$Z H \eta$－vertex in the Simplest Little Higgs Model

Ying－nan Mao（毛英男）
Center for Future High Energy Physics \＆Theoretical Physics Division， Institute of High Energy Physics，Chinese Academy of Sciences，Beijing 100049，China （Dated：March 13，2018）

Talk at Moriond 2018 （EW）；mainly based on the paper： S．－P．He，Y．－N．Mao，C．Zhang，and S．－H．Zhu， 1709.08929 ．

I. INTRODUCTION

- In some extensions of the standard model (SM), there exist additional scalars;
- For a pseudoscalar η, it can couple to the Higgs boson (H) and gauge boson Z through a new vertex, $Z^{\mu}\left(\eta \partial_{\mu} H-H \partial_{\mu} \eta\right)$, such as in $2 H D M$ etc.;
- The vertex can lead to new phenomenologies at colliders, such as associated production of two scalars, or cascade decay of one scalar (the heavier one);
- In the simplest little Higgs (SLH) model, this vertex was known as $\sim \mathcal{O}(v / f)$, where f is a higher scale for the breaking of a new global symmetry [W. Kilian, D. Rainwater, and J. Reuter, Phys. Rev. D 71, 015008 (2005); Phys. Rev. D74, 095003 (2006);
- We re-derived the vertex and corrected the mistake appearing for a long time.

II. EFT ANALYSIS OF $Z H \eta$-VERTEX

Consider the effective field theory (EFT) at EW scale: SM particles $+\eta$

- η is a pure pseudoscalar and SM gauge singlet without mass mixing with other SM gauge multiplets, assuming all other degrees of freedom are integrated out;
- Consider dim-5 and dim-6 gauge- and CP-invariant operators with η shift symmetry which are possible to contribute to $Z H \eta$ vertex as:

$$
\mathcal{O}_{1}=\mathrm{i}\left(\partial^{\mu} \eta\right) \phi^{\dagger} D_{\mu} \phi+\text { H.c. }, \quad \mathcal{O}_{2}=\left(\phi^{\dagger} D^{\mu} \phi\right)\left(\phi^{\dagger} D_{\mu} \phi\right) ;
$$

- $\phi \equiv\left((v+H-\mathrm{i} \chi) / \sqrt{2}, G^{-}\right)^{T}$ is the usual Higgs doublet, $\mathcal{L} \supset \mathcal{L}_{\mathrm{SM}}+c_{1} \mathcal{O}_{1} / f+c_{2} \mathcal{O}_{2} / f^{2}$, where f is a higher new scale.

Expand the term $c_{1} \mathcal{O}_{1} / f$ and define $\xi \equiv v / f$, we have

$$
\begin{aligned}
\mathcal{L} \supset & \frac{1}{2}\left[(\partial H)^{2}+(\partial \chi)^{2}+(\partial \eta)^{2}\right. \\
& +\underbrace{2 c_{1} \xi\left(\partial_{\mu} \eta\right)\left(\partial^{\mu} \chi\right)}_{\mathrm{A}}]-\underbrace{m_{Z} Z_{\mu} \partial^{\mu}\left(\chi+c_{1} \xi \eta\right)}_{\mathrm{C}} \\
& \underbrace{\frac{g}{2 c_{W}} Z_{\mu}\left(\chi \partial^{\mu} H-H \partial^{\mu} \chi\right)}_{\mathrm{B}}-\underbrace{\frac{g}{c_{W} c_{1} \xi H Z_{\mu} \partial^{\mu} \eta} .}_{\mathrm{D}}
\end{aligned}
$$

- Naively, according to term D , the $Z H \eta$ appear at $\mathcal{O}(\xi)$ as expected;
- However, there are additional two-point transitions in terms A and B, especially the two-point transitions in B should be exactly canceled by gauge-fixing term;
- They must be removed through field re-definition of χ and η.

To the leading order of ξ, we have $\tilde{\chi}=\chi+c_{1} \xi \eta+\mathcal{O}\left(\xi^{2}\right), \tilde{\eta}=\eta+\mathcal{O}\left(\xi^{2}\right)$.

- The new basis is canonically-normalized, the re-definition $\chi \rightarrow \tilde{\chi}$ changes the gaugefixing term, and two-point transitions are removed;
- $\tilde{\chi}$ is the exact Goldstone field, thus term C induces another contribution to $Z H \eta$ vertex, which exactly cancels the anti-symmetric part in term D at $\mathcal{O}(\xi)$;
- The $Z H \eta$ vertex induced by \mathcal{O}_{1} cannot appear before $\mathcal{O}\left(\xi^{3}\right)$;
- No direct $Z H \eta$ vertex induced by \mathcal{O}_{2}, however, redefinition $\tilde{\chi}=\chi+c_{1} \xi \eta+\mathcal{O}\left(\xi^{2}\right)$ can introduce such vertex at $\mathcal{O}\left(\xi^{3}\right)$, no other operators contribute at this order.

Short summary and examples for EFT analysis:

- For a pure SM gauge singlet pseudoscalar field η, effective operators $\mathcal{O}_{1,2}$ can contribute to the $Z H \eta$ vertex, which may finally appear at $\mathcal{O}\left(\xi^{3}\right)$.

Model	$Z H \eta$-vertex	Note
SM + Complex Singlet	0	η is pure SM gauge singlet, $f \rightarrow \infty$
2 HDM	$\mathcal{O}(1)$	η is a component of SM gauge doublet
$(\mathrm{SU}(4) / \mathrm{SU}(3))^{4}$ LH Model ${ }^{*}$	$\mathcal{O}(\xi)$	η contains $\mathcal{O}(\xi)$ SM gauge doublet component
$\mathrm{SLH}\left[(\mathrm{U}(3) / \mathrm{U}(2))^{2}\right]$ Model	$\mathcal{O}\left(\xi^{3}\right)$	η is pure SM gauge singlet

[* D. E. Kaplan and M. Schmaltz, JHEP 0310, 039 (2003).]

III. $Z H \eta$-VERTEX IN THE SLH MODEL

- We discuss the SLH model in details as an example of EFT analysis;
- Only two scalars, and η is a pure SM gauge singlet in this model;
- Naively calculate the $Z H \eta$ vertex, it behaves like the EFT analysis;
- We should also perform a complete formalism in kinetic diagonalization.

A. The SLH Model

- A Global symmetry breaking $(\mathrm{SU}(3) \times \mathrm{U}(1))^{2} \rightarrow(\mathrm{SU}(2) \times \mathrm{U}(1))^{2}$ happens at a high scale f, gauge group is enlarged to $\mathrm{SU}(3) \times \mathrm{U}(1)$ which breaks to SM gauge group;
- Two scalar triplets $\Phi_{1,2}$ are nonlinear realized as:

$$
\Phi_{1}=\mathrm{e}^{\mathrm{i} \Theta^{\prime}} \mathrm{e}^{\mathrm{i} t_{\beta} \Theta}\binom{\mathbf{0}_{1 \times 2}}{f c_{\beta}}, \quad \Phi_{2}=\mathrm{e}^{\mathrm{i} \Theta^{\prime}} \mathrm{e}^{-\mathrm{i} \Theta / t_{\beta}}\binom{\mathbf{0}_{1 \times 2}}{f s_{\beta}}
$$

with the definitions of the matrix fields

$$
\Theta \equiv \frac{1}{f}\left(\frac{\eta \mathbb{I}_{3 \times 3}}{\sqrt{2}}+\left(\begin{array}{cc}
\mathbf{0}_{2 \times 2} & \phi \\
\phi^{\dagger} & 0
\end{array}\right)\right), \quad \text { and } \quad \Theta^{\prime} \equiv \frac{1}{f}\left(\frac{\zeta \mathbb{I}_{3 \times 3}}{\sqrt{2}}+\left(\begin{array}{cc}
\mathbf{0}_{2 \times 2} & \varphi \\
\varphi^{\dagger} & 0
\end{array}\right)\right) .
$$

- There are 10 Goldstones and 8 of which are eaten by massive gauge bosons;
- t_{β} means the ratio between the VEVs of the two triplets;
- η is the pseudoscalar and ϕ is the Higgs doublet defined as above;
- ζ and $\varphi \equiv\left((\sigma-\mathrm{i} \omega) / \sqrt{2}, x^{-}\right)^{T}$ are expected to be eaten by heavy gauge bosons;
- η can acquire its mass through $\mu^{2} \Phi_{1}^{\dagger} \Phi_{2}$ term, and EWSB can be induced by loop corrections, heavy gauge bosons $\left(Z^{\prime}, X^{ \pm}, Y, \bar{Y}\right)$ can acquire their masses before EWSB, while EW gauge bosons $\left(W^{ \pm}, Z\right)$ acquire their masses after EWSB;
- All fermion doublets should be enlarged to triplets as well, and the heavy top T domains the EWSB through loop corrections;

Some properties of the SLH parameters:

Parameter	Allowed Region	Constraints
f	$(7.5-84.5) \mathrm{TeV}$	Lower: LHC direct search *,* Upper: Goldstone scaterring unitarity**
t_{β}	$1-8.9$	Lower: Convention Upper: Goldstone scaterring unitarity**
m_{η}	$(0-1.5) \mathrm{TeV}$	Theoretical EWSB conditions**
m_{T}	$(1.7-18.7)$	Lower: Goldstone scaterring unitarity** Upper: Theoretical EWSB conditions**

[* ATLAS Collaboration, JHEP 1710, 182 (2017); * Y.-N. Mao, 1703.10123;
** K. Cheung, S.-P. He, Y.-N. Mao, C. Zhang, and Y. Zhou, 1801.10066.]

B. General Diagonalization Procedure

- When we expand $\left(D_{\mu} \Phi_{1}\right)^{2}+\left(D_{\mu} \Phi_{2}\right)^{2}$, the lagrangian contains

$$
\mathcal{L} \supset \underbrace{\frac{1}{2} \mathbb{K}_{i j}\left(\partial G_{i}\right)\left(\partial G_{j}\right)}_{\mathrm{A}}+\underbrace{\mathbb{F}_{p i} V_{p}^{\mu} \partial_{\mu} G_{i}}_{\mathrm{B}}+\underbrace{\frac{1}{2}\left(\mathbb{M}_{V}^{2}\right)_{p q} V_{p, \mu} V_{q}^{\mu}}_{\mathrm{C}}
$$

- Like in the EFT analysis, there are two-point transitions in term A and B, and the two-point transition in B should be exactly canceled by the gauge fixing term;
- For term A, there are two-point kinetic mixing in CP-odd scalar sector $\left(G_{i}=\eta, \zeta, \chi, \omega\right)$ and we need a new basis $S_{i} \equiv U_{i j} G_{j}$ which can give $\mathcal{L} \supset\left(\partial S_{i}\right)^{2} / 2$;
- Introduce the inner product in the linear space spanned by $S_{i}:\left\langle S_{i} \mid S_{j}\right\rangle=\delta_{i j}$, it can be derived $\left\langle G_{i} \mid G_{j}\right\rangle=\left(\mathbb{K}^{-1}\right)_{i j} ;$
- With this relation, for $\bar{G}_{p}=\mathbb{F}_{p i} G_{i}$, we have $\left\langle\bar{G}_{p} \mid \bar{G}_{q}\right\rangle=\left(\mathbb{M}_{V}^{2}\right)_{p q}$;
- \mathbb{M}_{V}^{2} can be diagonalized through a matrix \mathbb{R} as $\left(\mathbb{R} \mathbb{M}_{V}^{2} R^{T}\right)_{p q}=m_{p}^{2} \delta_{p q}$;
- Thus we have the Goldstone basis $\tilde{G}_{p}=\mathbb{R}_{p q} \mathbb{F}_{q i} G_{i} / m_{p}$, together with the pseudoscalar $\tilde{\eta}=\eta / \sqrt{\left(\mathbb{K}^{-1}\right)_{11}}$, the basis $\left(\tilde{\eta}, \tilde{G}_{i}\right)$ is canonically normalized;
- Choose the gauge-fixing term $-\left(\partial_{\mu} \tilde{V}_{p}^{\mu} / \sqrt{\xi_{p}}-\sqrt{\xi_{p}} m_{p} \tilde{G}_{p}\right)^{2} / 2, \tilde{V}_{p}$ are in mass eigenstates, \tilde{G}_{p} are exactly eaten by \tilde{V}_{p} thus they are the corresponding Goldstone fields.

C. Detailed Calculation and Results

- First, divide the matrix \mathbb{F} into two parts as $\mathbb{F}_{4 \times 3}=\left(\tilde{f}_{1 \times 3}, \tilde{F}_{3 \times 3}\right)$, with the vector component $\tilde{f}_{q}=\mathbb{F}_{q \eta}$, we have the new relation

$$
\tilde{G}_{p}=\mathbb{R}_{p q}\left(\eta \tilde{f}_{q}+\tilde{F}_{q k} G_{k}\right) / m_{p}, \quad \text { or } \quad G_{i}=\left(\tilde{F}^{-1} \mathbb{R}^{T}\right)_{i q} m_{q} \tilde{G}_{q}-\left(\tilde{F}^{-1} \tilde{f}\right)_{i} \sqrt{\left(\mathbb{K}^{-1}\right)_{11}} \tilde{\eta}
$$

- η component appears in the original Goldstone degrees of freedom as shown above;
- The antisymmetric $V H G_{i}$-vertex is parameterized as $\mathcal{L} \supset \mathbb{C}_{p i} V_{p}^{\mu}\left(G_{i} \partial_{\mu} H-H \partial_{\mu} G_{i}\right)$, all $\mathbb{C}_{p i}$ are elements of a 4×3 matrix \mathbb{C};
- In the previous papers, choose $\xi \equiv v / f$ as usual and using the original fields, the $Z H \eta$ vertex was derived as $-g \xi /\left(\sqrt{2} c_{W} t_{2 \beta}\right) Z^{\mu}\left(\eta \partial_{\mu} H-H \partial_{\mu} \eta\right) \sim \mathcal{O}(\xi) \longrightarrow$ Incorrect!
- Following our diagonalization procedure, we should re-derive the $Z H \eta$-vertex, define a 1×4 vector as $\Upsilon \equiv \sqrt{\left(\mathbb{K}^{-1}\right)_{11}}\left(1,-\tilde{f}^{T}\left(\tilde{F}^{-1}\right)^{T}\right)^{T}$, the $Z H \eta$ vertex should be

$$
\tilde{c}_{Z H \eta} \tilde{Z}^{\mu}\left(\tilde{\eta} \partial_{\mu} H-H \partial_{\mu} \tilde{\eta}\right) \equiv(\mathbb{R} \mathbb{C} \Upsilon) \tilde{Z}^{\mu}\left(\tilde{\eta} \partial_{\mu} H-H \partial_{\mu} \tilde{\eta}\right)
$$

- Straightforward calculation gives $\tilde{c}_{Z H \eta}=-g \xi^{3} /\left(4 \sqrt{2} c_{W}^{3} t_{2 \beta}\right) \sim \mathcal{O}\left(\xi^{3}\right)$;
- That's because $\tilde{\chi} \sim \chi+\mathcal{O}(\xi) \eta$, a corresponding contribution to $Z H \eta$-vertex then arises and at $\mathcal{O}(\xi)$ it exactly cancels the naively derived $Z H \eta$-vertex as shown in last page, just like the behavior of the EFT analysis above;
- Mass mixing between neutral gauge bosons also contribute to this vertex at $\mathcal{O}\left(\xi^{3}\right)$.

IV. CONCLUSIONS AND DISCUSSIONS

- Based on the EFT analysis, for a pure SM gauge singlet pseudoscalar η, the $Z H \eta$ vertex cannot arise until $\mathcal{O}\left(\xi^{3}\right)$ with $\xi \equiv v / f$;
- We derived this vertex in the SLH model as an example, and showed the coefficient should be $\tilde{c}_{Z H \eta}=-g \xi^{3} /\left(4 \sqrt{2} c_{W}^{3} t_{2 \beta}\right) \sim \mathcal{O}\left(\xi^{3}\right)$, instead of $-g \xi /\left(\sqrt{2} c_{W} t_{2 \beta}\right) \sim \mathcal{O}(\xi)$, which has already existed in other papers for a long time;
- All corresponding phenomenology in SLH model should also be re-considered, which will appear in my forthcoming papers soon;
- The calculation procedure can also be performed to other similar models.

> Thank you! My Email: maoyn@ihep.ac.cn

Appendix

Up to $\mathcal{O}\left(\xi^{3}\right)$, more details during calculation are listed here:

$$
\mathbb{K}=\left(\begin{array}{cccc}
1 & 0 & \frac{\sqrt{2} \xi}{t_{2 \beta}}-\frac{7 c_{2 \beta}+c_{6 \beta}}{6 \sqrt{2} s_{2 \beta}^{3}} \xi^{3} & -\sqrt{2} \xi+\frac{5+3 c_{4 \beta}}{3 \sqrt{2} s_{2 \beta}^{2}} \xi^{3} \\
0 & 1 & -\frac{\xi}{\sqrt{2}}+\frac{5+3 c_{4 \beta}}{12 \sqrt{2} s_{2 \beta}^{2}} \xi^{3} & -\frac{2 \sqrt{2} \xi^{3}}{3 t_{2 \beta}} \\
\frac{\sqrt{2} \xi}{t_{2 \beta}}-\frac{7 c_{2 \beta}+c_{6 \beta}}{6 \sqrt{2} s_{2 \beta}^{3}} \xi^{3} & -\frac{\xi}{\sqrt{2}}+\frac{5+3 c_{4 \beta}}{12 \sqrt{2} s_{2 \beta}^{2}} \xi^{3} & 1-\frac{5+3 c_{4 \beta}}{12 s_{2 \beta}^{2}} \xi^{2} & \frac{2 \xi^{2}}{3 t_{2 \beta}} \\
-\sqrt{2} \xi+\frac{5+3 c_{4 \beta}}{3 \sqrt{2} s_{2 \beta}^{2} \xi^{3}} & -\frac{2 \sqrt{2} \xi^{3}}{3 t_{2 \beta}} & \frac{2 \xi^{2}}{3 t_{2 \beta}} & 1
\end{array}\right)
$$

and thus $\left(\mathbb{K}^{-1}\right)_{11}=1+2 \xi^{2} / s_{2 \beta}^{2} ;$

$$
\begin{aligned}
& \tilde{f}=g f\left(\frac{1}{\sqrt{2} c_{W} t_{2 \beta}} \xi^{2}, \frac{\rho}{t_{2 \beta}} \xi^{2},-\xi+\frac{5+3 c_{4 \beta}}{6 s_{2 \beta}^{2}} \xi^{3}\right)^{T} \\
& \tilde{F}=g f\left(\begin{array}{ccc}
-\frac{\xi^{2}}{2 \sqrt{2} c_{W}} & \frac{\xi}{2 c_{W}}-\frac{\left(5+3 c_{4 \beta}\right) \xi^{3}}{24 c_{W} s_{2 \beta}^{2}} & \frac{\xi^{3}}{3 c_{W} t_{2 \beta}} \\
\sqrt{\frac{2}{3-t_{W}^{2}}-\frac{\kappa\left(1+c_{2 W}\right) \xi^{2}}{\sqrt{2} c_{2 W}}} & \kappa \xi-\frac{\kappa\left(5+3 c_{4 \beta}\right) \xi^{3}}{12 s_{2 \beta}^{2}} & -\frac{2 \kappa \xi^{3}}{3 c_{2 W} t_{2 \beta}} \\
\frac{-2 \xi^{3}}{3 t_{2 \beta}} & \frac{\sqrt{2} \xi^{2}}{3 t_{2 \beta}} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

with $\quad \rho \equiv \sqrt{\frac{1+2 c_{2 W}}{1+c_{2 W}}} \quad$ and $\quad \kappa \equiv \frac{c_{2 W}}{2 c_{W}^{2} \sqrt{3-t_{W}^{2}}}$;

$$
\Upsilon=c_{\gamma+\delta}^{-1}\left(\begin{array}{c}
1 \\
s_{\gamma}^{2} t_{\beta}^{-1}-s_{\delta}^{2} t_{\beta} \\
\left(c_{2 \delta} t_{\beta}-c_{2 \gamma} t_{\beta}^{-1}\right) \frac{\xi}{\sqrt{2}} \\
\frac{1}{2}\left(s_{2 \delta} t_{\beta}+s_{2 \gamma} t_{\beta}^{-1}\right)
\end{array}\right)=\left(\begin{array}{c}
1+\frac{\xi^{2}}{s_{2 \beta}^{2}} \\
-\frac{\xi^{2}}{t_{2 \beta}} \\
-\frac{\sqrt{2} \xi}{t_{2}}-\frac{3-c_{4 \beta}}{\sqrt{2} t_{2 \beta} s_{2 \beta}^{2}} \xi^{3} \\
\sqrt{2} \xi+\frac{3-c_{4 \beta}}{3 \sqrt{2} s_{2 \beta}^{2}} \xi^{3}
\end{array}\right) ;
$$

with $\quad \gamma \equiv \xi t_{\beta} / \sqrt{2} \quad$ and $\delta \equiv \xi /\left(\sqrt{2} t_{\beta}\right)$;

$$
\mathbb{R}=\left(\begin{array}{ccc}
1 & -\frac{\kappa \rho^{2} \xi^{2}}{2 c_{W}} & -\frac{\sqrt{2} \xi^{3}}{3 c_{W} t_{2 \beta}} \\
\frac{\kappa \rho^{2} \xi^{2}}{2 c_{W}} & 1 & -\frac{2 \sqrt{2}\left(1+2 c_{2 W}\right) \kappa \xi^{3}}{3 c_{2 W} t_{2 \beta}} \\
\frac{\sqrt{2} \xi^{3}}{3 c_{W} t_{2 \beta}} & \frac{2 \sqrt{2}\left(1+2 c_{2 W}\right) \kappa \xi^{3}}{3 c_{2 W} t_{2 \beta}} & 1
\end{array}\right)
$$

$$
\mathbb{C}=g\left(\begin{array}{ccccc}
-\frac{\xi}{\sqrt{2} c_{W} t_{2 \beta}}+\frac{\left(7 c_{2 \beta}+c_{6 \beta}\right) \xi^{3}}{6 \sqrt{2} c_{W} s_{2 \beta}^{3}} & \frac{\xi}{2 \sqrt{2} c_{W}}-\frac{\left(5+3 c_{4 \beta}\right) \xi^{3}}{12 \sqrt{2} c_{W} s_{2 \beta}^{2}} & -\frac{1}{2 c_{W}}+\frac{\left(5+3 c_{4 \beta}\right) \xi^{2}}{12 c_{W} s_{2 \beta}^{2}} & -\frac{\xi^{2}}{2 c_{W} t_{2 \beta}} \\
-\frac{\rho \xi}{t_{2 \beta}}+\frac{\rho\left(7 c_{2 \beta}+c_{6 \beta}\right) \xi^{3}}{6 s_{2 \beta}^{3}} & \frac{\rho \xi}{2}-\frac{\rho\left(5+3 c_{4 \beta}\right) \xi^{3}}{12 s_{2 \beta}^{2}} & -\kappa+\frac{\kappa\left(5+3 c_{4 \beta}\right) \xi^{2}}{6 s_{2 \beta}^{2}} & \frac{\kappa \xi^{2}}{c_{2 W} t_{2 \beta}} \\
\frac{1}{2}-\frac{\left(5+3 c_{4 \beta}\right) \xi^{2}}{4 s_{2 \beta}^{2}} & \frac{\xi^{2}}{t_{2 \beta}} & -\frac{\xi}{\sqrt{2} t_{2 \beta}}+\frac{\left(7 c_{2 \beta}+c_{6 \beta}\right) \xi^{3}}{12 \sqrt{2} s_{2 \beta}^{3}} & 0
\end{array}\right)
$$

