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Among key scientific goals of LHC:

Energy density of the universe:

▪ Pinpoint the nature of dark matter!

Needed: Predictions for possible signatures 
of dark matter models

Planck 2015

Jan Heisig (RWTH Aachen University)                                                                             Moriond, EW session, March 2018



3Jan Heisig (RWTH Aachen University)                                                                             Moriond, EW session, March 2018

Today

Decisive property:  Dark matter thermalized 
in expanding early Universe? 

Expansion with Hubble rate H

X

X

SM

SM

Rate of thermalizing 
processes:

�ann ? H



Decisive property:  Dark matter thermalized 
in expanding early Universe? 

H / T
2
, �ann /

(
T , T � m (ultra-rel.)
e�m/T

, T < m (non-rel.)

10-6 10-4 0.01 1 100 104 106
10-8

10-5

0.01

10

104

107

�
/
H

m/T

pr
oc

es
s 

ef
fic

ie
nt

in
ef

fic
ie

nt

time

▪ 2 ➞ 2 processes maximum, thermalization processes can remain
   inefficient:
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▪ 2 ➞ 2 processes maximum, thermalization processes can remain
   inefficient:

Non-th. dark sector:
No LHC signal!
[see Kahlhoefer 
1801.07621]



Decisive property:  Dark matter thermalized 
in expanding early Universe? 
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▪ 2 ➞ 2 processes maximum, thermalization processes can remain
   inefficient:

At least part of  
dark sector thermalized:
Of interest for LHC

Jan Heisig (RWTH Aachen University)                                 4                                          Moriond, EW session, March 2018



Vanilla WIMP 
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di⇥erent values of the interaction rate between the visible sector and DM
particles ⇥ in each case. The arrows indicate the e⇥ect of increasing the rate � of the two processes.
In the left panel x = m⇥/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n⇥/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ⇤ O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ⇥ ⇥⇥, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� ⌅ exp(�m�/T ). The comoving number density of DM particles ⇥ then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.

– 10 –

10-4

10-6

10-8

10-10

10-12

10-14

10-16

1 10 10010-4 0.01 1 100
10-4

0.1

100

105

108

1011

[B
er

na
l e

t a
l. 

20
17

]

X

X

SM

SM

� ⇠ H

m/T m/T

�
/
H

Y
(=

 c
om

ov
in

g 
nu

m
be

r 
de

ns
ity

)

▪ Weak couplings: well thermalized!  ➔ independent of initial cond.
▪ Well-known freeze-out picture: 
   Leaves equilibrium density when              ➔ cold DM

Yeq

� ⇠ H
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Vanilla WIMP

Ωh2 0.120
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Figure 1. 95% C.L. upper limits on the DM annihilation cross section ��v⇥ for all possible annihilation
channels into pairs of SM particles from CR antiprotons (solid blue curves) and from dwarf spheroidal
galaxies (dashed red curves). For the the leptonic channels the CR limits are flavor blind. Note
the di�erent scales on the vertical axes when comparing the limits of the leptonic (upper row) and
non-leptonic annihilation channels.
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Figure 38: Lower exclusion
limits in the m�-MV plane at 95% CL for the ATLAS (blue lines) and CMS (red

lines) mono-jet searches.
The limits for the simplified model (soli

d lines), for
the EFT (dashed lines) and for

the EFT applying
the Q-truncatio

n (dotted lines) are shown. Four slices of the parameter space:
�g�gq = 1 ,

�V = 0.01MV (upper left panel),
�g�gq = 1, �V = 0.5MV (upper right panel),

�g�gq = 0.2, �V = 0.01MV

(lower lef
t panel) a

nd
�g�gq = 0.2, �V = 0.5MV (lower rig

ht panel)
are displayed

. The blue shaded region in the

left panel
s represen

t the parameters spac
e not allow

ing a consistent
solution for the mediator w

idth as a function

of MV ,m�,
�g�gq.

39

Results from mono-jet searches at 8 TeV LHC

EFT Limit▪ Re-interpret LHC Run I mono-jet + MET searches

   [ATLAS:1502.01518, CMS: 1408.3583]

▪ Simulation: FeyRules/MadGraph/Phythia/Delphes
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ctor mediator Z
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Here mmed is th
e (axial)-v

ector mass term and gV and gA are the ve
ctor and axial coup

lings

respective
ly. The da

rk matter part
icle ⇥ is a Dirac fermion with mass mDM, neutral u
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the Standard
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e groups. The sum extends over all quarks
and for simplicity,

we assume that the couplings
gqV and gqA are the same for all qu

arks. While in general,

a Z
0 from a broken U(1)

0 will also
have couplings

to leptons and gauge bosons, w
e do

not consider them here as they are not relevant for the monojet search.
1 This simplified

model is sim
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ssed in [31]. Simplified models of v
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for the purposes
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.
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Figure 1. 95% C.L. upper limits on the DM annihilation cross section ��v⇥ for all possible annihilation
channels into pairs of SM particles from CR antiprotons (solid blue curves) and from dwarf spheroidal
galaxies (dashed red curves). For the the leptonic channels the CR limits are flavor blind. Note
the di�erent scales on the vertical axes when comparing the limits of the leptonic (upper row) and
non-leptonic annihilation channels.
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WIMPs strongly constraint by current searches
Scenarios with other signatures?
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so where do we start?

24 April 2017Heather Russell, McGill University

displaced leptons, 
lepton-jets, or 
lepton pairs

displaced 
multitrack vertices

multitrack vertices in the 
muon spectrometer

quasi-stable 
charged particles

trackless, 
low-EMF jets

emerging jets

non-pointing 
(converted) photons

disappearing or 
kinked tracks
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Long-lived particles (LLPs) at the LHC

▪ Metastable BSM particles (except neutral detector-stable particles ➔ MET)

▪ Wide range of possible signatures:

▪ Many LLP signatures low background ➔ high sensitivity
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LLP searches at the LHC: challenges

▪ Cover spectrum of possible LLP signatures and kinematic
   ranges 
    so far mostly SUSY related scenarios

▪ Hard to trigger
   often additional signature needed for triggering

▪ Interpretation of results
    applicability for a large set of models required

▪ Recasting difficult
   exchange of additional information needed
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LLP searches at the LHC: challenges

▪ Cover spectrum of possible LLP signatures and kinematic
   ranges 
    so far mostly SUSY related scenarios

▪ Hard to trigger
   often additional signature needed for triggering

▪ Interpretation of results
    applicability for a large set of models required

▪ Recasting difficult
   exchange of additional information needed

LHC LLP Community Workshops:
April 2017: https://indico.cern.ch/event/607314/

October 2017: https://indico.cern.ch/event/649760/

Next Workshop: 16-18 May 2018 at CERN
Community white paper in preparation
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LLPs and dark matter



LLPs and dark matter

X1 X2

λ1 λ2

m1  < m2 dark matter heavier partner

▪ Consider Z2-odd dark sector

▪ Consider: next heavier state X2 involved in freeze-out!

▪ Decay only in Z2-odd states:

X2
SM

X1
λ2λ1

Jan Heisig (RWTH Aachen University)                                  10                                        Moriond, EW session, March 2018



Coannihilation

X1 X2

λ1 λ2

m1  < m2 

➔ X2 still "around" during freeze-out 

dark matter heavier partner

Number densities during freeze-out:

Y2

Y1
/ e��m/Tf ⇠ e�25�m/m

�m/m . 10%
[for an interesting exception 
see D'Agnolo et al. 1803.02901]

Y eq
2

Y eq
1

/ e��m/Tf ⇠ e�25�m/m

λ1 ~ λ2

[Griest, Seckel 1991; Edsjo, Gondolo 1997]
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Coannihilation

Number densities "tied" together through efficient conversions:
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Coannihilation
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Coannihilation and LLPs
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Figure 4: The mass di↵erence �m ⌘ m⌧̃1 � m� as a function of m1/2 along the CMSSM
coannihilation strips calculated using SSARD [23] for tan � = 10 (left panel) and tan � = 40
(right panel), and for A0 = 0 (blue lines) and 2.5m0 (red lines). The bands with m⌧̃1 �m� <

m⌧ are shaded green. The lower limit on m1/2 from the 8-TeV ATLAS 5/fb /ET search at the
LHC [11] is represented by maroon lines, and the lower limits from searches for the direct
and total production of metastable charged particles [22] are shown as dashed and solid lines,
respectively, inside the green bands (see Section 6 for details).

LHC running at 8 TeV [11]. It was shown in [18] that a previous lower limit from ATLAS

using 5/fb of 7-TeV LHC data [9] was largely independent of tan � and A0. Combining

the 7-TeV ATLAS data with other constraints on the CMSSM, that analysis also found

m1/2
>
⇠ 700 GeV at the ��

2 = 2.3 level, corresponding to the 68% CL in the (m0,m1/2)

plane, considering all values of tan� and A0 [18].

We see that the ATLAS limit intercepts the WMAP strips for tan � = 10, A0 = 0 (2.5m0)

where m⌧̃1 � m� ⇠ 2.8 (2.5) GeV, and the WMAP strips for tan � = 40, A0 = 0 (2.5m0)

where m⌧̃1 � m� ⇠ 6.5 (9) GeV. We also show, again in green shading, the band where

m⌧̃1 � m� < m⌧ . The e�ciencies and sensitivities of the current LHC /ET search strategies

need careful study in the limit of small m⌧̃1 �m�, where in the CMSSM also the masses of

the other sleptons are closer to m� than in generic regions of the (m0,m1/2) plane. We also

note that the sensitivity of /ET searches by ATLAS and CMS to points within the green band

may be a↵ected by the fact that events with a massive long-lived ⌧̃1 in the final state have

a di↵erent experimental signature. One should, in particular, consider the possibilities that

the ⌧̃1 may decay inside the detector into either one or three light charged particles, as well

6

▪ SUSY: stau coannihilation strip

⌦h2 ' 0.12

Long-lived staus

Prompt decays

[Citron et al. 1212.2886]
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Figure 8: Exclusion limit at 95% CL obtained in the electroweak production channel in terms of the chargino lifetime
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of the expected limits is shown by a dashed line. The red line shows the observed limit and the orange dotted
lines around it show the impact on the observed limit of the variation of the nominal signal cross-section by ±1�
of its theoretical uncertainties. Results are compared with the observed limits obtained by the previous ATLAS
search with disappearing tracks and tracklets [19] and an example of the limit obtained at LEP2 by the ALEPH
experiment [62]. The chargino lifetime as a function of the chargino mass is shown in the almost pure wino LSP
scenario at the two-loop level [63].
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▪ SUSY: stau coannihilation strip
▪ Minimal dark matter, e.g. pure wino:
    [Cirelli et al. hep-ph/0512090]

Coannihilation and LLPs

[Cuoco, JH, Korsmeier, Krämer 1711.05274]
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Figure 3. 95% CL exclusion limit on minimal wino dark matter. The blue curve shows the upper
limit from AMS-02 antiprotons. The dark and light blue shaded error bands display the CR systematic
uncertainties (see text for details) and the uncertainties from the variation of ⇢� (added linearly),
respectively. The vertical green shaded band around 2850GeV corresponds to the DM mass range
where the thermal relic density matches the measured one. The brown shaded band on the left denotes
the mass range excluded by LHC searches. Upper panels: Limits on the annihilation cross section
into vector bosons for two cases: 100% wino DM (left panel) and a wino DM fraction according to
the thermal production (right panel). The red dashed curve shows the Fermi-Lat �-ray limits from
dwarf spheroidal galaxies. The solid black curves show the cross section prediction. Lower panel:
Upper limits in terms of the wino DM fraction R, i.e. the ratio of minimal DM to all of DM. For
comparison we show the H.E.S.S. limits from searches for �-lines from Galactic center observations
(red dot-dashed curves). The limit extending over the whole mass range above 500 GeV assumes the
NFW profile. To reduce clutter the respective limits for the Burkert 10 kpc, Burkert 5 kpc and Einasto
profiles (from top to bottom) are only displayed on the very right of the mass range. The relative
di↵erence between these choices is a constant factor. The two black dotted curves illustrate the two
cases considered in the upper panels, i.e. 100% wino DM (R = 1) and R according to the thermal
production, ⌦� = ⌦therm.

taking into account a relative uncertainty of the theoretical prediction of 5% [67]. We use
annihilation cross sections including Sommerfeld enhancement and electroweak corrections,
see sections 3.1–3.3.

In the upper left panels we show the limits on the annihilation cross section from the
antiproton flux and from dwarf di↵use �-ray searches, assuming that the minimal DM can-
didate constitutes all of DM so that its relic density is equal to the Planck measurement
(⌦� = ⌦meas). Dark matter masses outside the green band thus correspond to scenarios with
an additional (non-thermal) production mechanism or a non-standard cosmological history.3

The inner, dark blue band of the antiproton limit corresponds to the cosmic-ray propagation

3
See e.g. [68] for a discussion of non-thermal contributions to the wino abundance from a decay of a heavy

gravitino.
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▪ SUSY: stau coannihilation strip
▪ Minimal dark matter e.g. pure wino
    [Cirelli et al. hep-ph/0512090]

▪ Pseudo Dirac dark matter
    [De Simone, Sanz, Sato 2010; Davolia, De Simone, Jacquesa, Sanz 2017]   

100 150 200 250 300 350 400
0

2

4

6

8

10

m1 @GeVD
D
m
@G
eV
D

10-3 cm

10-2 cm

10-1 cm

1 cm

10 cm
102 cm

Figure 3: Proper decay lengths for �2 ! ff̄�1 in the plane of the mass splitting �m between �1

and �2 and the DM mass m1. The relic abundance of �1 has been fixed to ⌦DMh
2 = 0.11.

where g
0 is the U(1)Y gauge coupling and Yf is the hypercharge of the fermion f . If the

neutralinos �̃
0
1,2 are pure combinations of B̃ and B̃

0, and the decay occurs mostly through the

exchange of a right-handed slepton of mass m˜̀
R
, the decay length is obtained from Eqs. (4.2)

and (5.2):

L0 ' 1.8 cm

✓
m˜̀

R

100 GeV

◆4✓1 GeV

�m

◆5

, (5.3)

valid up to order O(�m/m�̃1,2)
2. Instead, for DM annihilations only into right-handed lep-

tons, the analytical approximation in Eq. (3.8) translates into

m˜̀
R
' 202 GeV

✓
⌦DMh

2

0.11

◆1/4 ⇣
m1

100 GeV

⌘1/2
e
�6�m

m1 , (5.4)

which can be regarded as a prediction for the slepton mass, once the bottom of the super-

symmetric spectrum is known.

6. Conclusions and Outlook

In this paper, we presented a scenario called pseudo-Dirac Dark Matter (pDDM) which pos-

sesses a virtue uncommon to DM theories: observable collider signals in the form of displaced

vertices.

In pDDM, the DM particle is accompanied by a slightly heavier state. This may arise

as a consequence of an approximate U(1) symmetry. The small mass splitting is responsible

for the displaced vertices at colliders, characterized by a very suggestive form of the decay

– 13 –
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▪ SUSY: stau coannihilation strip
▪ Minimal dark matter e.g. pure wino
    [Cirelli et al. hep-ph/0512090]

▪ Pseudo Dirac dark matter
    [De Simone, Sanz, Sato 2010; Davolia, De Simone, Jacquesa, Sanz 2017]

▪ ...

Coannihilation and LLPs

LLP due to small mass splittings
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Small dark matter couplings
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Freeloader's freeze-out
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Even smaller dark matter couplings
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[Garny, JH, Lülf,  Vogl 1705.09292; D'Agnolo, Pappadopulo, Ruderman 1705.08450;
 Garny, JH, Hufnagel, Lülf 1802.00814]
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Conversion-driven freeze-out

Ωh2 0.120
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.

A concrete example

▪ Specific model:

▪ SUSY-inspired simplified model:
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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even weaker coupling such that it was never in thermal
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out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

4

re
la

ti
ve

ra
te

�
/H

mX1/T

X2X2 ⇥ SM

X2 ⇥ X1 SM

ab
un

da
nc

e

mX1/T

X1X2

neq

FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
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particular to a potential production during the reheating
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driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.
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two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
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is a free parameter here [see Ibarra et al. 2009 for SUSY realization] 
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For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T � m�/30) the con-
version rates have to be on the edge of being e⇥cient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, �eb, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
dotted lines in Fig. 7. It ranges from 25 cm to below
2.5 cm for increasing mass di�erence (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal e⇥ciency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of c� ⇥ 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
LHC data are superimposed in Fig. 7. For mass split-
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m� and �m�eb = meb � m�. We adjust �� such that ⇥h2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling ��/10

�7 (decay length c⇥) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

tings below mb (below gray dashed curve) the 2-body
decay is not allowed and the resulting R-hadrons can be
considered detector-stable. Towards large mass splittings
(smaller life-times) the limits fall o� significantly provid-
ing no constraint above ⇥m�eb ⇥ 13GeV.

On the other hand, a large number of experimen-
tal results for a sbottom-neutralino simplified model ex-
ist assumong a prompt sbottom decay, see e.g. [26–29].
While most of these searches are not applicable to non-
prompt decays, monojet searches, targeting small mass
splittings, have been performed that do not rely on the
prompt decay of the sbottom [30, 31]. We superimpose
the (stronger) limit from [31] that uses 3.2 fb�1 of 13 TeV
data.

CONCLUSION

In this work we have considered the possibility that
the common assumption of chemical equilibrium during
DM freeze-out does not hold. For definiteness, we have
focused on a simplified model with particle content in-
spired by supersymmetry, comprising a neutral Majorana
fermion as DM candidate and a colored scalar particle
that mediates a coupling to bottom quarks. For small
mass splitting between the mediator and the DM parti-
cle, the freeze-out is dominated by self-annihilation of the
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
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FIG. 18: The 95% confidence-level upper limits, obtained from the (a, c, e) DV+Emiss
T and (b, d, f) DV+jets searches, on the

cross section for gluino pair production in the split-supersymmetry model, with the gluino decaying to a neutralino plus either
(a, b) a gluon or a light-quark pair or (c, d, e, f) a pair of top quarks. The mass of the neutralino is 100 GeV in (a, b, c, d)
and is 480 GeV smaller than the gluino mass in (e, f). For further details see Fig. 14.
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RPV samples of the type g̃ � qq[⇧̃0
1 � ��⌅⌅] are

produced with HERWIG++ 2.6.3 [38]. Decays of the

neutralino only into light leptons, which may be e+e�,
µ+µ�

, or e±µ⇤
, take place due to the nonzero values of

the RPV couplings ⇥121 and ⇥122 [2].

RPV samples of q̃ � q[⇧̃0
1 � �qq/⌅qq] are generated

with PYTHIA 6.426.2 [39]. The ⇧̃0
1 decay into two light

quarks and an electron, muon, or neutrino, is governed

by the nonzero RPV coupling ⇥⌅
i11. Samples contain-

ing heavy-flavor quarks, q̃ � q[⇧̃0
1 � �qb] (produced

with ⇥⌅
i13 ⇥= 0) and q̃ � q[⇧̃0

1 � �cb] (corresponding

to ⇥⌅
i23 ⇥= 0) are also generated, in order to study the

impact of long-lived charm and bottom hadrons on the

e⌅ciency of DV reconstruction. A g̃ � qq[⇧̃0
1 � �qq]

sample is used to quantify the e�ect of prompt NLSP de-

cays on the reconstruction e⌅ciency, by comparing with

the corresponding model with squark production.

PYTHIA 6.426.2 is used to produce GGM samples

denoted g̃ � qq[⇧̃0
1 � ˜GZ], in which the NLSP ⇧̃0

1 is a

Higgsino-like neutralino. Both the leptonic and hadronic

decays of the Z boson are considered.

Within a split-supersymmetry scenario,

PYTHIA 6.427 is used to simulate production and

hadronization of a primary, long-lived gluino. Geant4
simulates the propagation of the R-hadron through

the detector [40], and PYTHIA decays the R-hadron

into a stable neutralino plus two quarks (u, d, s, c or

b), a gluon, or two top quarks. The resulting samples

are denoted [g̃ � qq⇧̃0
1], [g̃ � g⇧̃0

1], or [g̃ � tt⇧̃0
1],

respectively.

Signal cross sections are calculated to next-to-leading

order in the strong coupling constant, adding the re-

summation of soft gluon emission at next-to-leading-

logarithmic accuracy (NLO+NLL) [41–45]. The nomi-

nal cross section and its uncertainty are taken from an

envelope of cross section predictions using di�erent PDF

sets and factorization and renormalization scales, as de-

scribed in Ref. [46].

In addition to these signal samples, MC samples of

QCD dijet events, Drell-Yan events, and cosmic-ray

muons are used for estimating some systematic uncer-

tainties and some of the smaller background rates, as well

as for validation of aspects of the background-estimation

methods.

IV. EVENT RECONSTRUCTION AND
SELECTION

The event-reconstruction and selection procedures are

designed, based on MC and experience from previous

analyses [13, 14], to strongly suppress background and ac-

commodate robust background-estimation methods (de-

scribed in Sec. VI), while e⌅ciently accepting signal

events over a broad range of LLP masses, lifetimes, and

velocities.

The initial event selection is performed with a com-

bination of triggers that require the presence of lepton
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FIG. 1: Diagrams representing some of the processes un-
der study, corresponding to the simulated event samples. In
RPV scenarios, the long-lived neutralino may decay via the
(a) �ijk or (b) ��

ijk couplings. (c) Long-lived neutralino de-
cay in a GGM scenario. (d) Long-lived R-hadron decay in a
split-supersymmetry scenario. The quarks and leptons shown
may have di�erent flavors. Filled circles indicate e�ective in-
teractions.

candidates, jets, or Emiss
T . This selection is described in

Sec. IVA.

O�-line selection criteria for leptons, jets, and Emiss
T

(see Sec. IVB) are used to further filter events for o�-

line processing, as described in Sec. IVC.

Events satisfying the filter requirements undergo a

CPU-intensive process termed “retracking”, aimed at ef-

ficient reconstruction of tracks with large impact param-

eter (d0) with respect to the transverse position of any

primary vertex (PV) of particles formed from the pp col-

lision. Retracking is described in Sec. IVD.

At the final event-selection stage, the presence of a pp
collision is ensured by first requiring the event to have a

PV formed from at least five tracks and situated in the

longitudinal range |z| < 200mm, consistent with the IP.

The final selection is based on the reconstruction of a

multitrack DV or dilepton DV, described in Secs. IVE

and IVF, respectively.

A. Trigger requirements

Events must satisfy trigger requirements based on

muon, electron, jets, or Emiss
T criteria.

Where muon triggers are used, a muon candidate is

required by the trigger algorithm to be identified in the

MS with transverse momentum pT > 50 GeV. Its pseu-

dorapidity must be in the MS-barrel region |�| < 1.07,
to reduce the trigger rate from fake muons due to beam

[ATLAS 1504.05162]
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of 7 ns, for which masses less than 505 GeV are excluded at 95% CL.

In Fig. 5, we show the expected and observed constraints on the mass of the chargino and
the mass difference between the chargino and neutralino, �me�1 = me�±

1
� me�0

1
, in the minimal

AMSB model. The limits on ⇥e�±
1

are converted into limits on �me�1 according to Ref. [39, 40].
The two-loop level calculation of �me�1 for wino-like lightest chargino and neutralino states [41]
is also indicated. In the AMSB model, we exclude charginos with mass less than 260 GeV,
corresponding to a chargino mean proper lifetime of 0.2 ns and �me�1 = 160 MeV.

In Fig. 6, we show the observed upper limit on the total cross section of the qq⌅ ⇤ e�±
1 e�0

1
plus qq ⇤ e�±

1 e�⇥
1 processes in terms of chargino mass and mean proper lifetime. A model-

independent interpretation of the results is provided in Appendix A.
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Figure 4: The expected and observed constraints on the chargino mean proper lifetime and
mass. The region to the left of the curve is excluded at 95% CL.

10 Summary
A search has been presented for long-lived charged particles that decay within the CMS de-
tector and produce the signature of a disappearing track. In a sample of proton-proton data
recorded at a collision energy of

⇧
s = 8 TeV and corresponding to an integrated luminosity of

19.5 fb�1, two events are observed in the search sample. Thus, no significant excess above the
estimated background of 1.4± 1.2 events is observed and constraints are placed on the chargino
mass, mean proper lifetime, and mass splitting. Direct electroweak production of charginos
with a mean proper lifetime of 7 ns and a mass less than 505 GeV is excluded at 95% confidence
level. In the AMSB model, charginos with masses less than 260 GeV, corresponding to a mean
proper lifetime of 0.2 ns and chargino-neutralino mass splitting of 160 MeV, are excluded at
95% confidence level. These constraints corroborate those set by the ATLAS Collaboration [11].
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
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are considered. The shaded areas highlight the dependence
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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result that would be obtained when assuming CE. The red
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gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
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curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Figure 6: Exclusion region at 95% CL as a function of squark mass and the squark–neutralino mass di�erence for
(left) the decay channel b̃1 ⌅ b+⇤̃0

1 and (right) q̃⌅ q+⇤̃0
1 (q = u, d, c, s). The dotted lines around the observed limit

indicate the range of observed limits corresponding to ±1⇥ variations of the NLO SUSY cross-section predictions.
The shaded area around the expected limit indicates the expected ±1⇥ ranges of limits in the absence of a signal.

the cross section and a ±3% change in the acceptance. In addition, the uncertainty in the integrated
luminosity is included.

Figure 7 (left) shows the observed and expected 95% CL exclusion limits in the m⇤–mA parameter plane
for a simplified model with an axial-vector mediator, Dirac WIMPs, and couplings gq = 1/4 and g⇤ = 1.
A minimal mediator width is assumed. In addition, observed limits are shown using ±1⇥ theoretical
uncertainties in the signal cross sections. In the on-shell regime, the models with mediator masses up
to 1 TeV are excluded. This analysis loses sensitivity to the models in the o�-shell regime, where the
decay into a pair of WIMPs is kinematically suppressed. The perturbative unitarity is violated in the
parameter region defined by m⇤ >

⌃
�/2 mA [95]. The masses corresponding to the correct relic density

as measured by the Planck and WMAP satellites [35, 36], in the absence of any interaction other than the
one considered, are indicated in the figure as a line that crosses the excluded region at mA ⇤ 880 GeV and
m⇤ ⇤ 270 GeV. The region towards lower WIMP masses or higher mediator masses corresponds to dark
matter overproduction. On the opposite side of the curve, other WIMP production mechanisms need to
exist in order to explain the observed dark matter relic density.

In Fig. 7 (right) the results are translated into 90% CL exclusion limits on the spin-dependent WIMP–
proton scattering cross section as a function of the WIMP mass, following the prescriptions explained
in Refs. [41, 42], and are compared to results from the direct-detection experiments XENON100 [96],
LUX [97], and PICO [98, 99]. This comparison is model-dependent and solely valid in the context of
this particular Z⇧-like model. In this case, stringent limits on the scattering cross section of the order of
10�42 cm2 up to WIMP masses of about 300 GeV are inferred from this analysis, and complement the re-
sults from direct-detection experiments for m⇤ < 10 GeV. The loss of sensitivity in models where WIMPs
are produced o�-shell is expressed by the turn of the exclusion line, reaching back to low WIMP masses
and intercepting the exclusion lines from the direct-detection experiments at around m⇤ = 80 GeV.
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to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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the area shaded in red, and is remarkably small. There-
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even weaker coupling such that it was never in thermal
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scattering processes, we show the freeze-out density that
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by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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Figure 6: Exclusion region at 95% CL as a function of squark mass and the squark–neutralino mass di�erence for
(left) the decay channel b̃1 ⌅ b+⇤̃0

1 and (right) q̃⌅ q+⇤̃0
1 (q = u, d, c, s). The dotted lines around the observed limit

indicate the range of observed limits corresponding to ±1⇥ variations of the NLO SUSY cross-section predictions.
The shaded area around the expected limit indicates the expected ±1⇥ ranges of limits in the absence of a signal.

the cross section and a ±3% change in the acceptance. In addition, the uncertainty in the integrated
luminosity is included.

Figure 7 (left) shows the observed and expected 95% CL exclusion limits in the m⇤–mA parameter plane
for a simplified model with an axial-vector mediator, Dirac WIMPs, and couplings gq = 1/4 and g⇤ = 1.
A minimal mediator width is assumed. In addition, observed limits are shown using ±1⇥ theoretical
uncertainties in the signal cross sections. In the on-shell regime, the models with mediator masses up
to 1 TeV are excluded. This analysis loses sensitivity to the models in the o�-shell regime, where the
decay into a pair of WIMPs is kinematically suppressed. The perturbative unitarity is violated in the
parameter region defined by m⇤ >

⌃
�/2 mA [95]. The masses corresponding to the correct relic density

as measured by the Planck and WMAP satellites [35, 36], in the absence of any interaction other than the
one considered, are indicated in the figure as a line that crosses the excluded region at mA ⇤ 880 GeV and
m⇤ ⇤ 270 GeV. The region towards lower WIMP masses or higher mediator masses corresponds to dark
matter overproduction. On the opposite side of the curve, other WIMP production mechanisms need to
exist in order to explain the observed dark matter relic density.

In Fig. 7 (right) the results are translated into 90% CL exclusion limits on the spin-dependent WIMP–
proton scattering cross section as a function of the WIMP mass, following the prescriptions explained
in Refs. [41, 42], and are compared to results from the direct-detection experiments XENON100 [96],
LUX [97], and PICO [98, 99]. This comparison is model-dependent and solely valid in the context of
this particular Z⇧-like model. In this case, stringent limits on the scattering cross section of the order of
10�42 cm2 up to WIMP masses of about 300 GeV are inferred from this analysis, and complement the re-
sults from direct-detection experiments for m⇤ < 10 GeV. The loss of sensitivity in models where WIMPs
are produced o�-shell is expressed by the turn of the exclusion line, reaching back to low WIMP masses
and intercepting the exclusion lines from the direct-detection experiments at around m⇤ = 80 GeV.
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Figure 8: Upper cross section limits at 95% CL on various signal models for the tracker-only
analysis (left column) and tracker+TOF analysis (right column). The top row is for the data at�

s = 7 TeV, the middle row is for the data at
�

s = 8 TeV, the bottom row shows the ratio of
the limit to the theoretical value for the combined dataset. In the legend, ’CS’ stands for the
charge-suppressed interaction model.

3

� = �4/3�s or � = 1/6�s, respectively. The gg final
state is slightly more complicated since it can be in a
singlet or octet representation. After summing over the
di⌧erent contributions the total Sommerfeld correction
factor for this case reads [9]

S0 ⇥ 2

7
S0

�����
�=�4/3�s

+
5

7
S0

�����
�=1/6�s

. (5)

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for an-
nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly
ionizing tracks the can be performed in a rather inclu-
sive manner. They have been interpreted for lepton-
like heavy stable charged particles (HSCPs) and R-
hadrons [14–17]. Here we derive LHC constraints on the
model by reinterpreting the results of [14] for detector-
stable R-hadrons for finite decay lengths c⇧ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e�⌃/(c⌅⇥⇤) , (6)

where ↵ = ↵(⌅) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity ⌅ while ⇤ is the Lorentz factor according to the
velocity ⇥. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m
and 5.6 m, respectively. For the weighting we compute3

Fpass =

⇥
i F i

passPi
onPi

o⇥⇥
i Pi

onPi
o⇥

, (7)

where Pi
on and Pi

o⇥ are the probabilities of the respective
event to be triggered and pass the selection cuts, respec-
tively, and the sum runs over all generated events. We
use the tabulated probabilities Pi

on,Pi
o⇥ for lepton-like

HSCPs following the prescription in [18] (see also [19]
for details of the implementation of isolation criteria and
validation). We expect this to be a good approxima-
tion as the selection criteria for lepton-like HSCPs and

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [14] finding the higher sensitivity for the former one.

3 For simplicity we display the formula for one R-hadron candi-
dates per event, for events with two candidates we follow the
prescription in [18] (with the replacement Pi

o⇥ ! F i
passPi

o⇥ in
the respective sum in the numerator of Eq. (7)).

R-hadrons are identical and di⌧erences in the overall de-
tector e�ciency cancel out in Eq. (7). We simulate events
with MadGraph5_aMC@NLO [20], performing show-
ering and hadronization with Pythia 6 [21].

We use the cross section predictions from NLL-

Fast [22] and rescale the signal by Fpass. The 95%
CL exclusion limits are then obtained from a compari-
son to the respective cross section limits from searches for
(top-squark) R-hadrons presented in [14]. The results are
shown in Fig. 2. We show limits for two models regard-
ing the hadronization and interaction of the R-hadron
with the detector material, the generic model [23, 24]
and Regge (charge-suppressed) model [25, 26] as the red
solid and blue dashed line, respectively.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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contact (e.g. freeze-in production [15]). Thus, while re-
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would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
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VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
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FIG. 2. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).
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FIG. 3. Dependence on the initial conditions for Y� at x = 1.
We show solutions for the choices Y�(1) = [0, 1, 100]⇥Y eq

� (1),
and otherwise the same parameters as in Fig. 1.

between �b and ⇤ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T � m�/30) the con-
version rates have to be on the edge of being e�cient,
cf. Eq. (5). From this simple relation (and assuming that
the decay width, �eb, is similar in size as the other con-
version rates) we can already infer that the decay length
of �b is of the order of 1–100 cm for a DM particle with a
mass of a few hundred GeV which predicts the signature
of disappearing tracks or displaced vertices at the LHC.

The decay length in our model is shown as the gray
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m� and �m�eb = meb � m�. We adjust �� such that ⇥h2 =
0.12. Above the thick black curve CE holds, while below this
curve CE breaks down and the freeze-out is conversion-driven.
The corresponding coupling ��/10

�7 (decay length c⇥) of the
sbottom is denoted by the thin green (gray) dotted lines. The
blue dashed (dot-dashed) curve shows our estimates for the
limits from R-hadrons searches at 8 (13)TeV. The Constraints
from monojet searches is shown as the red dot-dot-dashed
curve.

dotted lines in Fig. 4. It ranges from 25 cm to below
2.5 cm for increasing mass di⇢erence (the dependence on
the absolute mass scale is more moderate).

In proton collisions at the LHC pairs of �bs could be
copiously produced. They will hadronize to form R-
hadrons [16] which will, for the relevant decay length,
either decay inside or traverse the sensitive parts of the
detector. Accordingly, the signatures of displaced ver-
tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal e�ciency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of c⇥ ⇥ 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
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tices and (disappearing) highly ionizing tracks provide
promising discovery channels. Similar searches have, e.g.,
been performed for a gluino R-hadron (decaying into en-
ergetic jets) [17] or a purely electrically charged heavy
stable particle [18, 19] but have not been performed for
the model under consideration (see also [20, 21] for a
recent account on simplified DM models providing dis-
placed vertices). However, there are two types of searches
that already impose constraints on the model.

On the one hand, searches for detector-stable R-
hadrons [22–25] can be reinterpreted for finite decay
lengths by convoluting the signal e�ciency with the frac-
tion of R-hadrons that decay after traversing the relevant
parts of the detector. This reinterpretation provides lim-
its down to a decay length of c⇥ ⇥ 0.1m for a R-hadron
mass around 100GeV [13] and can be used to estimate
excluded parameter regions in our model. The result-
ing limits obtained from the 8 TeV [22] and 13TeV [23]
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
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is the only e�cient annihilation channel. Hence the min-
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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is the only e�cient annihilation channel. Hence the min-
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provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.
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choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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Allowed parameter space: top-partner model
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FIG. 6. Constraints on the coupling �� as a function of the DM mass for two slices in parameter space, �m = met�m� = 20 GeV
(left panel) and �m = 2mt (right panel). The green curve and green shaded band denotes the coupling that provides a thermal
relic with ⌦h

2 = 0.12 and its theoretical uncertainty, respectively, assuming a relative error of 10% on the prediction for ⌦h
2.

We show 95% CL upper limits on �� from indirect detection searches from Fermi-LAT dwarfs (light red curves), AMS-02
antiprotons (dark red curves) and projections for CTA (orange dashed curve; right panel only). 90% CL upper limits from
direct detection are shown in purple. We display limits from recent (2017) Xenon1T data (solid curves) and projections for
the LZ experiment (dashed curves). Searches at the LHC and LEP constrain the model towards both large and small ��. We
therefore show shaded 95% CL exclusion limits labeled accordingly. The dark blue dashed curve (right panel only) shows the
projection for the upper limit on �� for the loop-induced DM production channel at the LHC (see Sec. IV D for details).

match the respective object reconstruction criteria (see
below for details).

We consider various 13TeV analyses, in particular the
CMS fully hadronic [81, 82], CMS single lepton [83],
ATLAS fully hadronic [84], ATLAS single lepton [85] and
ATLAS two leptons [86] analyses. For large �m the CMS
single lepton search [83] provides the strongest bound on
the mediator mass reaching met ' 1.1TeV. For smaller
�m each of the above analyses exhibit certain domains
for where it exclusively provides sensitivity. In Fig. 8 we
show the 95% CL exclusion region from the unification
of all analyses listed above (cyan shaded region labeled
by ‘LHC stop I’). For �m < MW +mb only the leptonic
searches are relevant, which, however, typically require
a small impact parameter of the primary vertex for lep-
ton reconstruction. In order to take this into account we
cut the respective limits at a �m that corresponds to
a proper decay length of 100µm, see gray short dashed
curve that partly marks the lower boundary of the LHC
exclusion region in Fig. 8. The gray short dashed curve
that partly cuts the exclusion region from above denotes
�et = 0.2met.

In addition to the above analysis monojet searches ex-
ist that only rely on the missing transverse momentum
carried away by � recoiling against initial state radia-
tion. We consider the 13TeV ATLAS monojet analy-
sis presented in [87] where it is interpreted within the

neutralino-stop simplified model. However, the respec-
tive limits are only presented for met � 250GeV. We do
not assume that the limit extends to smaller masses as
the region met ⇠ mt may involve further complications
due to similarities of stop and top signals.4 Hence, the
search only constraints a very small fraction of the al-
lowed WIMP parameter space for �m < 50GeV and
210GeV < m� < 240GeV, see Fig. 8 (light gray shaded
region denote by ‘LHC stop II’).

In addition to the LHC limits discussed above limits
from LEP provide robust constraints in the region of very
small met. We superimpose the 95% CL constraints from
data collected by the ALEPH detector presented in [91]
which covers the hole range of relevant lifetimes (see [92]
for further details). The excluded region is labeled by
‘LEP’ in Fig. 8.

The exclusion regions are also superimposed in Fig. 6
for �m = 20GeV (left panel) and �m = mt (right
panel). Note the existence of certain gaps in the low mass
region. For �m = 20GeV the stop-searches are not ex-
pected to apply to the thermal scenario as a consequence
of the required maximum decay length. Although the ex-
act boundary of the region of applicability is subject to

4 See [88–90] for further attempts to exclude the region of small
met and small �m.

[Garny, JH, Hufnagel, Lülf 1802.00814]
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Summary

▪ Vanilla WIMP strongly constrained: Watch out for 
   new avenues beyond WIMPs
▪ Variety long-lived particle signatures: Exploit LHC 
   potential 
▪ Coannihilation with small mass splitting or couplings
▪ Coincidence: weak scale decays ∼ detector size 

▪ Conversion-driven freeze-out: 
  ▪ Shares nice features of WIMPs!

  ▪ Accommodates null-results from WIMP-searches

  ▪ Dedicated searches needed
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Thanks for your attention!
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Numerical solution of full coupled system

▪ SUSY coupling                :
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DM and mediator freeze-out 
simultaneously (chemical eq.)
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▪ Very small coupling                          :

1

�� ' 2.6⇥ 10�7

Numerical solution of full coupled system

conversion on the edge 
of being efficient

mediator-annihilation
contributes only 

DM and mediator freeze-out 
at different x (no chem. eq.) 

2

! !" !"" !"""

!"!#"

!"!!"

!

!"!"

re
la

ti
ve

ra
te

�
/
H

x = mX1/T

ebeb† ! SM

�eb ! SM

�� ! SM

� $ eb

E
ffi

cient
Ineffi

cient
! !" !"" !"""

!"!!#

!"!!$

!"!!"

!"!%

!"!&

ab
un

da
nc

e
Y

x = mX1/T

Y�

Yebneq

1

m� = 500GeV , meb = 510GeV



▪ Scan of the coupling:

Numerical solution of full coupled system

Conversion-driven freeze-out: solution (m‰ = 500 GeV, mb̃ = 510 GeV)

�-reduction only via (ine⇥cient) conversion
Species freeze out at very di�erent temperatures
Relic density larger than in CE (matches Planck!)

Y

x

Y⇥

�h2 = 0.12
Yb̃

Y eq

�⇥ = 2.6 ⇥ 10�7

! " #$
$%$#

$%$"
$%#$

$%"$
#

"
#$

�
h2

�/10�7

CE

Decay
only

Full conversion

Planck
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1

�decay ⇠ �scatter

Decay only similar

1

m� = 500GeV , meb = 510GeV



Scrutinizing some assumptions



Dependence on Initial Conditions
Dependence on initial conditions

Equilibrium values at x = 1 not guaranteed
Check dependence on actual starting values for � abundance

! " # $ %&
&'&%

&'%&

%

%&

%&&

�
h2

�/10�7

Decay only
Full conversion

100

0

100

Planck

CE

Y

x

Full conversion

Y�

Y eq
�

Yb̃

Coupled solution insensitive in range

Y�(1) = (0 � 100) ⇥ Y eq
� (1)
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Dependence on initial conditions

Equilibrium values at x = 1 not guaranteed
Check dependence on actual starting values for � abundance

�
h2

�/10�7

Decay only
Full conversion

100

0

100

Planck

CE
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Y

x

Full conversion

Y�

Y eq
�

Yb̃

Coupled solution insensitive in range

Y�(1) = (0 � 100) ⇥ Y eq
� (1)
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▪ So far equilibrium density at x=1 assumed
▪ Does DM thermalize? 1

eb-model: m� = 500GeV , meb = 510GeV

▪ Insensitive in range 

1

Y�(1) = (0�100)⇥ Y eq
� (1)

⇒ Independent of thermal history prior to freeze-out!



Kinetic equilibrium

[cf. Chen, Kamionkowski, Zhang 2001, 
Bringmann, Hofmann 2006; 
Borzumati, Bringmann, Ullio 2007]

▪ Assumption of thermal distributions (via kinetic equilibrium) 

1

f�(t, p) = f eq(t, p)
n(t)

neq(t)

▪ WIMPs: kinetic equilibrium established through efficient 
  elastic scatterings with SM particles:

X

SM SM

X (kinetic decoupling
takes place well after 
freeze-out)



Kinetic equilibrium

▪ Assumption of thermal distributions (via kinetic equilibrium) 

1

f�(t, p) = f eq(t, p)
n(t)

neq(t)

▪ WIMPs: kinetic equilibrium established through efficient 
  elastic scatterings with SM particles:

X

SM SM

X

▪ Inefficient for DM in conversion-driven freeze-out!

▪ Mediator is in kinetic equilibrium

1

/ �4
�



Boltzmann equations for particle densities 1

E� (�t �Hp �p) f�(p, t) = C [f�]

Relativistic Liouville operator for
homogeneous, isotropic Universe Collision operator

DM distribution functions

Cosmology Particle Physics

[Lee, Weinberg 1977; Binetruy, Girardi, Salati 1984; Bernstein, Brown, Feinberg 1985; Srednicki, Watkins, 
Olive 1988; Kolb, Turner 1990; Griest, Seckel 1991; Gondolo, Gelmini 1991; Edsjo, Gondolo 1997]



Unintegrated Boltzmann equation
1

Hx@xf�(q, x) = eC(q, x)

 
f
eq
�

Yb̃

Y
eq

b̃

� f�

!
▪ Consider unintegrated Boltzmann equation for   :     

1

�

▪ Conversion only: linear in     

1

f� 1

f�(q, x) = f
eq
� (q, x)

Yb̃

Y
eq

b̃

�
Z x

x0

d
�
f
eq
� (q, y)Yb̃(y)/Y

eq

b̃
(y)
�

dy
⇥exp

 
�
Z x

y

eC(q, z)

zH(z)
dz

!
dy

▪ Can be solved by separation of variables and variation of constants:

1

Yb̃Involves     ➔ still coupled system 



Iterative solution
Don’t solve the coupled system at once, but iteratively!
Start with “guess” for Yb̃, e.g. solution from integrated BME with KE

Y�

Yb̃

f�

Y 0
b̃

4

Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for
f�(q, x) requires as an input the evolution of the mediator
abundance, Y�b(x). The latter can be obtained by solving
the corresponding integrated Boltzmann equation, which
in turn involves Y�(x), that is determined by integrat-
ing f�(q, x) over all momentum modes. Therefore the
equations for f�(q, x) and Y�b(x) form a coupled set of
equations.

Here we solve this coupled set of di�erential equations
in an iterative process. We start with an initial “guess” for
Y�b(x), which we take to be the solution when assuming
kinetic equilibrium (see below for a discussion of di�er-
ent choices). We then solve for f�(q, x) on a momentum-
grid, and numerically compute Y�(x) using Eq. (13) as
described in the last subsection. With this solution for
Y�(x) we recalculate Y�b(x) using the integrated Boltz-
mann equation. We subsequently iterate between solv-
ing for f�(q, x) and Y�b(x), until we encounter su⇥cient
convergence. In order to solve the di�erential Boltzmann
equation in an acceptable time, we neglect the bottom
mass and choose he� and ge� to be evaluated at x = 50
and constant for all times. We do not expect a strong
dependence on these simplifications.

The resulting evolution of the abundance Y�(x) for
the benchmark point m� = 500GeV, m�b = 510GeV is

!"!!#

!"!!$

!"!!"

!"!%

!"!&

! !" !"" !"""

!

"#$
"#%
"#&

Y
Y

d
i�

�
/
Y

in
t

�

x

Y�

Y�b

�h2 = 0.12

FIG. 2. Upper panel: Evolution for the resulting abundance
of ⇤b (blue) and � (red) of the di�erential (solid) and integrated
(dotted) Boltzmann equation. The dashed curves denote the
equilibrium abundances. Lower panel: Ratio of the two abun-
dances for �. The red solid line shows the converged result
while the orange thick and thin curves denote the first and
the following iterations, respectively. Only the decay term is
considered.

shown in Fig. 2 (upper panel) as a red solid curve. We
compare the result to the solution of the coupled inte-
grated Boltzmann equation (red dotted curve) obtained
under the same approximations. We adjust the coupling
�� = 4.03�10�7 such as to obtain the measured DM relic
density for the solution of the coupled integrated Boltz-
mann equation. The lower panel of Fig. 2 shows the ra-
tio of the di�erential and integrated solutions for Y�(x).
While the dark matter abundance di�ers by up to a fac-
tor of two at intermediate times, the final relic abundance
agrees well with the corresponding result when assuming
kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-
matical situation that is relevant here, the collision term
does not depend strongly on the momentum mode (see
Fig. 3, dot-dashed lines). In the same figure, we also
show the result for f�(q, x) at various times x (blue lines),
which indeed di�ers from an equilibrium distribution (in-
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FIG. 3. Collision operator (normalized by the Hubble rate,
green dot-dashed curves) and the phase space distribution of
the di�erential (blue solid) and integrated (red dashed) solu-
tion as a function of the momentum mode q for three di�er-
ent times, x = 15, 63 and 100. The phase space distribution
are normalized to the integral over the di�erential solution,
q2f� /

⇥
q2fdi�

� dq. Only the decay term is considered.

initial guess

int. BME

integration

di⌃. BME
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Iterative solution
▪ Do not solve coupled system at once but iteratively 

▪ Start with "guess" for      : solution of integrated equations

1

Yeb

B.
 L

ül
f



Deviation from thermal distributionDeviations from thermal distribution

Early: only redshifting

Conversion inset: C more e↵ective
for smaller x � smaller abundance

Decay re-thermalizes distribution
during freeze-out

4

Iterative solution of the coupled system

The solution Eq. (13) of the Boltzmann equation for
f�(q, x) requires as an input the evolution of the mediator
abundance, Y�b(x). The latter can be obtained by solving
the corresponding integrated Boltzmann equation, which
in turn involves Y�(x), that is determined by integrat-
ing f�(q, x) over all momentum modes. Therefore the
equations for f�(q, x) and Y�b(x) form a coupled set of
equations.

Here we solve this coupled set of di�erential equations
in an iterative process. We start with an initial “guess” for
Y�b(x), which we take to be the solution when assuming
kinetic equilibrium (see below for a discussion of di�er-
ent choices). We then solve for f�(q, x) on a momentum-
grid, and numerically compute Y�(x) using Eq. (13) as
described in the last subsection. With this solution for
Y�(x) we recalculate Y�b(x) using the integrated Boltz-
mann equation. We subsequently iterate between solv-
ing for f�(q, x) and Y�b(x), until we encounter su⇥cient
convergence. In order to solve the di�erential Boltzmann
equation in an acceptable time, we neglect the bottom
mass and choose he� and ge� to be evaluated at x = 50
and constant for all times. We do not expect a strong
dependence on these simplifications.

The resulting evolution of the abundance Y�(x) for
the benchmark point m� = 500GeV, m�b = 510GeV is
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FIG. 2. Upper panel: Evolution for the resulting abundance
of ⇤b (blue) and � (red) of the di�erential (solid) and integrated
(dotted) Boltzmann equation. The dashed curves denote the
equilibrium abundances. Lower panel: Ratio of the two abun-
dances for �. The red solid line shows the converged result
while the orange thick and thin curves denote the first and
the following iterations, respectively. Only the decay term is
considered.

shown in Fig. 2 (upper panel) as a red solid curve. We
compare the result to the solution of the coupled inte-
grated Boltzmann equation (red dotted curve) obtained
under the same approximations. We adjust the coupling
�� = 4.03�10�7 such as to obtain the measured DM relic
density for the solution of the coupled integrated Boltz-
mann equation. The lower panel of Fig. 2 shows the ra-
tio of the di�erential and integrated solutions for Y�(x).
While the dark matter abundance di�ers by up to a fac-
tor of two at intermediate times, the final relic abundance
agrees well with the corresponding result when assuming
kinetic equilibrium, with deviations below the 10% level.

The main reason is that, for the process and the kine-
matical situation that is relevant here, the collision term
does not depend strongly on the momentum mode (see
Fig. 3, dot-dashed lines). In the same figure, we also
show the result for f�(q, x) at various times x (blue lines),
which indeed di�ers from an equilibrium distribution (in-
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FIG. 3. Collision operator (normalized by the Hubble rate,
green dot-dashed curves) and the phase space distribution of
the di�erential (blue solid) and integrated (red dashed) solu-
tion as a function of the momentum mode q for three di�er-
ent times, x = 15, 63 and 100. The phase space distribution
are normalized to the integral over the di�erential solution,
q2f� /
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� dq. Only the decay term is considered.
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▪ small x: redshift only

▪ Conversion inset: 
   thermalization starts

▪ Close-to-thermal
   distribution



Initial guess
Yb̃ thermalizes �! � large impact!
Justifiable guess for iteration start? 5
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FIG. 4. Evolution of the abundance of �b (blue solid) and � (red solid) for two di�erent choices of the starting point of the
iteration, shown in the two panels, respectively. Left panel: Initial mediator abundance set to the equilibrium abundance,
Y�b(x) = Y eq

�b
. The thick and thin orange solid curves denote the first and the following iterations, respectively. The orange

dotted curve shows the integrated solution obtained for Y�b(x) = Y eq
�b

. Right panel: Initial � abundance set to the equilibrium
abundance at relativistic temperatures, Y�(x) = Y eq

� (x <� 1). The thick and thin orange solid curves denote the initial
abundance and the following iterations, respectively. Only the decay term is considered. As in Fig. 2 the dashed curves denote
the equilibrium abundances.

dicated by the red dashed lines) at intermediate times
(upper and middle panel in Fig. 3). Nevertheless, around
the time when the dark matter abundance freezes out,
the remaining decays of thermalized �b tend to restore an
equilibrium distribution (lowest panel).

It is interesting to obeserve that the total abundance
obtained from the unintegrated Boltzmann equation is
slightly below the result when assuming kinetic equilib-
rium. This can also be understood from Fig. 3. For high
temperatures, the momentum modes obtained from the
di�erential solution essentially change only due to red-
shift. In contrast, the kinetic equilibrium distribution
populates somewhat higher modes. By the time when
conversion gets e⇥cient, the collision term is larger for
smaller momentum modes. Therefore, the conversion
into �bs is stronger for the di�erential solution, rendering
a slightly smaller abundance.

Let us now discuss the impact of the initial “guess” for
Y�b(x) used for the iterative solution. We check that the
converged result is independent of the starting point of
the iteration by using two rather di�erent initial abun-
dances. First, we use the equilibrium abundance Y eq

�b
(x)

as starting point. The results are shown in the left panel
of Fig. 4. The evolution of Y�(x) obtained in the fist iter-
ation step is shown by the thick orange line, and the suc-
cessive iterations are indicated by the thin orange lines.
The final, converged result (thick red line) agrees well
with the result obtained in Fig. 2. The same is true for
Y�b(x) (solid blue line). On the other hand, we would like
to point out that the first iteration and the converged re-
sult are rather far apart. This means that it is crucial to
solve for the coupled set of equations, allowing for devi-
ations Y�b(x) ⌃= Y eq

�b
(x). For curiosity, we note that if one

would compare the di�erential with the integrated result

for Y�(x) while fixing Y�b(x) = Y eq
�b

(x), one would find
an O(10) di�erence in the final abundance (see orange
dotted versus solid line in the left panel of Fig. 4), while
the corresponding di�erence for the converged results is
below ⇥ 10%. Hence, the partial freeze-out of the me-
diator �b and its subsequent decay into ⇥ are crucial for
the conclusion that the impact of deviations from kinetic
equilibrium on the relic density is small.

Second, we consider an extreme possibility and initially
set Y�(x) to be constant and equal to the relativistic
equilibrium density. In this case we start the iteration
with the computation of Y�b(x). The resulting iterative
solutions for Y�(x) are shown in right panel of Fig. 4
(orange lines). Again, the converged result for Y�(x) (red
solid line) and Y eq

�b
(x) (solid blue line) agree well with

those shown in Fig. 2.
The convergence of the final relic density for the three

di�erent choices of starting points is shown in Fig. 5.
Indeed, the converged results agree, indicating that the
iterative scheme is stable and leads to a unique result.

Next we want to check if the situation changes dras-
tically when including also 2 ⇤ 2 scattering processes.
Due to the increase in numerical complexity described
above, we consider the leading process ⇥b ⌅ �bg ex-
pected to capture the main e�ects. In order to estimate
the physical contributions from hard scatterings, we per-
form regularizations on the level of the scattering cross
section by introducing a cut-o� smin = (m�b + 1GeV)2

and additionally a regulator at matrix element level of
1/t2 ⇤ 1/(t2+(1GeV)4). In addition, we restrict the in-
tegration over the angle �t between b and g in the center-
of-mass frame to cos �t ⇧ [�0.9, 0.9].

Again, we solve the couple system in an iterative ap-
proach as described above, but taking scatterings into ac-

Y�Yb̃

f�

Y eq
b̃ Y eq

� (1)
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Testing initial guess
▪ Extreme cases for initial evolutions of abundances
▪ Converge to same solution:
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▪ All initial guesses converge to the same solution

▪ Difference to integrated treatment below 10%
▪ Solution of coupled system more important

Results

All initial guesses converge to the same value
Relic density changes only by O(10%)

Solution of coupled system with Yb̃ essential! [cf. Rutherman+ ’17]
6
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FIG. 5. Relic density obtained from the iterative solution as
a function of the iteration step for the three di�erent initial
abundances discussed here: Y�(x) = Y eq

� (x <� 1) (red points,
converging from above), Y�b(x) = Y eq

�b
(blue points, converg-

ing from below) and Y�b(x) set to the solution of the coupled
integrated Boltzmann equation (green points, starting in the
middle).

count. As before, we then compare the converged result
for the final relic density with the corresponding result
obtained when assuming kinetic equilibrium. We find
that the relative deviations in the resulting relic density
become even smaller as for the decay only case and stay
below 10%. Furthermore, the deviation for Y⌃(x) for in-
termediate times become smaller. This is expected, be-
cause scatterings increase the conversion rates at smaller
x.

Altogether, we find that the impact of deviations from
kinetic equilibrium on the final relic abundance is rather
mild, below 10% level. This justifies to use integrated
Boltzmann equations for Y⌃(x) and Y�b(x).

SOMMERFELD ENHANCEMENT

In the presence of light degrees of freedom non-
perturbative corrections to the annihilation rates are
known to become relevant in the non-relativistic limit [9,
10]. Between pairs of color charged particles the exchange
of gluons generates a potential which modifies the wave
function of the initial state particles and leads to a non-
negligible correction of the tree-level cross section [11–
14].

To leading order the e�ect of the QCD potential can
be described by a Coulomb-like potential [15]

V (r) ⇥ �s

2r
[CQ � CR � CR� ] (21)

where CR and CR� denote the Casimir coe⇥cients of the
incoming particles while CQ is the Casimir coe⇥cient of
the final state. For a general Coulomb-potential with
V (r) = �/r the s-wave Sommerfeld correction factor S0

is given by [11]

S0 = � ⇧�/⇥

1� e⌅�/⇥
, (22)

where ⇥ = v/2 and the total annihilation cross section of
particles moving in this potential is given by ⌃Somm =
S0 · ⌃tree.1 For final states which are exclusively in a
singlet, i.e. ZZ,W+W�, ⇤⇤, or an octet representation,
i.e. ⇤g, Zg, the enhancement is given by Eq. (22) with
� = �4/3�s or � = 1/6�s, respectively. The gg final
state is slightly more complicated since it can be in a
singlet or octet representation. After summing over the
di�erent contributions the total Sommerfeld correction
factor for this case reads [11]

S0 ⇤ 2

7
S0

�����
�=�4/3�s

+
5

7
S0

�����
�=1/6�s

. (23)

Since this channel dominates the annihilation rates by
orders of magnitude, we only take the correction for an-
nihilation to gluons into account.

REINTERPRETATION OF R-HADRON
SEARCHES

Due to their distinct signature LHC searches for highly
ionizing tracks can be performed in a rather inclu-
sive manner. They have been interpreted for lepton-
like heavy stable charged particles (HSCPs) and R-
hadrons [16–19]. Here we derive LHC constraints on the
model by reinterpreting the results of [16] for detector-
stable R-hadrons for finite decay lengths c⌥ . To this end
we compute the weighted fraction of R-hadrons that de-
cay after traversing the relevant parts of the detector in a
Monte Carlo simulation as follows. For a given R-hadron
in an event i this fraction is

F i
pass = e�⌥/(c⇧⇥⇤) , (24)

where � = �(⌅) is the travel distance to pass the respec-
tive part of the detector which depends on the pseudo-
rapidity ⌅ while ⇤ is the Lorentz factor according to the
velocity ⇥. We use a simple cylindrical approximation
for the CMS tracker2 with a radius and length of 1.1 m

1 In principle the Sommerfeld factors have to be determined sepa-
rately for each partial wave. For the model considered here the
total Sommerfeld e�ect can be approximated to good accuracy
by applying the s-wave correction to the full cross section.

2 We considered the tracker-only and tracker+muon-system anal-
ysis of [16] finding the higher sensitivity for the former one.
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Iterative solution

[cf. D’Agnolo, Pappadopulo, Ruderman, 2017]



Annihilation: Conversion:          +     Co-annihilation:
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ ⇥ �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and

⇥
h
2

��/10�7

0

1
0
0

1
0
0

CE

decay only

�h2 = 0.12

FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 6. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

For the solutions providing the right relic density, dur-
ing typical freeze-out (i.e. when T � m�/30) the con-

λ1

X1

SM
X2

dependence on 
initial conditions!
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where y
2
t = 2m2

t /v
2, r = m

2
et /m

2
t and

F (r) = 3
1 + 2r ln(r) � r

2

(1 � r)3
,

G(r) =
1 � 6r2(3 + r) ln(r) � 9(r + r

2) + 17r3

6(1 � r)5
,

H(r) = 2
1 + 6(r + r

2) ln(r) + 9(r � r
2) � r

3

(1 � r)5
. (10)

Note that the effective coupling is regular for r ! 1, and
the expansion is in 1/mt for r ! 0 and in 1/met for r !

1. This approximate form of the coupling is accurate
to better than 5% for all values

p
s/2, m� < 100GeV,

met > m�, and better than 30% for
p

s/2, m� < mt,
met > m� + 30GeV. For the relic density computation
we use the full expressions for the loop-induced coupling
gh��, evaluated at

p
s = max(mh, 2m�). Analytical ex-

pressions for the limit s ! 0 of the Passarino-Veltman
functions entering in (8) (relevant for direct detection
rates discussed in Sec. IV A) are given in Appendix A
of Ref. [49] with C0(et) = C0(0, m2

�, mt, mt, met), and
C

+
1 (et) = C

+
1 (p1, p2, mt, mt, met) for p

2
1 = p

2
2 = m

2
� and

(p1 � p2)2 = s ! 0 can be found in Appendix C of
Ref. [50].

For each pair of masses (m�, met) we fix the coupling
�� such that the relic density resulting from freeze-out
matches the measured DM density ⌦h

2 = 0.1198 ±

0.0015 [1]. In Fig. 1 we show the resulting contour lines of
constant coupling ��, where we use the DM mass and the
mass splitting �m = met � m� as independent parame-
ters. We also indicate explicitly the contour for which ��

matches the bino-stop-top coupling within the MSSM. If
we restrict the coupling to be less than 4⇡, the relic den-
sity exceeds the measured value within the grey-shaded
region, and we therefore disregard it in the following.
Below the thick black line coannihilations are so efficient
that the relic density resulting from the freeze-out com-
putation described above would lie below the measured
value. This parameter domain is discussed in detail be-
low. The remaining part of parameter space corresponds
to the “WIMP region”.

The kinematic threshold for tt̄ annihilation is clearly
visible in the contours shown in Fig. 1, and leads to the
sharp drop for m� ⇠ mt. For m�

<
⇠ mt the annihilation

channel �� ! Wbt as well as the Boltzmann tail of the
DM distribution allowing for �� ! tt̄ yield a sizeable
contribution, and slightly smoothen the step-like behav-
ior of the contour lines. Coannihilations start to play a
role for �m <

⇠ m�/10, and allow for larger DM masses
for a given coupling. Additionally, for very small masses,
the contours feature a ‘spike’ at m� ⇠ mh/2 as well as a
‘bump’ for m� + met ' mt. The ‘spike’ can be explained
by the Higgs resonance in the loop-induced annihilation
channels �� ! h

(⇤)
! bb̄, WW

⇤
, . . . , and the ‘bump’ at

slightly higher mass is related to a top resonance in the
coannihilation process �et ! Wb.
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FIG. 1. Viable parameter space in the plane spanned by m�

and �m = met � m�. For each point we adjust �� such that
⌦h

2 = 0.12. Above the thick black curve chemical equilibrium
holds (WIMP region), while below this curve chemical equi-
librium breaks down and solutions for the conversion-driven
freeze-out exist. The green solid curves denote contours in
the coupling ��. For comparison, the black dotted curve
shows the allowed parameter slice for a realization of a super-
WIMP scenario within the model (see comment at the end of
Sec. III B).

B. Conversion-driven freeze-out solutions

As mentioned above, up to a DM mass of around
2 TeV we encounter a region in parameter space with
small �m where the effective, thermally averaged cross
section for mediator-pair annihilation alone – which is
fixed for a given DM mass and mass splitting – is so
large that one undershoots the measured relic density,
seemingly regardless of the coupling ��. However, this
conclusion hinges on the assumption of chemical equilib-
rium between DM and the mediator, i.e. the condition
n�/n

eq
� = net/n

eq
et , which does not hold once �� decreases

beyond a certain value. In fact, dropping this assumption
one can find solutions with small �� where the relic den-
sity is governed by the mechanism of conversion-driven
freeze-out [30]. In the following we will first outline the
computational steps of the relic density calculation be-
fore we discuss the phenomenological aspects in the cor-
responding region in parameter space.

1. Boltzmann equation and conversion rate

In the absence of chemical equilibrium between DM
and the mediator the computation of the relic density
requires to solve the coupled set of Boltzmann equations

superWIMP
zero initial 
abundance


