

Associated production of H(bb,cc) with a W or a Z in ATLAS

Jason Nielsen

Santa Cruz Institute for Particle Physics University of California, Santa Cruz On behalf of the ATLAS Collaboration

Introduction and Outline

 \boldsymbol{q}

 $\bar{q}^{(\prime)}$

- Measurement of Hbb (& Hcc) couplings is a long-standing challenge
- Associated Higgs boson production with W or Z vector boson
 - Calculated at NNLO (QCD) + NLO (EW)
 - Clean signature to reject background
 - But 20x smaller cross sect. than gluon fusion

- Overview of VH(bb) measurement strategy
- Multivariate event selection and background rejection
- Results for VH(bb) production, and combination with Run-1 data
- Results for benchmark VZ(bb) production
- Search for related $ZH(c\overline{c})$ production in 13 TeV data

b, c

H

In this talk

Measurement Strategy for VH(bb)

- Capture WH and ZH through 0-, 1-, and 2- charged lepton channels
 - Each channel divided into 2- and 3-jet categories to improve sensitivity
 - Focus on boosted V production: $p_T > 150$ GeV (75 GeV for 2-lepton)
- Tag b-jets to reconstruct Higgs boson candidate
 - Multivariate method based on impact parameter, vertexing, decay length
 - Dedicated b-jet energy corrections for energy losses from muons and neutrinos (plus kinematic fit in 2-lepton)
- Fits to data to determine Higgs vs. non-resonant background
 - Discriminating variable is output of kinematic Boosted Decision Tree
 - Floating normalizations in signal/control region channels and categories

Event Selection & Background Rejection

• Basic event requirements:

- 2 b-tagged jets with $p_T > 20 \text{ GeV}$ (lead jet $p_T > 45 \text{ GeV}$)
- Split into 2- and 3-jet samples
- E_T^{miss} > 150 (0-lep), 30 GeV (1-ele)
- p_T^{V} ranges vary by channel
 - $p_T^V > 150 \text{ GeV for 0,1-lep}$
 - 75 > p_T^V > 150 GeV or > 150 GeV for 2-lep
- Boosted Decision Tree trained in each signal region
 - Use event-level BDT variables, including m_{bb}, in TMVA

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	Х	Х
$E_{\mathrm{T}}^{\mathrm{miss}}$	Х	×	×
$p_{\mathrm{T}}^{b_1}$	Х	×	×
$p_{\mathrm{T}}^{b_2}$	Х	×	×
m_{bb}	×	Х	×
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×		
$\Delta \phi (ec V, b ec b)$	×	×	×
$ \Delta\eta(ec V, ec b ec b) $			×
$m_{ m eff}$	×		
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m_{ m T}^W$		×	
$m_{\ell\ell}$			×
$m_{ m top}$		X	
$ \Delta Y(ec V, ec b ec b) $		×	
	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

Event kinematic variables used in BDT training

2-b-tag 2-jet 0-lepton Candidate Event

Strategies for Estimating Background

- Background fractions differ between signal regions
 - Fit templates from simulation to find floating normalization factors, especially for W/Z+heavy flavor and tt backgrounds

Example: Z+Heavy Flavor Backgrounds

Post-fit results with all normalization factors applied

 Enough data to constrain Z+HF & W+HF separately in 2- & 3-jet events

Process	Normalization	
+ HF 2-jet	1.22 ± 0.14	
+ HF 3-jet	1.27 ± 0.14	
+ HF 2-jet	1.30 ± 0.10	
+ HF 3-jet	1.22 ± 0.09	

W

W

Ζ

Ζ

 Top is constrained in 0- & 1-lep combined, plus separate 2-lep 2and 3-jet categories

VH Measurement Results @ 13 TeV

- Overall fitted signal strength $\mu = 1.20^{+0.24}_{-0.23}$ (stat.)^{+0.34}_{-0.28} (syst.)
 - Observed excess 3.5σ significance (3.0σ expected)

Measurements of WH and ZH rates consistent with SM

-
$$\sigma(WH) \times B(H \rightarrow b\overline{b}) = 1.08^{+0.54}_{-0.47} \text{ pb}$$

- $\sigma(ZH) \times B(H \rightarrow b\overline{b}) = 0.57^{+0.26}_{-0.23} \text{ pb}$

J. Nielsen (Santa Cruz)

Cross-Check Measurement with mbb

- Alternative fit to m_{bb} with tighter selection, more regions
- Irreducible VZ(bb) background kinematically similar to VH

VZ Result from Diboson Analysis

- Train a separate BDT_{VZ} adapted for softer m_{bb} , p_T spectra
 - In this fit, Higgs VH production is treated as a background!
 - Result is a VZ($b\overline{b}$) measurement with 5.8 σ significance
 - This is a very good validation of the Higgs boson analysis

Combined ATLAS VH(bb) Results

- Comparison with 7 & 8 TeV results from LHC Run 1
 - Use the signal strength μ_{VH} for different values of Vs
 - Combined observed significance 3.6σ (4.0σ expected)

• Consistent with Standard Model, so far...

Focus on Dominant Uncertainties

• WH and ZH signal acceptance:

- Uncertainties in V p_T and m_{bb} due to missing higher orders, PS tune
- Monte Carlo statistics:
 - Few events with high- p_{T} , 2-b-tags, and high BDT values

Background normalizations

- Control of backgrounds will improve with more data in CRs
- B-tagging efficiency:
 - MC-to-data correction factors, parameterized in p_{τ} , $|\eta|$

Prospects for improvements!

J. Nielsen (Santa Cruz)

From 13 ToV results only

11011113		У		
Source of uncertainty σ_{μ}				
Total		0.39		
Statistical		0.24		
Systematic		0.31		
Experimental uncertainties				
Jets		0.03		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03		
Leptons		0.01		
	b-jets	0.09		
b-tagging	<i>c</i> -jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity		0.04		
Theoretical and modelling uncertainties				
Signal		0.17		
Floating normalisations		0.07		
Z + jets		0.07		
W + jets		0.07		
$t\overline{t}$		0.07		
Single top quark		0.08		
Diboson		0.02		
Multijet		0.02		
-				
MC statistical		0.13		
		IZ		

Search for ZH(cc) Production

- New inclusive approach to constrain Hcc coupling
 - Focus on 2-lepton channel for simpler background composition
- Dedicated multivariate discriminants similar to b-tagger:
 - Separate c-jets from light-jets and c-jets from b-jets
 - Challenges of short τ_c , low track multiplicity in c-hadron decays
 - Both 1 c-tag and 2 c-tag events are used to keep efficiency high

Results for ZH(cc̄) and ZZ/ZW

Cut-based event selection with fit to $\rm m_{\rm cc}$

• Target cc resonances

- Requirement on ΔR_{cc} varies from 2.2 at low p_T^z to 1.3 at high p_T^z (>200 GeV)
- p_T^Z ranges 75-150, >150 GeV
- Simultaneous fit of signal and Z+jets background
 - Flavor tagging uncertainty is dominant limitation on uncert.

Validation:
$$\mu_{ZV} = 0.6^{+0.5}_{-0.4}$$

(1.4 σ observed, 2.2 σ expected)

Summary and Conclusions

- Updated Run-2 ATLAS evidence for H(bb) in VH production
 - 3.5 σ observed significance in 13 TeV result: σ (VH) x BR(bb) = $1.58^{+0.55}_{-0.47}$ pb
 - Combination with Run-1 results: $\mu = 0.90 \pm 0.18 (\text{stat.})^{+0.21}_{-0.19} (\text{syst.})$
- New ATLAS limit on Higgs ZH production and decay to $c\overline{c}$
 - $-\sigma x$ BR limit of 2.7 pb is most stringent yet in direct searches for H($c\overline{c}$)
- For further details on the published results:
 - VH(bb) result with 36.1 fb⁻¹ at 13 TeV & combination: <u>JHEP 12 (2017) 024</u>
 - ZH($c\overline{c}$) result with 36.1 fb⁻¹ at 13 TeV: <u>arXiv:1802.04329</u> (submitted to PRL)

Looking forward to more 13 TeV data and improved measurements

