{\rightarrow}^{130}\mathrm{Xe}$ | 34.2               | 2528             |
| $^{136}$ Xe $\rightarrow$ $^{136}$ Ba             | 8.9                | 2458             |
| $^{150}\mathrm{Nd} \rightarrow ^{150}\mathrm{Sm}$ | 5.6                | 3368             |



#### M. Vignati - CUORE

# **Bolometric technique in CUORE**



- <sup>nat</sup>TeO<sub>2</sub> crystals (low heat capacitance) source embedded in the detector
- NTD-Ge thermistor:  $R(T) \simeq 1 \Omega \cdot \exp\left(\frac{3 \text{ K}}{T}\right)^{\frac{1}{2}}$
- Resolution  $@0\nu\beta\beta$  energy (2528 keV):  $\Delta E = 5 \text{ keV FWHM}$
- ► Detection efficiency ~ 80%



# Arrays of TeO<sub>2</sub> bolometers



#### Cryogenic Underground Observatory for Rare Events

- Hosted at LNGS in Italy.
- 988 <sup>nat</sup>TeO<sub>2</sub> bolometers 19 towers, 13 floors.
- Active mass: 742 kg.
- Isotope mass: 206 kg <sup>130</sup>Te.
- Expected background: 10<sup>-2</sup> c/keV/kg/year
- Sensitivity to 0vββ in 5y T<sub>1/2</sub> = 9 x 10<sup>25</sup> y @90% C.L.
- Sensitivity to m<sub>ββ</sub> in 5y: 56 - 160 meV @90% C.L.

# LNGS Gran Sasso Laboratory

120 km from Rome

~ 3600 m.w.e. deep

μ flux: ~ 3x10<sup>-8</sup>/(s cm<sup>2</sup>)

γ flux: ~ 0.73/(s cm<sup>2</sup>)





# **CUORE** cryostat



- Goals: Cool down ~1 ton detector to ~10 mK. Mechanically decoupled for extremely low vibrations. Low background environment.
- Minimum base temperature of 6.3 mK reached, detector optimal performance @ 10-15 mK.
  Cool down time: 20 days to 3.4 K, 1.5 more days to base temperature.
- Cryostat total mass ~30 tons. Mass to be cooled < 4K: ~15 tons. Mass to be cooled < 50 mK: ~3 tons (Pb, Cu and TeO2).
- Detector calibration system: <sup>232</sup>Th calibration sources at base temperature M. Vignati - CUORE

### 26/8/16: CUORE detector completed



## **Bottom view**



### **Detector installation**

Performed in a radon-free environment:

- protected area inside the CUORE clean room flushed with radon-free air (Rn concentration < 0.1 Bq/m<sup>3</sup>)
- protective bags flushed with nitrogen for overnight and emergency storage
- teams composed of 3 operators spending the minimum amount of time in the cleanroom, following strict protocols developed during months of training and test with mockup components.



September-October 2016:

- installation of the cryostat interfaces (protective tiles) and radiation shields
- read-out tests.

Observed first detector pulses just after the cool down on January 27, 2017.





# Science runs (May-September '17)

- 2 periods of physics data
  - ▶ Dataset 1: May Jun 2017  $\rightarrow$  37.6 kg yr of TeO<sub>2</sub>
  - ▶ Dataset 2: Aug Sep 2017 → 48.7 kg yr of TeO<sub>2</sub>
- Total exposure: TeO<sub>2</sub>  $\rightarrow$  86.3 kg yr , <sup>130</sup>Te  $\rightarrow$  24.0 kg yr
- 984/988 bolometers are operational
- Trigger rate in physics runs: 6 mHz / bolometer



#### M. Vignati - CUORE

Run Time Breakdown

# **Energy resolution**



+ Tellurium X-ray escape peak + sum peak

M. Vignati - CUORE

Residual (0)

Counts / (2 keV)

Resolution FWHM in Physics runs:

- Dataset 1: (8.3 ± 0.4) keV
- Dataset 2: (7.4 ± 0.7) keV
- Weighted avg: (7.7 ± 0.5) keV
- CUORE goal: 5 keV.



# Blinding of the result

- Data at the Q-value are salted by randomly exchanging events with the nearby <sup>208</sup>TI background line. This creates an artificial peak that hinders the true rate at the Q-value;
- Once the analysis procedures are fixed data are unblinded by exchanging back the events.



 $0\nu\beta\beta$  Q-value

## Result: no evidence found



Fit components:

- Flat background
- <sup>60</sup>Co sum peak
- Peak at Q<sub>ββ</sub>

Half-life limit 90% CL:

T<sup>0v</sup> > 1.3 x 10<sup>25</sup> yr

Efficiency:

- Analysis cuts
- ββ single crystal containment (88%)

M. Vignati - CUORE

### **Combined with previous Te experiments**



<sup>130</sup>Te:  $1.5 \times 10^{25}$  yr from this analysis <sup>76</sup>Ge:  $5.3 \times 10^{25}$  yr from Nature 544, 47–52 (2017) <sup>136</sup>Xe:  $1.1 \times 10^{26}$  yr from Phys. Rev. Lett. 117, 082503 (2016)

<sup>100</sup>Mo:  $1.1 \times 10^{24}$  yr from Phys. Rev. D 89, 111101 (2014) CUORE sensitivity:  $9.0 \times 10^{25}$  yr

#### M. Vignati - CUORE

## **Conclusions and perspectives**

- CUORE is the first ton-scale  $0\nu\beta\beta$  detector.
- Exceptional cryostat performance, more than a ton of material at 10 mK.
- First results from 2 months of collected physics data.
- CUORE is cooling back down, focus on energy resolution improvement:
  - Optimization of detector working conditions.
  - Noise cancellation via Pulse Tube phase optimization:



16

# Thank you!



### Backup slides



### Fit in the ROI



#### Best fit decay rate: $(-1.0 - 0.3 + 0.4 \text{ (stat.)} \pm 0.1 \text{ (syst.)}) \times 10^{-25} \text{ / yr}$



Claudia Tomei - Seminari INFN Roma, 13 Febbraio 2018



The following nuisance parameters are considered:

- energy resolution (higher and lower by  $1\sigma$ ).
- Q-value (higher and lower by 0.5 keV from energy scale uncertainty)
- no sub-peak in the detector response (simple gaussian line shape)
- linear background (higher and lower by  $1\sigma$ ).

The systematic error associated to efficiency is computed directly from the statistical uncertainty on the efficiency.

| Systematic          | Absolute uncertainty [10-24<br>yr] | Relative<br>uncertainty |
|---------------------|------------------------------------|-------------------------|
| Resolution          | -                                  | 1.5%                    |
| Q-value<br>location | _                                  | 0.2%                    |
| No subpeaks         | 0.002                              | 2.4%                    |
| Efficiency          | _                                  | 2.4%                    |
| Linear fit          | 0.005                              | 0.8%                    |