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I. INTRODUCTION

• In some extensions of the standard model (SM), there exist additional scalars;

• For a pseudoscalar η, it can couple to the Higgs boson (H) and gauge boson Z through

a new vertex, Zµ(η∂µH −H∂µη), such as in 2HDM etc.;

• The vertex can lead to new phenomenologies at colliders, such as associated production

of two scalars, or cascade decay of one scalar (the heavier one);

• In the simplest little Higgs (SLH) model, this vertex was known as ∼ O(v/f), where f

is a higher scale for the breaking of a new global symmetry [W. Kilian, D. Rainwater,

and J. Reuter, Phys. Rev. D 71, 015008 (2005); Phys. Rev. D74, 095003 (2006)];

• We re-derived the vertex and corrected the mistake appearing for a long time.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.71.015008
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.74.095003


3

II. EFT ANALYSIS OF ZHη-VERTEX

Consider the effective field theory (EFT) at EW scale: SM particles+η

• η is a pure pseudoscalar and SM gauge singlet without mass mixing with other SM

gauge multiplets, assuming all other degrees of freedom are integrated out;

• Consider dim-5 and dim-6 gauge- and CP-invariant operators with η shift symmetry

which are possible to contribute to ZHη vertex as:

O1 = i(∂µη)φ†Dµφ+ H.c., O2 = (φ†Dµφ)(φ†Dµφ);

• φ ≡ ((v+H− iχ)/
√

2, G−)T is the usual Higgs doublet, L ⊃ LSM + c1O1/f + c2O2/f
2,

where f is a higher new scale.
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Expand the term c1O1/f and define ξ ≡ v/f , we have

L ⊃ 1

2

(∂H)2 + (∂χ)2 + (∂η)2 + 2c1ξ(∂µη)(∂µχ)︸ ︷︷ ︸
A

−mZZµ∂
µ (χ+ c1ξη)︸ ︷︷ ︸

B

+
g

2cW
Zµ (χ∂µH −H∂µχ)︸ ︷︷ ︸

C

− g

cW
c1ξHZµ∂

µη︸ ︷︷ ︸
D

.

• Naively, according to term D, the ZHη appear at O(ξ) as expected;

• However, there are additional two-point transitions in terms A and B, especially the

two-point transitions in B should be exactly canceled by gauge-fixing term;

• They must be removed through field re-definition of χ and η.
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To the leading order of ξ, we have χ̃ = χ+ c1ξη +O(ξ2), η̃ = η +O(ξ2).

• The new basis is canonically-normalized, the re-definition χ → χ̃ changes the gauge-

fixing term, and two-point transitions are removed;

• χ̃ is the exact Goldstone field, thus term C induces another contribution to ZHη

vertex, which exactly cancels the anti-symmetric part in term D at O(ξ);

• The ZHη vertex induced by O1 cannot appear before O(ξ3);

• No direct ZHη vertex induced by O2, however, redefinition χ̃ = χ+ c1ξη+O(ξ2) can

introduce such vertex at O(ξ3), no other operators contribute at this order.
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Short summary and examples for EFT analysis:

• For a pure SM gauge singlet pseudoscalar field η, effective operatorsO1,2 can contribute

to the ZHη vertex, which may finally appear at O(ξ3).

Model ZHη-vertex Note

SM+Complex Singlet 0 η is pure SM gauge singlet, f →∞

2HDM O(1) η is a component of SM gauge doublet

(SU(4)/SU(3))4 LH Model∗ O(ξ) η contains O(ξ) SM gauge doublet component

SLH [(U(3)/U(2))2] Model O(ξ3) η is pure SM gauge singlet

[* D. E. Kaplan and M. Schmaltz, JHEP 0310, 039 (2003).]

https://doi.org/10.1088/1126-6708/2003/10/039
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III. ZHη-VERTEX IN THE SLH MODEL

• We discuss the SLH model in details as an example of EFT analysis;

• Only two scalars, and η is a pure SM gauge singlet in this model;

• Naively calculate the ZHη vertex, it behaves like the EFT analysis;

• We should also perform a complete formalism in kinetic diagonalization.
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A. The SLH Model

• A Global symmetry breaking (SU(3) × U(1))2 → (SU(2) × U(1))2 happens at a high

scale f , gauge group is enlarged to SU(3)× U(1) which breaks to SM gauge group;

• Two scalar triplets Φ1,2 are nonlinear realized as:

Φ1 = eiΘ′
eitβΘ

 01×2

fcβ

 , Φ2 = eiΘ′
e−iΘ/tβ

 01×2

fsβ

 ;

with the definitions of the matrix fields

Θ ≡ 1

f

ηI3×3√
2

+

 02×2 φ

φ† 0

 , and Θ′ ≡ 1

f

ζI3×3√
2

+

 02×2 ϕ

ϕ† 0

 .
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• There are 10 Goldstones and 8 of which are eaten by massive gauge bosons;

• tβ means the ratio between the VEVs of the two triplets;

• η is the pseudoscalar and φ is the Higgs doublet defined as above;

• ζ and ϕ ≡ ((σ − iω)/
√

2, x−)T are expected to be eaten by heavy gauge bosons;

• η can acquire its mass through µ2Φ†1Φ2 term, and EWSB can be induced by loop

corrections, heavy gauge bosons (Z ′, X±, Y, Ȳ ) can acquire their masses before EWSB,

while EW gauge bosons (W±, Z) acquire their masses after EWSB;

• All fermion doublets should be enlarged to triplets as well, and the heavy top T

domains the EWSB through loop corrections;
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Some properties of the SLH parameters:

Parameter Allowed Region Constraints

f (7.5− 84.5) TeV
Lower: LHC direct search∗,∗

Upper: Goldstone scaterring unitarity∗∗

tβ 1-8.9
Lower: Convention

Upper: Goldstone scaterring unitarity∗∗

mη (0− 1.5) TeV Theoretical EWSB conditions∗∗

mT (1.7-18.7)
Lower: Goldstone scaterring unitarity∗∗

Upper: Theoretical EWSB conditions∗∗

[∗ ATLAS Collaboration, JHEP 1710, 182 (2017); ∗ Y.-N. Mao, 1703.10123;

** K. Cheung, S.-P. He, Y.-N. Mao, C. Zhang, and Y. Zhou, 1801.10066.]

https://doi.org/10.1007/JHEP10(2017)182
https://inspirehep.net/record/1520009
https://inspirehep.net/record/1651262
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B. General Diagonalization Procedure

• When we expand (DµΦ1)2 + (DµΦ2)2, the lagrangian contains

L ⊃ 1

2
Kij(∂Gi)(∂Gj)︸ ︷︷ ︸

A

+FpiV µ
p ∂µGi︸ ︷︷ ︸
B

+
1

2
(M2

V )pqVp,µV
µ
q︸ ︷︷ ︸

C

.

• Like in the EFT analysis, there are two-point transitions in term A and B, and the

two-point transition in B should be exactly canceled by the gauge fixing term;

• For term A, there are two-point kinetic mixing in CP-odd scalar sector (Gi = η, ζ, χ, ω)

and we need a new basis Si ≡ UijGj which can give L ⊃ (∂Si)
2/2;
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• Introduce the inner product in the linear space spanned by Si: 〈Si|Sj〉 = δij, it can be

derived 〈Gi|Gj〉 = (K−1)ij;

• With this relation, for Ḡp = FpiGi, we have 〈Ḡp|Ḡq〉 = (M2
V )pq;

• M2
V can be diagonalized through a matrix R as (RM2

VR
T )pq = m2

pδpq;

• Thus we have the Goldstone basis G̃p = RpqFqiGi/mp, together with the pseudoscalar

η̃ = η/
√

(K−1)11, the basis (η̃, G̃i) is canonically normalized;

• Choose the gauge-fixing term −
(
∂µṼ

µ
p /
√
ξp −

√
ξpmpG̃p

)2

/2, Ṽp are in mass eigen-

states, G̃p are exactly eaten by Ṽp thus they are the corresponding Goldstone fields.
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C. Detailed Calculation and Results

• First, divide the matrix F into two parts as F4×3 =
(
f̃1×3, F̃3×3

)
, with the vector

component f̃q = Fqη, we have the new relation

G̃p = Rpq

(
ηf̃q + F̃qkGk

)
/mp, or Gi = (F̃−1RT )iqmqG̃q − (F̃−1f̃)i

√
(K−1)11η̃.

• η component appears in the original Goldstone degrees of freedom as shown above;

• The antisymmetric V HGi-vertex is parameterized as L ⊃ CpiV
µ
p (Gi∂µH − H∂µGi),

all Cpi are elements of a 4× 3 matrix C;

• In the previous papers, choose ξ ≡ v/f as usual and using the original fields, the ZHη

vertex was derived as −gξ/(
√

2cW t2β)Zµ(η∂µH −H∂µη) ∼ O(ξ) −→Incorrect!
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• Following our diagonalization procedure, we should re-derive the ZHη-vertex, define

a 1× 4 vector as Υ ≡
√

(K−1)11(1,−f̃T (F̃−1)T )T , the ZHη vertex should be

c̃ZHηZ̃
µ(η̃∂µH −H∂µη̃) ≡ (RCΥ)Z̃µ(η̃∂µH −H∂µη̃)

• Straightforward calculation gives c̃ZHη = −gξ3/(4
√

2c3
W t2β) ∼ O(ξ3);

• That’s because χ̃ ∼ χ + O(ξ)η, a corresponding contribution to ZHη-vertex then

arises and at O(ξ) it exactly cancels the naively derived ZHη-vertex as shown in last

page, just like the behavior of the EFT analysis above;

• Mass mixing between neutral gauge bosons also contribute to this vertex at O(ξ3).
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IV. CONCLUSIONS AND DISCUSSIONS

• Based on the EFT analysis, for a pure SM gauge singlet pseudoscalar η, the ZHη-

vertex cannot arise until O(ξ3) with ξ ≡ v/f ;

• We derived this vertex in the SLH model as an example, and showed the coefficient

should be c̃ZHη = −gξ3/(4
√

2c3
W t2β) ∼ O(ξ3), instead of −gξ/(

√
2cW t2β) ∼ O(ξ),

which has already existed in other papers for a long time;

• All corresponding phenomenology in SLH model should also be re-considered, which

will appear in my forthcoming papers soon;

• The calculation procedure can also be performed to other similar models.

Thank you! My Email: maoyn@ihep.ac.cn
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Appendix

Up to O(ξ3), more details during calculation are listed here:

K =



1 0
√

2ξ
t2β
− 7c2β+c6β

6
√

2s32β
ξ3 −

√
2ξ +

5+3c4β
3
√

2s22β
ξ3

0 1 − ξ√
2

+
5+3c4β

12
√

2s22β
ξ3 −2

√
2ξ3

3t2β
√

2ξ
t2β
− 7c2β+c6β

6
√

2s32β
ξ3 − ξ√

2
+

5+3c4β
12
√

2s22β
ξ3 1− 5+3c4β

12s22β
ξ2 2ξ2

3t2β

−
√

2ξ +
5+3c4β
3
√

2s22β
ξ3 −2

√
2ξ3

3t2β

2ξ2

3t2β
1


;

and thus (K−1)11 = 1 + 2ξ2/s2
2β;
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f̃ = gf

(
1√

2cW t2β
ξ2,

ρ

t2β
ξ2,−ξ +

5 + 3c4β

6s2
2β

ξ3

)T

;

F̃ = gf


− ξ2

2
√

2cW

ξ
2cW
− (5+3c4β)ξ3

24cW s22β

ξ3

3cW t2β√
2

3−t2W
− κ(1+c2W )ξ2√

2c2W
κξ − κ(5+3c4β)ξ3

12s22β
− 2κξ3

3c2W t2β

−2ξ3

3t2β

√
2ξ2

3t2β

1√
2

 ;

with ρ ≡
√

1 + 2c2W

1 + c2W

and κ ≡ c2W

2c2
W

√
3− t2W

;
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Υ = c−1
γ+δ


1

s2
γt
−1
β − s2

δtβ

(c2δtβ − c2γt
−1
β ) ξ√

2

1
2
(s2δtβ + s2γt

−1
β )

 =



1 + ξ2

s22β

− ξ2

t2β

−
√

2ξ
t2β
− 3−c4β√

2t2βs
2
2β

ξ3

√
2ξ +

3−c4β
3
√

2s22β
ξ3


;

with γ ≡ ξtβ/
√

2 and δ ≡ ξ/(
√

2tβ);
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R =


1 −κρ2ξ2

2cW
−
√

2ξ3

3cW t2β

κρ2ξ2

2cW
1 −2

√
2(1+2c2W )κξ3

3c2W t2β√
2ξ3

3cW t2β

2
√

2(1+2c2W )κξ3

3c2W t2β
1

 ;
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C = g


− ξ√

2cW t2β
+

(7c2β+c6β)ξ3

6
√

2cW s32β

ξ

2
√

2cW
− (5+3c4β)ξ3

12
√

2cW s22β
− 1

2cW
+

(5+3c4β)ξ2

12cW s22β
− ξ2

2cW t2β

− ρξ
t2β

+
ρ(7c2β+c6β)ξ3

6s32β

ρξ
2
− ρ(5+3c4β)ξ3

12s22β
−κ+

κ(5+3c4β)ξ2

6s22β

κξ2

c2W t2β

1
2
− (5+3c4β)ξ2

4s22β

ξ2

t2β
− ξ√

2t2β
+

(7c2β+c6β)ξ3

12
√

2s32β
0

 .
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