Associated production of $H(b\bar{b},c\bar{c})$ with a W or a Z in ATLAS

Jason Nielsen
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz
On behalf of the ATLAS Collaboration

53rd Rencontres de Moriond — EWK 2018
La Thuile, Valle d’Aosta, Italy
12 March 2018
Introduction and Outline

- Measurement of Hbb (& Hcc) couplings is a long-standing challenge
- Associated Higgs boson production with W or Z vector boson
 - Calculated at NNLO (QCD) + NLO (EW)
 - Clean signature to reject background
 - But 20x smaller cross sect. than gluon fusion

Overview of VH(\(b\bar{b}\)) measurement strategy
- Multivariate event selection and background rejection
- Results for VH(\(b\bar{b}\)) production, and combination with Run-1 data
- Results for benchmark VZ(\(b\bar{b}\)) production
- Search for related ZH(\(c\bar{c}\)) production in 13 TeV data
Measurement Strategy for VH(b\bar{b})

- Capture WH and ZH through 0-, 1-, and 2- charged lepton channels
 - Each channel divided into 2- and 3-jet categories to improve sensitivity
 - Focus on boosted V production: $p_T > 150$ GeV (75 GeV for 2-lepton)
- Tag b-jets to reconstruct Higgs boson candidate
 - Multivariate method based on impact parameter, vertexing, decay length
 - Dedicated b-jet energy corrections for energy losses from muons and neutrinos (plus kinematic fit in 2-lepton)
- Fits to data to determine Higgs vs. non-resonant background
 - Discriminating variable is output of kinematic Boosted Decision Tree
 - Floating normalizations in signal/control region channels and categories
Event Selection & Background Rejection

- **Basic event requirements:**
 - 2 b-tagged jets with $p_T > 20$ GeV (lead jet $p_T > 45$ GeV)
 - Split into 2- and 3-jet samples
 - $E_T^{miss} > 150$ (0-lep), 30 GeV (1-ele)
 - p_T^V ranges vary by channel
 - $p_T^V > 150$ GeV for 0,1-lep
 - $75 > p_T^V > 150$ GeV or > 150 GeV for 2-lep
- **Boosted Decision Tree trained in each signal region**
 - Use event-level BDT variables, including m_{bb}, in TMVA

Event kinematic variables used in BDT training

<table>
<thead>
<tr>
<th>Variable</th>
<th>0-lepton</th>
<th>1-lepton</th>
<th>2-lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^V</td>
<td>E_T^{miss}</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>p_{b_1}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>p_{b_2}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>m_{bb}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$\Delta R(\vec{b}_1, \vec{b}_2)$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \eta(\vec{b}_1, \vec{b}_2)</td>
<td>$</td>
<td>\times</td>
</tr>
<tr>
<td>$\Delta \phi(\vec{V}, \vec{bb})$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \eta(\vec{V}, \vec{bb})</td>
<td>$</td>
<td>\times</td>
</tr>
<tr>
<td>m_{eff}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$\min[\Delta \phi(\vec{\ell}, \vec{b})]$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>m_W</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>m_{top}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>$</td>
<td>\Delta Y(\vec{V}, \vec{bb})</td>
<td>$</td>
<td>\times</td>
</tr>
</tbody>
</table>

Only in 3-jet events:

<table>
<thead>
<tr>
<th>Variable</th>
<th>0-lepton</th>
<th>1-lepton</th>
<th>2-lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^{jet_3}$</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
<tr>
<td>m_{bbj}</td>
<td>\times</td>
<td>\times</td>
<td>\times</td>
</tr>
</tbody>
</table>
2-b-tag 2-jet 0-lepton Candidate Event

ATLAS EXPERIMENT

Run: 284213
Event: 1927020336
2015-10-31 04:17:36 CEST
Strategies for Estimating Background

- **Background fractions differ between signal regions**
 - Fit templates from simulation to find floating normalization factors, especially for $W/Z+$heavy flavor and $t\bar{t}$ backgrounds

```
<table>
<thead>
<tr>
<th>2-jet</th>
<th>3-jet</th>
<th>Control regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z+HF, \bar{t}t$</td>
<td>$\bar{t}t, Z+HF$</td>
<td>$W+HF$</td>
</tr>
<tr>
<td>$\bar{t}t, W+HF$</td>
<td>$\bar{t}t$</td>
<td>$m_{bb} &lt; 75$</td>
</tr>
<tr>
<td>$Z+HF, \bar{t}t$</td>
<td>$Z+HF, \bar{t}t$</td>
<td>$m_{top} &gt; 225$</td>
</tr>
</tbody>
</table>
```

Combine for $Z+HF$ norm.

Separate to fit all normalization factors.
Example: Z+Heavy Flavor Backgrounds

- Enough data to constrain Z+HF & W+HF separately in 2- & 3-jet events

- Top is constrained in 0- & 1-lep combined, plus separate 2-lep 2- and 3-jet categories

Post-fit results with all normalization factors applied

<table>
<thead>
<tr>
<th>Process</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + HF 2-jet</td>
<td>1.22 ± 0.14</td>
</tr>
<tr>
<td>W + HF 3-jet</td>
<td>1.27 ± 0.14</td>
</tr>
<tr>
<td>Z + HF 2-jet</td>
<td>1.30 ± 0.10</td>
</tr>
<tr>
<td>Z + HF 3-jet</td>
<td>1.22 ± 0.09</td>
</tr>
</tbody>
</table>
VH Measurement Results @ 13 TeV

- **Overall fitted signal strength** \(\mu = 1.20^{+0.24}_{-0.23} \) (stat.) \(^{+0.34}_{-0.28} \) (syst.)
 - Observed excess 3.5\(\sigma \) significance (3.0\(\sigma \) expected)

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>VH, H(bb) (\sqrt{s}=13 \text{ TeV, } 36.1 \text{ fb}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Stat.</td>
</tr>
<tr>
<td>0L</td>
<td>(0.45 \pm 0.53) (Total) (^{+0.39}{-0.37}), (^{+0.36}{-0.34}) (Stat., Syst.)</td>
</tr>
<tr>
<td>1L</td>
<td>(1.43 \pm 0.59) (Total) (^{+0.40}{-0.38}), (^{+0.56}{-0.45}) (Stat., Syst.)</td>
</tr>
<tr>
<td>2L</td>
<td>(1.90 \pm 0.78) (Total) (^{+0.51}{-0.49}), (^{+0.59}{-0.42}) (Stat., Syst.)</td>
</tr>
<tr>
<td>Comb.</td>
<td>(1.20 \pm 0.42) (Total) (^{+0.24}{-0.23}), (^{+0.34}{-0.28}) (Stat., Syst.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATLAS</th>
<th>VH, H(bb) (\sqrt{s}=13 \text{ TeV, } 36.1 \text{ fb}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Stat.</td>
</tr>
<tr>
<td>WH</td>
<td>(1.35 \pm 0.68) (Total) (^{+0.40}{-0.38}), (^{+0.55}{-0.45}) (Stat., Syst.)</td>
</tr>
<tr>
<td>ZH</td>
<td>(1.12 \pm 0.50) (Total) (^{+0.34}{-0.33}), (^{+0.37}{-0.30}) (Stat., Syst.)</td>
</tr>
<tr>
<td>Comb.</td>
<td>(1.20 \pm 0.42) (Total) (^{+0.24}{-0.23}), (^{+0.34}{-0.28}) (Stat., Syst.)</td>
</tr>
</tbody>
</table>

- **Measurements of WH and ZH rates consistent with SM**
 - \(\sigma(WH) \times B(H \rightarrow b\bar{b}) = 1.08^{+0.54}_{-0.47} \) pb
 - \(\sigma(ZH) \times B(H \rightarrow b\bar{b}) = 0.57^{+0.26}_{-0.23} \) pb

J. Nielsen (Santa Cruz)
Cross-Check Measurement with mbb

- Alternative fit to m_{bb} with tighter selection, more regions
- Irreducible VZ($b\bar{b}$) background kinematically similar to VH

J. Nielsen (Santa Cruz)
VZ Result from Diboson Analysis

- Train a separate BDT$_{VZ}$ adapted for softer m_{bb}, p_T spectra
 - In this fit, Higgs VH production is treated as a background!
 - Result is a VZ(bb) measurement with 5.8σ significance
 - This is a very good validation of the Higgs boson analysis

In this fit, Higgs VH production is treated as a background!

- Result is a VZ(bb) measurement with 5.8σ significance
- This is a very good validation of the Higgs boson analysis
Combined ATLAS VH(b̅b) Results

- **Comparison with 7 & 8 TeV results from LHC Run 1**
 - Use the signal strength μ_{VH} for different values of \sqrt{s}
 - Combined observed significance 3.6σ (4.0σ expected)

- **Consistent with Standard Model, so far...**

J. Nielsen (Santa Cruz)
Focus on Dominant Uncertainties

- **WH and ZH signal acceptance:**
 - Uncertainties in $V p_T$ and m_{bb} due to missing higher orders, PS tune

- **Monte Carlo statistics:**
 - Few events with high-p_T, 2-b-tags, and high BDT values

- **Background normalizations**
 - Control of backgrounds will improve with more data in CRs

- **B-tagging efficiency:**
 - MC-to-data correction factors, parameterized in p_T, $|\eta|$

Prospects for improvements!

From 13 TeV results only

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>σ_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.39</td>
</tr>
<tr>
<td>Statistical</td>
<td>0.24</td>
</tr>
<tr>
<td>Systematic</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Experimental uncertainties

- Jets 0.03
- E_{miss} 0.03
- Leptons 0.01

b-tagging

- b-jets 0.09
- c-jets 0.04
- Light jets 0.04
- Extrapolation 0.01

- Pile-up 0.01
- Luminosity 0.04

Theoretical and modelling uncertainties

- Signal 0.17

- Floating normalisations 0.07
- $Z +$ jets 0.07
- $W +$ jets 0.07
- $t\bar{t}$ 0.07
- Single top quark 0.08
- Diboson 0.02
- Multijet 0.02

- MC statistical 0.13
Search for $Z\cbar H(c\cbar)$ Production

- **New inclusive approach to constrain H_{cc} coupling**
 - Focus on 2-lepton channel for simpler background composition

- **Dedicated multivariate discriminants similar to b-tagger:**
 - Separate c-jets from light-jets and c-jets from b-jets
 - Challenges of short τ_c, low track multiplicity in c-hadron decays
 - Both 1 c-tag and 2 c-tag events are used to keep efficiency high

ATLAS Simulation
\[\sqrt{s} = 13 \text{ TeV}, \, \mathbf{t} \mathbf{t} \]

ATLAS Simulation
\[\sqrt{s} = 13 \text{ TeV}, \, 36.1 \text{ fb}^{-1} \]

$Z + \text{jets}$ Simulation
\[\sqrt{s} = 13 \text{ TeV}, \geq 50 \text{ GeV} \]

Dijet Flavour Composition

\[
\begin{array}{cc}
\text{ll} & \text{cl} \\
\text{cc} & \text{bl} \\
\text{bb} &
\end{array}
\]

J. Nielsen (Santa Cruz)
Results for ZH(c⁻c⁺) and ZZ/ZW

Cut-based event selection with fit to m_{cc}

- **Target c⁻c⁺ resonances**
 - Requirement on ΔR_{cc} varies from 2.2 at low p_T^Z to 1.3 at high p_T^Z (>200 GeV)
 - p_T^Z ranges 75-150, >150 GeV

- **Simultaneous fit of signal and Z+jets background**
 - Flavor tagging uncertainty is dominant limitation on uncert.

Validation: $\mu_{Z\nu} = 0.6^{+0.5}_{-0.4}$
(1.4σ observed, 2.2σ expected)

Observed upper limit of 2.7 pb on $\sigma(ZH) \times B(H \rightarrow c\bar{c})$
(SM predicts 26 fb at 13 TeV)
Summary and Conclusions

- **Updated Run-2 ATLAS evidence for H(bb) in VH production**
 - 3.5σ observed significance in 13 TeV result: $\sigma(VH) \times BR(bb) = 1.58^{+0.55}_{-0.47}$ pb
 - Combination with Run-1 results: $\mu = 0.90 \pm 0.18$ (stat.$)^{+0.21}_{-0.19}$ (syst.)

- **New ATLAS limit on Higgs ZH production and decay to c\bar{c}**
 - $\sigma \times BR$ limit of 2.7 pb is most stringent yet in direct searches for H(c\bar{c})

- **For further details on the published results:**
 - ZH(c\bar{c}) result with 36.1 fb$^{-1}$ at 13 TeV: [arXiv:1802.04329](https://arxiv.org/abs/1802.04329) (submitted to PRL)

Looking forward to more 13 TeV data and improved measurements