Measurement of the BEH scalar coupling to the top quark in CMS

Marco Peruzzi (CERN)
on behalf of the CMS Collaboration

53rd Rencontres de Moriond
Electroweak interactions and unified theories
La Thuile, Italy, 10th - 17th March 2018
Introduction

- **top - Higgs coupling** at the LHC:
 - indirect sensitivity from gluon fusion, if no BSM particles run in the loop
 - direct sensitivity from associated production (coupling at tree level)

- σ_{tH} at 13 TeV \sim **510 fb**, more increase than backgrounds over 8 TeV
- **Different challenging aspects for each Higgs decay channel**
ttH measurements in CMS

A variety of final states, studied with different experimental techniques:

- **tt + b-jets**: large branching ratio, but complex hadronic final state
- **tt + leptons** (H → WW*, ZZ*, ττ): lower rate, low SM backgrounds
- **tt + γγ, 4ℓ**: very clean final state, but small rate

Status of CMS ttH measurements before this talk:

- **ZZ* → 4 leptons**
 - CMS JHEP 11 (2017) 47, L = 35.9 fb⁻¹
- **γγ**
 - CMS Preliminary HIG-16-040, L = 35.9 fb⁻¹
- **WW*, ZZ*, ττ leptons**
 - CMS Preliminary HIG-17-004, L = 35.9 fb⁻¹
- **ττ hadronic**
 - CMS Preliminary HIG-17-003, L = 35.9 fb⁻¹
- **b̅b lepton**
 - CMS Preliminary HIG-16-038, L = 12.9 fb⁻¹

First presented here at Moriond last year

Measurement of the BEH scalar coupling to the top quark in CMS
ttH measurements in CMS

A variety of final states, studied with different experimental techniques:

- **tt + b-jets**: large branching ratio, but complex hadronic final state
- **tt + leptons** (H → WW*, ZZ*, ττ): lower rate, low SM backgrounds
- **tt + γγ, 4ℓ**: very clean final state, but small rate

New results with full 2016 dataset

Measurement of the BEH scalar coupling to the top quark in CMS
Leptonic final states

- From **Higgs decays to** WW^*, ZZ^*, $\tau\tau$
- Channels:
 - 1 lepton + 2 τ_h
 - 2 same-sign leptons + 0,1 τ_h
 - 3 leptons + 0,1 τ_h
 - 4 leptons
- At least 2 loose or 1 medium **b-tagged jets**
- **High jet multiplicity**

Main sources of background:
- **irreducible**: ttV and di-boson, predicted from simulation and control regions
- **reducible**: **non-prompt leptons** in tt events, predicted from data
Analysis strategy

- Event categorization in **lepton flavor, charge and b-jet multiplicity**
- Widespread usage of **multivariate analysis methods**:
 - lepton selection combining isolation, identification and vertex variables
 - resolved hadronic top decay and Higgs decay product taggers
 - BDT discriminants based on kinematic variables (e.g. $\Delta R(\ell,j)$)
 - matrix element calculations in $2\ell + 1\tau_h$ and $3\ell + 0\tau_h$
Combined result

- Evidence for \(ttH\) production in leptonic final states: \(3.2\sigma\) (\(2.8\sigma\) exp.) significance
- Main experimental uncertainties: lepton efficiency, non-prompt background prediction
- Cross-check analysis with \(ttV\) normalization fitted from dedicated control regions: \(\mu = 1.04^{+0.50}_{-0.36}\), \(2.7\sigma\) (\(2.7\sigma\) exp.) significance

Measurement of the BEH scalar coupling to the top quark in CMS
tt + b-jets final states

- Challenging jet combinatorics
- Limited bb mass resolution

Channels:
- 1 lepton + ≥ 4 jets, ≥ 3 b-tag
- 2 leptons + ≥ 4 jets, ≥ 3 b-tag

- Rely on machine learning and matrix element methods to maximize the sensitivity of the analysis

Main background: tt + heavy flavor, mainly tt+bb (from simulation, with large theory uncertainties ≥ 35%)

Measurement of the BEH scalar coupling to the top quark in CMS
bb, 2ℓ analysis

- Categorization based on b-tagged jet multiplicity
 - ≥4j, 3b: BDT against tt+jets background, inputs: kinematic variables, event shape, b-tag
 - ≥4j, ≥4b: BDT + MEM against tt+bb background

CMS Preliminary

![Graph showing data and categories](image)

- **New Result**
- **Events / 0.13**
- **Data**
- **≤0.5**
- **DL**
- **10 +lf**
- **10 ≤0.13**
- **≥35.9 fb⁻¹ (13 TeV)**
- **Post-fit**
- **Preliminary**
- **CMS PAS HIG-17-026**

- **BDT**
- **Split at BDT median**
- **≥4j, 3b**
- **≥4j, ≥4b, low BDT**
- **1 + 2 categories**
bb, 2ℓ analysis

- Categorization based on b-tagged jet multiplicity
- ≥4j, 3b: BDT against tt+jets background, inputs: kinematic variables, event shape, b-tag
- ≥4j, ≥4b: BDT + MEM against tt+bb background

CMS Preliminary

![Graph](image)

- 35.9 fb⁻¹ (13 TeV)
- **DL (≥4 jets, 3 b-tags)**
- **Post-fit**
- **BDT (≥4 jets, ≥4 b-tags)**
- **Post-fit**

Split at BDT median

- ≥4j, 3b
- ≥4j, ≥4b, low BDT

1 + 2 categories

Measurement of the BEH scalar coupling to the top quark in CMS
bb, 1\ell analysis

- Categories based on jet multiplicity: 4j, 5j, \geq 6j
- Deep neural network in each category with BDT input variables + MEM discriminant
- Multi-classifier output representing “probability” of a certain physics process hypothesis
bb, 1ℓ analysis

New Result

- **Simultaneous fit** of node output distributions in each category allows for optimal **separation** of physics processes.

Measurement of the BEH scalar coupling to the top quark in CMS
bb, 1\ell + 2\ell results

- Very significant improvement over the previous version of the analysis
- Main systematic uncertainties:
 - tt + heavy flavor theory prediction
 - b-tagging and jet energy calibration

Measurement of the BEH scalar coupling to the top quark in CMS

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>(\pm \sigma_\mu) (observed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>total experimental</td>
<td>+0.15/-0.16</td>
</tr>
<tr>
<td>b tagging</td>
<td>+0.11/-0.14</td>
</tr>
<tr>
<td>jet energy scale and resolution</td>
<td>+0.06/-0.07</td>
</tr>
<tr>
<td>total theory</td>
<td>+0.28/-0.29</td>
</tr>
<tr>
<td>tt+hf cross-section and parton shower</td>
<td>+0.24/-0.28</td>
</tr>
<tr>
<td>size of MC samples</td>
<td>+0.14/-0.15</td>
</tr>
<tr>
<td>total systematic</td>
<td>+0.38/-0.38</td>
</tr>
<tr>
<td>statistical</td>
<td>+0.24/-0.24</td>
</tr>
<tr>
<td>total</td>
<td>+0.45/-0.45</td>
</tr>
</tbody>
</table>
bb, 0ℓ analysis

- **Fully hadronic final state**: even more challenging
- **Dedicated b-tag triggers**: 6 jets, large H_T, 1 or 2 b-jets
bb, 0ℓ analysis

- **Fully hadronic final state**: even more challenging
- **Dedicated b-tag triggers**: 6 jets, large H_T, 1 or 2 b-jets
- **QCD multi-jet background** in addition to tt+HF, reduced using *quark-gluon jet discriminator*

Measurement of the BEH scalar coupling to the top quark in CMS

Figure 1: An example of an LO Feynman diagram for $t\bar{t}H$ production, including the subsequent decays of the top quark-antiquark pair, as well as the decay of the Higgs boson into a bottom quark-antiquark pair.

Table

<table>
<thead>
<tr>
<th>Events / 0.05 units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^8</td>
</tr>
<tr>
<td>10^7</td>
</tr>
<tr>
<td>10^6</td>
</tr>
<tr>
<td>10^5</td>
</tr>
<tr>
<td>10^4</td>
</tr>
<tr>
<td>10^3</td>
</tr>
<tr>
<td>10^2</td>
</tr>
<tr>
<td>10^1</td>
</tr>
</tbody>
</table>

Legend

- Total unc
- Multijet
- tt+b
- tt+2b
- tt+lf
- tt+bb
- tt+c\bar{c}
- Single t
- Diboson
- V+jets
- Data
bb, 0ℓ analysis

- **Fully hadronic final state**: even more challenging
- **Dedicated b-tag triggers**: 6 jets, large H_T, 1 or 2 b-jets
- **QCD multi-jet background** in addition to $tt+HF$, reduced using quark-gluon jet discriminator

Figure 1: An example of an LO Feynman diagram for $t\bar{t}$ production, including $t\bar{t}+b$ process, which provides extra discrimination against the irreducible $t\bar{t}$ signal and the multijet background and, to a lesser extent, the $t\bar{t}$ signal and the multijet background. Smaller $t\bar{t}$ background. Smaller

Table 1: Summary of the number of events observed in the validation region for various backgrounds and signal processes.

<table>
<thead>
<tr>
<th>Process</th>
<th>Events / 30 GeV</th>
<th>Events / 0.05 units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total unc.</td>
<td>1200</td>
<td>7.9 × 10^4</td>
</tr>
<tr>
<td>Multijet</td>
<td>1100</td>
<td>7.2 × 10^4</td>
</tr>
<tr>
<td>$tt+lf$</td>
<td>900</td>
<td>5.7 × 10^4</td>
</tr>
<tr>
<td>$tt+b$</td>
<td>800</td>
<td>5.1 × 10^4</td>
</tr>
<tr>
<td>Diboson</td>
<td>700</td>
<td>4.5 × 10^4</td>
</tr>
<tr>
<td>Single t</td>
<td>600</td>
<td>4.0 × 10^4</td>
</tr>
<tr>
<td>$V+J$</td>
<td>500</td>
<td>3.2 × 10^4</td>
</tr>
<tr>
<td>$tt+b$</td>
<td>400</td>
<td>2.5 × 10^4</td>
</tr>
</tbody>
</table>

Figure 2: Distribution of the bb mass for the validation region, with the pull distribution shown. The χ^2/dof is 1.0 and the p-value is 0.397.

Figure 3: Distribution of the QCD enriched validation region, with the Data/Bkg ratio shown. The QGLR (4b) is 35.9 fb$^{-1}$ (13 TeV).

Measurement of the BEH scalar coupling to the top quark in CMS
bb, 0ℓ analysis

- **Fully hadronic final state**: even more challenging
- **Dedicated b-tag triggers**: 6 jets, large H_T, 1 or 2 b-jets
- **QCD multi-jet background** in addition to $tt+HF$, reduced using quark-gluon jet discriminator

Measurement of the BEH scalar coupling to the top quark in CMS
Measurement of the BEH scalar coupling to the top quark in CMS

- Event categorization in #jets, b-jets
- **Matrix element discriminator**
designed to separate ttH from tt+bb
- Tested on jet permutations
Measurement of the BEH scalar coupling to the top quark in CMS

Event categorization in #jets, b-jets

- **Matrix element discriminator**
 - designed to separate ttH from tt+bb
 - Tested on jet permutations

MEM discriminant template for QCD
- extrapolated from 2 b-jet control region, normalization left floating in the fit
- Corrections for different p_T, η, ΔR_{jj} of loose vs. tight b-tagged 3rd and 4th jets
- tt+jets predicted from simulation

Preliminary

7 jets, 3 b tags
$S/B = 0.0023, S/\sqrt{B} = 0.5978$

8 jets, 3 b tags
$S/B = 0.0033, S/\sqrt{B} = 0.7048$

≥ 9 jets, 3 b tags
$S/B = 0.0049, S/\sqrt{B} = 0.7874$

7 jets, ≥ 4 b tags
$S/B = 0.0077, S/\sqrt{B} = 0.5227$

8 jets, ≥ 4 b tags
$S/B = 0.0095, S/\sqrt{B} = 0.6890$

≥ 9 jets, ≥ 4 b tags
$S/B = 0.0143, S/\sqrt{B} = 0.8484$

35.9 fb$^{-1}$ (13 TeV)

Data/Bkg vs. MEM discriminant

CMS Preliminary HIG-17-022
In agreement with SM expectation, **driven by ≥4b categories**

Main experimental uncertainties: b-tagging, QCD shape modeling

Nicely complements the sensitivity provided by semi- and di-leptonic top decays

Measurement of the BEH scalar coupling to the top quark in CMS
Combined results

- All $t\bar{t}H$ analyses combined with other Higgs measurements in global fits (more details in D. Sperka’s talk later today)
Combined results

- All ttH analyses combined with other Higgs measurements in global fits (more details in D. Sperka’s talk later today)
- Focus here on top-Higgs coupling:

 * ttH+tH production cross section modifier from per-production mode fit: $\Delta \mu_{ttH} \sim 30\%$

<table>
<thead>
<tr>
<th>ttH</th>
<th>Best fit value</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±1σ (stat.)</td>
<td>±1σ (sys.)</td>
</tr>
<tr>
<td></td>
<td>±2σ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ttH</th>
<th>(stat.)</th>
<th>(sys.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.18</td>
<td>±0.31</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(±0.28)</td>
<td>(±0.16)</td>
</tr>
</tbody>
</table>
Combined results

- **All ttH analyses combined with other Higgs measurements in global fits** (more details in D. Sperka’s talk later today)
- **Focus here on top-Higgs coupling:**

 - **ttH+tH production cross section modifier** from per-production mode fit: \(\Delta \mu_{ttH} \sim 30\% \)

 - **top coupling modifier** from \(\kappa \)-framework fit in the unresolved loops assumption:

<table>
<thead>
<tr>
<th>ttH</th>
<th>Best fit</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>Stat.</td>
</tr>
<tr>
<td>1.18</td>
<td>±0.31</td>
<td>+0.16</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>(±0.28)</td>
<td>(±0.16)</td>
</tr>
</tbody>
</table>

Measurement of the BEH scalar coupling to the top quark in CMS
Additional constraints

- **tHq production**: unique sensitivity to the sign of the coupling via interference

- Studied using similar strategies as for ttH

![Diagram of tHq production](image)

Measurement of the BEH scalar coupling to the top quark in CMS
Additional constraints

- **tHq production**: unique sensitivity to the sign of the coupling via interference

- Studied using similar strategies as for ttH

- Additional constraints from top measurements

- E.g. tttt production described in S. Sanchez’s talk earlier today

Measurement of the BEH scalar coupling to the top quark in CMS
Conclusions

• ttH accessible in a wide range of final states
• Challenging analysis performed with very advanced background reduction methods
• Direct measurements constrain the top-Higgs coupling to about 15%
• Indirect sensitivity is provided by other Higgs processes

Diverse sources of uncertainty limit our current sensitivity:
• how to improve and on which timescale?
• what are the best observables to extract the most relevant physics information?
tt + γγ final state

- Studied within the general H → γγ analysis
- Two dedicated selection categories:
 - **leptonic**: 1 lepton + 2 jets, 1 b-tagged jet
 - **hadronic**: 3 jets, 1 b-tagged jet
- Sensitivity enhanced by BDT discriminant in the hadronic category (jet multiplicity, p_T, b-tag)

![Graphs showing distributions and significance](image)

Measurement of the BEH scalar coupling to the top quark in CMS
tt + ZZ* → 4ℓ final state

- Very clean final state, but branching ratio is tiny
- Dedicated selection category:
 - at least four jets, 1 b-tagged jet, OR
 - at least one additional lepton
 - ~0.3 expected ttH signal events
ttH multi-lepton analysis

Measurement of the BEH scalar coupling to the top quark in CMS

<table>
<thead>
<tr>
<th>Selection</th>
<th>2ℓss</th>
<th>2ℓss + 11νh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targetted ttH decay</td>
<td>t → bW, t → bQ, H → WW → ℓνν</td>
<td>H → WW → ℓνν</td>
</tr>
<tr>
<td>Lepton pT</td>
<td>pT > 25 / 15 GeV</td>
<td>pT > 20 GeV</td>
</tr>
<tr>
<td>Charge requirements</td>
<td>2 same-sign leptons and charge quality requirements</td>
<td>2 same-sign leptons and charge quality requirements</td>
</tr>
<tr>
<td>Jet multiplicity</td>
<td>≥4 jets</td>
<td>≥3 jets</td>
</tr>
<tr>
<td>b tagging requirements</td>
<td>≥1 tight b-tagged jet or ≥2 loose b-tagged jets</td>
<td></td>
</tr>
<tr>
<td>Missing transverse momentum</td>
<td>LD > 30 GeV</td>
<td>LD > 30 GeV</td>
</tr>
<tr>
<td>Dilepton mass</td>
<td>mℓℓ > 12 GeV and</td>
<td>mℓℓ − mZ</td>
</tr>
</tbody>
</table>

Selection requirements in different event categories

- **Targetted ttH decays**
 - 1ℓ + 21νh: t → bW, t → bQ, H → WW → ℓνν
 - 4ℓ: t → bW, t → bQ, H → WW → ℓνν

- **Trigger**
 - Single-, double- and triple-lepton triggers

- **Lepton pT**
 - pT > 25 / 15 GeV

- **Charge requirements**
 - Σq = ±1

- **Jet multiplicity**
 - ≥2 jets

- **b tagging requirements**
 - ≥1 tight b-tagged jet or ≥2 loose b-tagged jets

- **Missing transverse momentum**
 - LD > 45 GeV

- **Dilepton mass**
 - mℓℓ > 12 GeV and |mℓℓ − mZ| > 10 GeV

Additional Notes
- Applied only if both leptons are electrons.
- If the event contains a SFOS lepton pair and N_l ≤ 3.
- Applied only if the event contains 2 SFOS lepton pairs.

References

- Moriond EW 2018
- Marco Peruzzi (CERN)
- CMS HIG-17-018
ttH multi-lepton analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty [%]</th>
<th>$\Delta \mu / \mu$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>e, μ selection efficiency</td>
<td>2–4</td>
<td>11</td>
</tr>
<tr>
<td>τ_h selection efficiency</td>
<td>5</td>
<td>4.5</td>
</tr>
<tr>
<td>b tagging efficiency</td>
<td>2–15 [?]</td>
<td>6</td>
</tr>
<tr>
<td>Reducible background estimate</td>
<td>10–40</td>
<td>11</td>
</tr>
<tr>
<td>Jet energy calibration</td>
<td>2–15 [?]</td>
<td>5</td>
</tr>
<tr>
<td>τ_h energy calibration</td>
<td>≈10</td>
<td>12</td>
</tr>
<tr>
<td>Theoretical sources</td>
<td>2.5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observable</th>
<th>$1 \ell + 2\tau_h$</th>
<th>$2\ell ss$</th>
<th>3ℓ</th>
<th>$3 \ell + 1\tau_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R(\ell_1,j)$</td>
<td>—</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\Delta R(\ell_2,j)$</td>
<td>—</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\langle \Delta R_{jj} \rangle$</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>\checkmark^2</td>
</tr>
<tr>
<td>$\Delta R_{\tau \tau}$</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\max (</td>
<td>\eta^{\ell_1}</td>
<td>,</td>
<td>\eta^{\ell_2}</td>
<td>)$</td>
</tr>
<tr>
<td>H_{miss}</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>\checkmark^2</td>
</tr>
<tr>
<td>N_j</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>N_b</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>m_{vis}</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>m_T^1</td>
<td>—</td>
<td>\checkmark</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$p_T^{\ell 1}$</td>
<td>—</td>
<td>\checkmark^1</td>
<td>\checkmark^1</td>
<td>\checkmark^1</td>
</tr>
<tr>
<td>$p_T^{\ell 2}$</td>
<td>—</td>
<td>\checkmark^1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$p_T^{\ell 3}$</td>
<td>—</td>
<td>—</td>
<td>\checkmark^1</td>
<td>\checkmark^1</td>
</tr>
<tr>
<td>$p_T^{\tau 1}$</td>
<td>—</td>
<td>—</td>
<td>\checkmark^1</td>
<td>\checkmark^1</td>
</tr>
<tr>
<td>$p_T^{\tau 2}$</td>
<td>\checkmark</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\text{LR}(3\ell)$</td>
<td>—</td>
<td>—</td>
<td>\checkmark^1</td>
<td>—</td>
</tr>
<tr>
<td>$\text{MVA}^\text{max}_{\text{thad}}$</td>
<td>—</td>
<td>\checkmark^2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$\text{MVA}^\text{max}_{\text{Hj}}$</td>
<td>—</td>
<td>\checkmark^1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. Used only in BDT that separates $t\bar{t}H$ signal from $t\bar{t}V$ background.
2. Used only in BDT that separates $t\bar{t}H$ signal from $t\bar{t}+\text{jets}$ background.

• Main sources of systematic uncertainty and their impact on the fitted signal

• Input kinematic variables to multivariate discriminators

Measurement of the BEH scalar coupling to the top quark in CMS
ttH multi-lepton yields

Measurement of the BEH scalar coupling to the top quark in CMS