Upcoming Results from XENON1T

Daniel Coderre
University of Freiburg
Moriond-EW 2018
La Thuile

For the XENON Collaboration
The XENON Collaboration

Columbia University
Rensselaer
RPI
Nikhef
WWU Münster
Stockholm University
JGU
Freiburg
University of Zurich
Chicago
UC San Diego
UCSD
Rice
Purdue
Coimbra
Subatech
LPNHE
LAL
Bologna
LNGS
Torino
Napoli
Weizmann
NYU/Abu Dhabi
Tokyo
Nagoya
Kobe
Liquid Xenon as Dark Matter Target

WIMPs neutral, S-I coupling \propto target atomic mass

→ xenon: A ~131

Require a low-background environment

→ very high purity xenon can be obtained
 - No naturally occurring radioactive isotopes (except 136Xe)
→ xenon has a high stopping power
 - self-shielding

LXe simultaneously target and detector

→ xenon liquid at a reasonably high temp. (-95C)
 - easily accessible to modern cryogenic systems
→ scintillation light @ 178nm

LXe TPCs are the most competitive WIMP detectors for a broad mass range
Stages of the XENON Project

XENON10
Time: Until 2007
Total: 25 kg
Target: 14 kg
Fiducial: 5.4 kg
Limit: $\sim10^{-43}$ cm2

XENON100
Time: Until 2015
Total: 162 kg
Target: 62 kg
Fiducial: 48 kg
Limit: $\sim10^{-45}$ cm2

XENON1T
Time: From 2016
Total: 3500 kg
Target: 2000 kg
Fiducial: >1000 kg
Sensitivity: $\sim10^{-47}$ cm2

XENONnT
Time: From 2019
Total: 7500 kg
Target: 5900 kg
Fiducial: 4000 kg
Sensitivity: $\sim10^{-48}$ cm$^{-2}$
Recap: First XENON1T Results

- 34 live days dark matter exposure Oct 2016-Jan 2017
- No evidence of a signal → upper limit
- Additional 247 live days of data collected to date
 - the rest of this talk

278 days high quality data (livetime-corrected)
1 ton x year at estimated 1.3t fiducial volume

Science data spans more than one calendar year of stable operation!

Detector still collecting data today.
Dark Matter Detection with LXe TPCs

Energy
- S1 area
- S2 area

Position
- x-y (S2 signal)
- z (drift time)

Interaction type
- S2/S1 ratio (ER/NR)
See: github.com/XENON1T
>1 Year Stable Data-Taking

- Electronegative impurities absorb drift electrons
- Continuous purification during operation
- Monitor purity via ‘electron lifetime’
- Plateau shows stable equilibrium reached for this configuration

Light and charge yields stable throughout science run
- Rn222 background → exploit α-decay lines
- Kr83m calibration → 9, 32 keV conversion e-
- 129mXe, 131mXe → activation after n calibrations
Electronic Recoil Backgrounds

- Minimize leakage into cryo system (i.e., hermetically sealed pumps)
- Low radon emanation components
- Dedicated radon emanation measurements

- \(^{85}\text{Kr} \)
 - \(^{85}\text{Kr}/^{\text{nat}}\text{Kr} \approx 2 \times 10^{-11} \)
 - \(\text{Kr/Xe} \approx 10^{-9} - 10^{-6} \) (commercial Xe)
 - Online distillation \(^{\text{nat}}\text{Kr}/\text{Xe} \approx 0.62 \text{ ppt} \)
 - Offline distillation \(^{\text{nat}}\text{Kr}/\text{Xe} < 48 \text{ ppq} \)

- \(^{222}\text{Rn} \)
 - Minimize leakage into cryo system (i.e., hermetically sealed pumps)

\[\begin{array}{|c|c|c|}
\hline
\text{Source} & \text{Count} \ [\text{t}^{-1}\text{y}^{-1}] & \text{Fraction} [\%] \\
\hline
\text{Materials} & 29 \pm 3 & 4.1 \\
\hline
^{222}\text{Rn} & 620 \pm 60 & 85.4 \\
\hline
^{85}\text{Kr} & 31 \pm 6 & 4.3 \\
\hline
\text{Solar neutrinos} & 36 \pm 1 & 4.9 \\
\hline
^{136}\text{Xe} & 9 \pm 4 & 1.4 \\
\hline
\text{Total} & 720 \pm 60 & \\
\hline
\end{array} \]

(2-12 keV search window, 1t FV, single scatters, before ER/NR discrimination)

→ All detector components screened for radiopurity using HPGe detectors (shown are some cable plugs)
Nuclear Recoil Backgrounds

Muon-induced Neutrons
- 3,600 m.w.e. rock overburden (1x10^6 attenuation of muon rate)
- 700 m^3 demineralized water surround detector
- Water Cherenkov Muon Veto provides additional reduction
- 0.012 events/t-ya expected BG

Radiogenic Neutrons
- (α, n) reactions from U- and Th- chains and spontaneous fission
- Mimic WIMP signal (many are single scatter, many penetrate into fiducial volume)
- Reduction via careful material selection and minimization of material budget
- O(1) event/t-ya expected

Coherent Neutrino Nucleus Scattering
- Irreducible background
- Larger at very low energies (1keV)
- Nearly no contribution above threshold of 5 keV
- 0.01 event/t-ya expected
Nuclear Recoil Backgrounds

Muon-induced Neutrons
- 3,600 m.w.e. rock overburden (1x10^6 attenuation of muon rate)
- 700 m³ de-mineralized water surround detector
- Water Cherenkov Muon Veto provides additional reduction
- 0.012 events/t-y expected

Radiogenic Neutrons
- (α, n) reactions from U- and Th-chains and spontaneous fission
- Mimic WIMP signal (many are single scatter, many penetrate into fiducial volume)
- Reduction via careful material selection and minimization of material budget
- O(1) event/t-y expected

Coherent Neutrino Nucleus Scattering
- Irreducible background
- Larger at very low energies (1keV)
- Nearly no contribution above threshold of 5 keV
- 0.01 event/t-y expected

XENONnT: Active neutron veto
- 15 tons liquid scintillator (Gd-LAB) in acrylic vessels surrounding outer cryostat
- 120 Hamamatsu R5912Assy 8” PMTs
- For 4 ton inner volume expect 0.35 events/y with 75% neutron tagging
PTFE Surface Background

- S2 loses charge on the PTFE wall → ER events misreconstructed in signal region
- Suppressed via fiducial volume
- Data-driven model based on selected samples of surface events
Increasing the active volume

Fiducial volume: exploit LXe self-shielding by selecting only a low-activity inner volume to use for the WIMP search. Optimized on combined background models

- **First result**: 1-ton fiducial
- **This result**: expanded by several hundred kg!
 - Improvements to position reconstruction and field and teflon charge-up corrections
 - Additional spatial dimension in statistical interpretation

Further parameterize inner volume as function of r to increase useful exposure volume:

- **Left**: largest fiducial volume, visible surface background
- **Right**: inner 1T volume, no surface background
Calibration and Background Data in the Search Region

2016 data re-analysis (32.13 d) 2017 data (246.74 d)

A blind analysis is the only way to perform this type of rare event search

- Signal region inaccessible to analysts until analysis fixed
- Prevents human bias

The data is also ‘salted’

- Fake signal events may or may not inhabit signal region
- Additional protection against bias in post-unblinding scrutinization of events

We’re unblinding this data very soon!
Parameterizing Signal and Background

- **WIMP signal, ER background, and NR background** models derived by fitting Monte Carlo simulations to calibration data.

- **Surface background, accidental coincidences** described by empirical models derived from data.

- All models derived in 3-dimensional space: (cs1, cs2, radius)
Upcoming Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, r space
- XENONnT to provide another order of magnitude boost to sensitivity

- For a WIMP-nucleon cross-section at the current best limit, this exposure has >50% chance at a 3-sigma excess
Conclusion/Outlook

- New results coming soon!
 - Twitter: https://twitter.com/xenon1t
 - Blog: https://www.xenon1t.org

- Our one ton-year exposure allows us to do rare event searches in other channels as well:
 - Low-mass WIMPs (S2-only)
 - ER searches (e.g. axions)
 - Annual modulation of ER rate
 - And more, stay tuned

- Our next upgrade, XENONnT is under construction and planned to start operation in 1.5 years
Extra: Combined S1+S2 Energy Reconstruction

Energy loss to *either* light or charge channel
→ S1/S2 anticorrelation

\[
\frac{S1}{E} = \frac{n_\gamma}{n_e + n_\gamma} \times \frac{g_1}{W} \\
\frac{S2}{E} = \frac{n_e}{n_e + n_\gamma} \times \frac{g_2}{W}
\]

“Doke plot” → linear fit to calibration isotopes

ROI for WIMP search up to ~30 keV

- Solve the above for E for combined energy reconstruction
- Excellent resolution across a broad energy range
Extra: S1 Light Collection

- **PTFE Lining**
 - High reflectivity
 - Low radioactive background
 - Covers entire inner volume

- **Highly sensitive light detection**
 - 248 Hamamatsu R11410-21 PMTs
 - Quantum efficiency: 35% @178nm
 - Operating gain 5×10^6 @ 1.5kV
 - Single photoelectron acceptances ~94%
 - Gains stable within 1-2%
 - Low background design

Near-transparent field grids
- Transparencies >90%
Light collection position dependent (solid angle)

However very well understood:
- Direct measurement with 83mKr calibrations
- Agreement with optical Monte Carlo simulation

Light yield stability monitored throughout the science run with several sources:
- 222Rn daughters
- Activated Xe after neutron calibrations
- 83mKr calibrations
Extra: S2 Energy Reconstruction

Electron Lifetime
- Ionization e- absorbed by impurities
- Exponential loss w.r.t. drift time
- Monitoring with 222Rn alpha decays and 83mKr calibrations

Amplification correction
- x-y dependent amplification correction
- Driven by anode ‘sagging’ w.r.t. gate

Charge yield
- Monitored with 222Rn progeny, activated Xe, 83mKr
- Stable within a few percent
- Slight rise during science run probably driven by improving purity
“Lone” s1/s2 coincidences
- S1 from eg. below cathode
- S2 from eg. near field grids
- Can get fake events that populate signal region

Empirical model
- Select unpaired S1/S2 from data
- Randomly pair to form events
- Apply selection conditions from analysis
- Performance verified in 220Rn data and background sidebands
x-y reconstruction via **neural network**:
- **Input**: charge/channel top array
- **Training**: Monte Carlo simulation

Position resolution using $^{83\text{m}}\text{Kr}$
- Two interactions (9, 31 keV), same x-y
- Position resolution (1-2 cm)
- PMT diameter (7.62 cm)

Position corrections using $^{83\text{m}}\text{Kr}$
- Drift field distortion
- Localized inhomogeneities from inactive PMTs
- Data-derived correction verified by comparison to MC with several event sources

Data | Neutron Generator Source | MC | (blinded) background data