Flaxion

a minimal extension to solve puzzles in the standard model

Koichl I-Iamaguchi (University of Tokyo)

@Moriond EW 2018, Mar. 13, 2018

Based on
Y. Ema, KH, T. Moroi, K. Nakayama, arXiv:1612.05492 [JHeP 1701 (2017) 096],
Y. Ema, D. Hagihara, KH, T. Moroi, K. Nakayama, arXiv:1802.07739.



Summary:

U(1)en = U(1)eq



Summary:

We proposed a new model (scenario) that explains
the hierarchical flavor structure of quarks/leptons,
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and includes DM, Leptogenesis, and Inflation.
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A simple possibility:
a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]
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A simple possibility:
a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]
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Fig. 1. Feynman diagram which generates the quark mass matrix element My i Full lines repre-

sent quarks and wavy lines represent super heavy fermions. The dashed lines represent Higes
tadpoles as follows: ——=X (@), and —— - @ (¢7).
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A simple possibility:
a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]
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A simple possibility:

a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]
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A simple possibility:

a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]

Then, Quark mass hierarchy as well as CKM angles are naturally

explained as e.qg., , 843 (diag(ma) ~ (8,6, 1)),  u,C,T
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A simple possibility:

a spontaneously broken global U(1) symmetry. (Froggatt-Nielsen,79]

Then, Quark mass hierarchy as well as CKM angles are naturally

explained as e.g.,

qu — {_57 _17 0}7

qQ — {37 270}7
dd — {_47 _37 _3}

rQL — {17090}7
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gqn-dependence cancels
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also explained as

because of the seesaw formula.
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[cf. Sato-Yanagida,'98, Ramond, 98]
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Our setup: £=uj

can explain the quark and lepton mass hierarchy and mixings.

y ?
OK. BUF wevcevsee what's news:

Froggatt-Nielsen paper was in 1979......
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POINT: The global, spontaneously broken U(1) flavor
symmetry is anomalous under SU(3)c, which means...
the Peccei-Quinn mechanism (to solve the strong
CP problem) is automatically included:

U(1)r = U(1)pq ! “Flaxion”

* As far as we know, this simple realization has not been studied explicitly before.

cf. related earlier works, Wilczek, 82, Geng-Ng, 89, Berezhiani-Khlopov, 91,
Babu-Barr,'92, Albrecht et.al.,'10, Fong-Nardi,'13, Ahn,'14,'16, Celis et.al.,'14,.....
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Flaxion
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Flaxion

(1) Strong CP problem is solved by the PQ mechanism.

[Peccei-Quinn, 77]
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Flaxion

(1) Strong CP problem is solved by the PQ mechanism.

(2) The axion can be the dark matter.
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Flaxion
0= -5 (p+ia)

flavon axion

(1) Strong CP problem is solved by the PQ mechanism.

(2) The axion can be the dark matter.

Any new pre dlC"'\On?
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Flaxion

(1) Strong CP problem is solved by the PQ mechanism.

(2) The axion can be the dark matter.

(3) characteristic flavor-changing signals

are predicted.

[cf. Wilczek, 82]
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(3)_Characteristic flavor-changing signals.
L = yw < e )n Q HdRJ —|—ij ( ? )nz' QrLHURj

M M

1 s
+ —yévﬁ (;@) MNg Ngg + h.c.

_>__me 1+ ’{Jf(+za)f.f._|_
) v\ VA Va(g) [T

( k ) + h.c.
f=u.,d,l \ /
They are not simultaneously diagonalized.

-> flavor changing processes.

The most stringent bound comes from K+ => 1t a.

1 10 2 9 2 2
Br(KT™ — 7nta) ~3 x 107 ( L Gev) ( 0 )
e % Npw

d
(Wan)12 < 73%x10" 1
ms — My

o . [BNL-E787, E949]
O(1)

—  f, > 2x10'%GeV

CERN NA62 experiment can improve the sensitivity !!
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Flaxion Scenario
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Flaxion Scenario
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Flaxion Inflation:

vy < A < V2u4
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Flaxion Inflation:

vy < A < V2v4
2
L= 1 ’|35TQ‘/A2)2 A (|¢|2 — U?b)Q canonical field ¢ :
= tanh ( )
M Curvature fluctuation: V2A V2A

P.= 2.2 X 10-9 [Planck,'15] is reproduced

for Ay <1 and A > 10'°GeV, which is consistent with the
scale for flaxion DM.

M (ns, 1) is in the Planck best-fit region.

2 4 / A \*
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Flaxion Inflation:

vy < A < V2v4
2
L= 1 ’@TQ‘/AQ)Q A (|¢|2 — U?b)Q canonical field ¢ :
= tanh ( )
M Curvature fluctuation: V2A V2A

P.= 2.2 X 10-9 [Planck,'15] is reproduced

for Ay <1 and A > 10'°GeV, which is consistent with the
scale for flaxion DM.

M (ns, 1) is in the Planck best-fit region.
M The U(1) symmetry is never restored -> No Domain wall.
M Isocurvature fluctuation is suppressed.

M Reheating temperature is high enough for Leptgenesis.

(Tr = 1012 - 1014 GeV) ("strong washout”)
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Flaxion Inflation:

vy < A < V2v4
2
L= 1 ’|ZT2‘/A2)2 A (|¢|2 — 02)2 canonical field ¢ :
= tanh ( )
M Curvature fluctuation: VoA V2A

P.= 2.2 X 10-° [Planck,'15] is reproduced

for Ay <1 and A > 10'°GeV, which is consistent with the

scale for flaxion DM.

o | See Backup Slides
M (ns, 1) is in the Planck best-fit region.  for detqils
M The U(1) symmetry is never restored -> No Domain wall.

M Isocurvature fluctuation is suppressed.

o] Reheating temperature is high enough for Leptgenesis.
(Tr = 1012 - 10 GeV) ("strong washout”)
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Flaxion Scenario
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Flaxion Scenario
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M Flaxion Scenario

Lagrangian
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Flaxion Scenario

scale GeV
1013 10%4 1015 10 10V
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CERN-NA62

[BNL-E787, 949] 28



Supersymmetric flaxion ?
W = AX (66 — o)

* Cosmology becomes nontrivial; gravitino, sflaxion,...
+ SUSY flavor/CP,

* R-parity violation,

* Inflation model,...

Y. Ema, D. Hagihara, KH, T. Moroi, K. Nakayama, arXiv:1802.077 39.
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MAn )T % (VIGev? + Uﬁquf) (mf —m]).
2%6 \ | (59-) 1o e
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Decay Physics Present limit NA62
wtute” LFV 1.3-1071 0.7-10"1'
mtu~et LFV 5210710 0.7-1071'2
m ptet LNV 5.0-10710 0.7-1012
metet LNV 6.4-107" 2.0-107"
mputet LNV 1.1-107° 0.4-10712
pvetet LFV/LNV 2-10°8 4.0-10712

e vptut LNV No data 1.0-10712
X" New particle 5.9-107, Mx =0 * 1.0-107 %
Ttxx New particle No data 1.0-10712

rtrte v AS # AQ 1.2-10°8 1.0-1071

rtrt v AS £ AQ 3.0-10°° 1.0-1071

mty Angular momentum 2.3-107° 1.0-10711
ptvp,vp = vy |  Heavy neutrino | Limits up to My, = 350MeV/c? | 1.0-10712
Ry LU (2.488 +0.010) - 1075 2x better

Tty ChPT < 500 events 10° events
mOnlety ChPT 66000 events O(10°%) events
ruty ChPT O(10°) events

Table 2: NA62 sensitivities for other rare decay channels

L — B

[arXiv:1407.8213]

The NA62 experiment at CERN: status and perspectives
NA62 Collaboration



http://arxiv.org/abs/1407.8213
spires-search://cn%20NA62%20

B+ > K+ aq ?2?

BR(BT - K'a) ~1.4-10~ "2 (

[arXiv:1612.08040] Phys.Rev. D95 (2017) 095009

The Axiflavon
L. Calibbi, FE. Goertz, D. Redigolo, R. Ziegler, ]. Zupan

Mg v Fﬁbs)2
0.1 meV N
F{,bs/.N ~ (9(])

N (6 x 107 GeV>
B Ja
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Flaxion Dark Matter:

Case 1: U(1) is broken after inflation.

-> Domain Wall !
In the flaxion scenario, typically Now # 1,

and this possibility is excluded.

Case 2: U(1) was already broken during inflation.

Quantum fluctuation during inflation

leads to DM isocurvature perturbation,
which is severely constrained [Planck,15].
-> Strong bound on inflation scale. da ~ Hi

1012 GeV )" "
)

Hin $3x107GeVo! (
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Flaxion Dark Matter:

Case 1: U(1) is broken after inflation.

-> Domain Wall !
In the flaxion scenario, typically Now # 1,

and this possibility is excluded.

Case 2: U
Quantum fl

leads to DM WNo Prob\
which is seve

-> Strong bot

Hin $3x107GeVo! (
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Flaxion Inflation:

09

L= 2
(1 — |62/A2)

Ao (J9f? = 02)°

e The U(1) symmetry is never restored

-> No Domain wall.

vy < A < V2u4

canonical field ¢ :

~

7ok =t (fA>
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Flaxion Inflation:

9917
(1—[gl?/A%)°

L= Ao (1617 = v3)
e The U(1) symmetry is never restored

-> No Domain wall.

e Isocurvature fluctuation is suppressed.

5ainf ~ Hinf

vy < A < V2u4

canonical field ¢ :

~

14 = tanh (L
V2A V2A

)
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Flaxion Inflation: Reheating and Leptogenesis

Inflaton partial decay rate into RHNS,

N, N nN —12 A=1—-vi/A*
~ |ya8na.8€ op ‘ 9 @
I'(o - NpNp) ~ i A“m .
(¥ rNR) Zq 39T f my, ~ 3 x 1087 GeV(vg/A)
o/ | ‘ )
V,
V
oo~ 5% 10°GoV [ —
inf ~ ¢ ]-C / - -
- 1011 GeV

Reheating is completed almost instantaneously.

Reheating temperature

Tr ~ 10%% — 10'*GeV.
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Flaxion Inflation: Reheating and Leptogenesis

. and thermal leptogenesis [Fukugita-Yanagida, 86)
can work successfully for my; = 0(10!2) GeV !

In more deftalils,...

i np 28
Final baryon asymmetry: —~c.r<,fm(

fg

N,
8

) ~ 1.3 % 10 %, k.
th )

3 mpy MMy mMa, M3

o ~ 1 v 104 -
Asymmetry parameter: 1= qgo— 5 dar = 1 x 10 (1012 GeV) (0.05 eV) Oct

Effective neutrino mass: 77:..,,1’\5 Zk eyl |2vdg /my, ~ My
-> Efficiency factor xy~3x107 (strong washout region)

Altogether, observed asymmetry ng/s = 0.9 x 10-10 can be

obtained for myi = O(10'2) GeV, corresponding to

qn, = 1 =5 for M ~ O(10*-10'7) GeV }



Proton decay ?

r QQQL  uude  QQue  QLud
| M2 7 M2 M2z’ M?

—> In the case of example charge assignments,

the most dangerous one is the last one.
With O(1) coefficients,

M > 5 x 1014 GeV

is sufficient to suppress it.
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