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Strong CP Problem

• The strong force should be able to 
violate charge parity symmetry but 
appears not to.

• CP violation would lead to a neutron 
dipole moment of 10-18e cm.

• Experimental upper limits of the 
neutron dipole moment 10-28e cm.
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Strong CP Problem

▪ Peccei and Quinn introduced their solution to 
the strong CP Problem in 1977. It promotes the 
CP-violating term θ to be it’s own dynamical 
field.

▪ The additional field has an associated pseudo-
goldstone boson, the axion. 

▪ The axion has a two boson interaction and is 
therefore searched via a two photon interaction.

𝛾

𝛾
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐴𝑥𝑖𝑜𝑛

ℒ𝐴𝛾𝛾 = −𝑔𝐴𝛾𝛾𝑬 ∙ 𝑩𝜙𝐴
𝑔𝐴𝛾𝛾 - Axion photon coupling

E – Electric field

B – Magnetic field

φA – Axion Field
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Axion Parameter Space

Adapted from G.R, J. Phys. G, 

publication pending
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Axion Summary

Motivation General Properties

• Provides a natural solution to the 
strong CP problem.

• In the 10-6-10-2eV range also 
provides a dark matter candidate.

• Low mass.
• Weakly coupled to Standard 

Model.
• Stable particle.
• Fundamental pseudo-scalar 

particle.

Photon Coupling Mass and Couplings

• Couples to two photons via a 
Primakoff conversion.

• Magnetic fields facilitate the 
conversion from axion to photons.

• Generically: 𝑚𝑎 ∝ 𝑔𝑎𝑖𝑖 ∝ 1/𝑓𝑎

10−6𝑒𝑉 < 𝑚𝑎 < 10−2𝑒𝑉
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Haloscopes

Image Source: C. Boutan Thesis(2017)

Axion to 
photon 

production

Axion mass unknown requiring 
a tunable resonator
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Expected signal
would be close
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noise
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Scanning Masses
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Finding a Signal

▪ To calibrate the detector a 
‘synthetic axion’ signal could be 
injected into the cavity. This both 
verified the electronics and the 
analysis procedure.

▪ KSVZ axions produce a clear 
signal.

▪ DFSZ axions are not visible in the 
raw spectra but combining spectra 
over all observations reveals the 
peak.
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Signal Strength

𝑆

𝑁
=
𝑃sig

𝑘𝐵 𝑇
∙

𝑡

∆𝑓

• The signal to noise ratio is given 
by the Dickie Radiometer 
equation.

• Noise temperature is the sum 
of the thermal noise and 
amplifier noise.

𝑇 = 𝑇phys + 𝑇𝑎𝑚𝑝 +
𝑇postamp

Gain𝑎𝑚𝑝

• Integration time depends on the 
experimental cadence.

• Set by step size and operational 
frequency.

• Axion power is proportional to:
• Cavity characteristics
• Magnetic field 
• resonant mode

𝑃sig ∝ 𝐵2 𝑉 𝑄cav 𝐶mode

• Currently limited to the 
range of minutes.
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Form Factor

E-FieldTM010 TM011
E-Field

𝐶mode =
𝑉 𝑑𝑉 𝐸 ∙ 𝐵

2

𝑉 𝐵2 𝑉 𝑑𝑉 𝐸
2

▪ The cavity form factor is a function 
of the mode structure of the 
cavity.

▪ TM010 has the maximum form 
factor of ~0.7.

▪ The majority of modes have a 
negligible form factor.

▪ Due to the tuning rod ADMX 
typically achieves ~0.4

TM011
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Signal Strength
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equation.

• Noise temperature is the sum 
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• Integration time depends on the 
experimental cadence.

• Set by step size and operational 
frequency.
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range of minutes.
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Cryogenics

▪ Cryocooler

— Actively cools upper stage to 40K.

— First heatsinking stage.

▪ LHe Bath to cool secondary magnet

▪ Two 1K pots

— Large 1K pot for the shielding, 
gearbox and electricals. 

— Small 1K pot for Dil Fridge

▪ Dil fridge was custom built by Janis 
Research Company

— 800 µW of cooling at 100 mK

— Cools the resonator and amplifiers.
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Quantum Amplifiers

Sean O’Kelley, 
Clarke Group, 
UC Berkeley

ADMX 
Tunable MSA

Yanjie Qiu, 
Siddiqi Group, 
UC Berkeley

ADMX JPA Gain 
20dB
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Complexity
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Gen 2 Results
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Going Forward

▪ Currently ADMX is scanning 

700-890 MHz

▪ We anticipate faster frequency 

coverage in the future due to:

▪ Higher magnetic field

▪ More stable quantum 

electronics

▪ Lower temperatures

▪ Reduced engineering 

overheads.

▪ Speed up of ~6x

2017 Operations
(Completed)

Current Operations

ADMX ”Sidecar” 
Experiment
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The ADMX Sidecar

▪ Sidecar is a small cavity 
that lives above the main 
ADMX cavity.

▪ Operating range of 4-6GHz 
in the  fundamental mode.

▪ Currently testing piezo 
actuators for motion 
control.

▪ Testing data taking in
TM020 Mode.

▪ Currently insensitive to 
QCD axions but still 
searching for ALPs.

Jensen Precision Engineering

Attocube
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Sidecar Exclusions

(2013)

Preliminary
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Conclusions

▪ Axions are well motivated additions 
to the standard model.

▪ ADMX Gen 2 has searched with 
sensitivity to the DFSZ axion over 
2.7-2.8 ueV

▪ ADMX is the first and only 
experiment with DFSZ sensitivity in 
the ideal dark matter axion mass 
range

▪ Over the next 2 years ADMX will 
search for dark matter axions up to 
8.2 ueV

▪ R&D currently taking place to enable 
searches up to 40 ueV
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Axion Dark Matter

▪ Axions are created non-thermally in the 
early universe via the misalignment 
mechanism.

▪ At high energies the axion is massless with 
the field value set at some initial value 𝜃𝑎 =
𝜃𝑎
0

▪ Once the axion wavelength becomes
comparable to the Hubble scale the axion 
mass becomes significant and the field 
starts to oscillate.

▪ The oscillations are damped and therefore 
the field approaches 𝜃𝑎 = 0

Axion cosmology revisited, Olivier Wantz and E. P. S. Shellard, Phys. Rev. D 82, 
123508
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▪ Observations hint at the existence of 
a form of matter that we cannot see 
in our current detectors.

▪ Galaxy and star cluster rotation 
curves do not match what is expected 
from the observable matter 
distribution.

▪ Adding a non-interacting mass to the 
galaxy allows the theory to match 
observation. This mass is ‘dark 
matter’.

Image source: Katherine Freese, Caltech
https://ned.ipac.caltech.edu/level5/Sept17/Freese/Freese
2.html

Dark Matter


