DE LA RECHERCHE À L'INDUSTR

NEWS-G Light dark matter search with a Spherical Proportional Counter

First results and Future prospects

Ioannis Katsioulas

On behalf of the NEWS-G collaboration

Universite Paris-Saclay CEA Saclay

Les Rencontres de Moriond - EW , March 14, 2018

ioannis.katsioulas@cea.fr

The Dark Matter conundrum

Status as of early-2017

Motivation

- 1. Non-findings
- 2. Plethora of DM models

Direct detection of light dark matter

Detection through ionization - An example

due to quenching $E_i = E_R \cdot q_F$

Kinematic issue

Direct detection of light dark matter

No searches available in this region

The Spherical Proportional Counter

I.Giomataris et al .JINST.2008. P09007

Electric field

Strong dependence with the radius

$$E(r) = \frac{V_0}{r^2} \frac{r_A r_C}{r_C - r_A} \approx \frac{V_0}{r^2} r_A$$

r_A = anode radius r_c = cathode radius

Built solely by radiopure materials

- Vessel made of Cu (~tens of kg)
- Rod made of Cu (~hundreds of gr)
- All the rest less than weigh <1 g

The Sensor

In the picture: I.Giomataris, G.Charpak

Why a spherical detector?

Building large volume detectors

Advantages of the spherical geometry

- Lowest surface to volume ratio
- Sustains higher pressure
- Low capacitance \rightarrow Low noise
- High gain
- Robustness (anode Ø 1 mm-6.3 mm)

Large volume - large mass detector with very low noise,thus threshold, designed to increase signal to background ratio Capacities for a 1 m³ detector in different geometries

Parallel Plate

Cylindrical counter

Why a spherical detector?

Background rejection capabilities-A

Primary e- drift time dispersion $\sigma(r) \propto (r/r_{sphere})^3$

Rise time $\rightarrow \Delta t$ between 90% - 10% of pulse height

[ADU] -8000 Amplitude -8500 X-ray source -9000 Extended track Real muon pulse -9500 Width ₹-10000 -10500 -11000 Baseline Rise Time Pulse Deriva 1000 1500 Time [us 5.9 keV X-rays line 500 1000 Sample [Arbitrary Units] Point like ne [us] Real ⁺Ar pulse Interaction Amplitude [ADU] 700 700 700 points Pulse Derivat 2000 4000 6000 Amplitude [ADU] 0 500 1000 Sample [Arbitrary Units] 7

Event discrimination

Fiducialization

Why a spherical detector?

Background rejection capabilities-B

¹⁰⁹Cd source Irradiation through 200 μ m Al window P = 100 mb, Ar-CH4 (2%)

Background comes from the materials of the vessel

Efficiency of the cut in rt → ~ 70% signal (Cd line) Significant background reduction

The SEDINE detector at LSM

The main detector currently and a testing ground for NEWS-G

WIMP search run data

Target: Ne+0.7%CH₄ at 3.1 bar \rightarrow 280 gr target mass

Duration: 42 days in sealed mode

Dead time: 20.1%

Exposure: 9.6 kg*days (34.1 live-days x 0.28 kg)

Trigger threshold: 35 eVee (~100% efficient at 150 eVee)

Analysis threshold: 150 eVee(~720 eVnr)

Calibration: ³⁷Ar gaseous source, 8 keV Cu fluorescence, AmBe neutron source

Rise time vs Energy

<u>Sideband region</u> used together with simulations to determine the number and distribution of expected events in preliminary ROI

Simulating the detector response

Modeling the rise time vs energy response

Electric field

Field map from COMSOL

Drift of primary electrons

Magboltz drift parameters

Quenching factor

- Parametrization derived from SRIM

Avalanche

Polya distribution estimation using Garfield++

Simulated pulses

- Ion Induced current preamplifier response
- Noise templates taken from the pretraces of real pulses

Same trigger algorithm and processing as used for real pulses

Validation

Analysis of the WIMP run data

Analysis methodology - BDT

Mass dependent selection for 8 WIMP masses

First results of NEWS-G with SEDINE

NEWS-G collaboration, Astropart. Phys. 97, 54 (2018), doi: 10.1016/j.astropartphys.2017.10.009

Exclusion at 90% confidence level (C.L.) of cross-sections above 4.4•10⁻³⁷ cm² for a 0.5 GeV/c² WIMP

Limit set on spin independent WIMP coupling with standard assumptions on WIMP velocities, escape velocity and with quenching factor of Neon nuclear recoils in Neon calculated from SRIM

NEWS-G at SNOLAB

The underground laboratory in the Sudbury, Canada

Deeper underground 0.25 μ/m²/day ~8x lower μ flux than LSM

Practically, at 2 km is the deepest clean room in the world

NEWS-G at SNOLAB

The new and improved setup

Copper vessel (140 cm Ø, 12 mm thick)

- Low activity copper (C10100)
 - 7 to 25 $\mu Bq/kg$ Th
 - 1 to 5 μBq/kg of U
- Electropolishing & Electroplating

Upgraded compact shielding (35t)

- 40 cm PE + Boron sheet
- 22 cm VLA Pb (1 Bq/kg²¹⁰Pb)
- 3 cm archaeological lead
- Airtight envelope to flush pure N (against Rn)

Glove box for Radon free rod installation

Hemispheres built in France, stored at LSM before welding

NEWS-G current status & developments

Preparing the He physics run

Gas quality

Testing gas mixtures of He/CH₄

High pressure operation (Penning)
Hydrogen rich target

Upgrading gas system

- Tightness
- Filtering
- Gas recirculation
- Residual Gas Analyzer monitoring

Quenching factor measurements

Ion / electron beam (LPSC, France)
Neutron beam (TUNL, USA)

Solid state laser (213 nm)

- monitoring of the gain over time
- drift time measurements
- parametrization of the avalanche process

Single anode sensors

"Glass" sensor

"Bakelite" sensor

Ú.

Sensor developments Aims

- High pressure operation
- High gain
- Increased stability
- Low radioactivity

Techniques

- Resistive technologies
- 3D printing technologies
- FEM simulations

Multi-anode sensors (ACHINOS)

33-ball bakelite

11-ball 3D printed

Studying the effect of ACHINOS with FEM simulations

16

NEWS-G at SNOLAB

Projected sensitivity 10⁻³⁶ NEWS-G @ LSN 10⁻³⁸ 10⁻³⁸ 10⁻³⁹ H 9 10⁻⁴⁰ 9 10⁻⁴⁰ 10-1 gg 10 section Bigger 1) CRESST-II 10^{-3} DAMA/LIBRA 10-4 CDMS Lite 10⁻⁵ cro Cleaner 2) CDMS SI $\begin{array}{c} \text{U} & 10^{-42} \\ \text{U} & \text{U} & 10^{-43} \\ \text{U} & \text{U} & 10^{-44} \\ \text{U} & 10^{-45} \\ \text{U} & 10^{-46} \end{array}$ **NEWS-G @ SNOLAB** Ne 10⁻⁶ nucleon 10⁻⁷ 10⁻⁴⁴ 10⁻⁸ : DEAP-3600 10⁻⁸ ḋ₩ 10⁻⁹ ≯ 3) SuperCDMS Deeper PandaX-່ 10^{–10}ິທ LUX XENON1T 10³10⁻¹¹ 10-47 10⁻¹2×10⁻¹ 10² 2×10² 20 1 2 3 45 10

> 100 kg.days, 200eVee ROI above threshold at 1 electron. (Not accounting for sensitivity improvement from resolution effects and RT cuts)

WIMP Mass [GeV]

The NEWS-G collaboration

- Queen's University Kingston G Gerbier, P di Stefano, R Martin, G Giroux, T Noble, D Durnford, S Crawford, M Vidal, A Brossard, F Vazquez de Sola, Q Arnaud, K Dering, J Mc Donald, M Clark, M Chapellier, A Ronceray, P Gros, J Morrison, C Nevron
 - Copper vessel and gas set-up specifications, calibration, project management
 - Gas characterization, laser calibration, on smaller scale prototype
 - Simulations/Data analysis
- IRFU (Institut de Recherches sur les Lois fondamentales de l'Univers)/CEA Saclay -I Giomataris, M Gros, C Nones, I • Katsioulas, T Papaevangelou, JP Bard, JP Mols, XF Navick,
 - Sensor/rod (low activity, optimization with 2 electrodes)
 - Electronics (low noise preamps, digitization, stream mode)
 - DAQ/soft
- LSM (Laboratoire Souterrain de Modane), IN2P3, U of Chambéry F Piquemal, M Zampaolo, A DastgheibiFard •
 - Low activity archeological lead
 - Coordination for lead/PE shielding and copper sphere
- Thessaloniki University I Savvidis, A Leisos, S Tzamarias •
 - Simulations, neutron calibration
 - Studies on sensor
- LPSC (Laboratoire de Physique Subatomique et Cosmologie) Grenoble D Santos, JF Muraz, O Guillaudin
 - Quenching factor measurements at low energy with ion beams
- Pacific National Northwest Lab- E Hoppe, DM Asner •
 - Low activity measurements, Copper electroforming
- RMCC (Royal Military College Canada) Kingston D Kelly, E Corcoran .
 - 37 Ar source production, sample analysis
- SNOLAB -Sudbury P Gorel
 - Calibration system/slow control
- University of Birmingham K Nikolopoulos, P Knight 📉 • \mathbb{Z}
 - Simulations, analysis, R&D

Associated lab : TRIUMF - F Retiere

Future R&D on light detection, sensor

Thanks very much for your attention

Additional material