Electroweak precision measurements in CMS

Josh Bendavid (CERN) presenting slides by Aram Apyan (FNAL) on behalf of the CMS collaboration

Mar. 12, 2018 Moriond EW La Thuile, Italy

Overview of the Electroweak Sector

 $\sin^2 \theta_{\rm W} = 1 - \frac{m_{\rm W}^2}{m_{\pi}^2}$

- Electroweak (EW) precision observables
 - $\alpha_{\rm em}, {\rm G_F}, m_{\rm W}, m_{\rm Z}, \sin^2 \theta_{\rm W}, m_h$
- Not independent but related through Standard Model (SM)

 $m_{\rm W}^2 \sin^2 \theta_{\rm W} = \frac{\pi \alpha}{\sqrt{2} G_{\rm F}}$

- Precision EW measurements
 - \bullet SM is over constrained with m_h
 - Testing the consistency of the SM
- Non-abelian Gauge structure
 - Are there anomalous couplings?
- Focus of this talk: • $\sin^2 \theta_W$
 - EW production of same sign WW

(Tree level)

Dilepton production at the LHC

- Neutral current process: $q \bar{q} \rightarrow Z/\gamma^* \rightarrow \ell^+ \ell^-$ CMS-PAS-SMP-16-007
- Z boson couplings are different for left and right-handed fermions
- Forward-backward asymmetry (A_{FB}) in the polar angle distribution of negatively charged lepton in the rest frame of di-lepton system
 - · Defined with respect to the incoming quark

Effective weak mixing angle

• A_{FB} is sensitive to $\sin^2 \theta_{\rm W}$ near Z peak G fitte Product of vector and axial couplings M., Μ., Electroweak corrections: Tree level couplings are replaced by σ_{had}^0 effective couplings R⁰lep $\sin^2 \theta_{\rm eff}^{\rm f} = \kappa_Z^{\rm f} \sin^2 \theta_{\rm W}$ A,(LEP) $g_{\rm A}^{\rm f} = \sqrt{\rho_{\rm f}} t_{3L}^{\rm f}$ A (SLD) sin²⊖^{lept}(Q $g_{
m V}^{
m f} = \sqrt{
ho_{
m f}}(t_{3L}^{
m f} - 2Q_{
m f}\kappa_{
m f}\sin^2\theta_{
m W})$ • Template fit to extract the $\sin^2 heta_{
m eff}^\ell$ 0.1 Large discrepancy (~3 standard deviations) between the two most precise LEP/SLD measurements -3 (O_{indirect} - O) / σ_{tot} 03/19/17 Eur. Phys. J. C 74, 3046 (2014)

Forward-backward Asymmetry

- A_{FB} measured as function of di-lepton mass in muon and electron final states (mass dependence from the Z/gamma* interference)
- Proton-proton collisions: where is the quark?
 - Direction of longitudinal boost of the di-lepton system in the laboratory frame chosen as the positive axis
 - Quark direction is not always along the positive axis
 - Dependence on PDF from large-x antiquarks

5

A_{FB} and $\sin^2 \theta_{\rm eff}^\ell$

- Dilution strongly depends on rapidity->maximal at Y=0->A_{FB}=0
- \bullet A_{FB} is measured in 6 bins of rapidity and 12 bins of dilepton mass
- Extract $\sin^2 heta_{
 m eff}^\ell$ by fitting the measured AFB with different templates
 - \bullet Angular event weighting->less sensitive to $cos\theta$ acceptance modeling

• Precise lepton momentum calibration Eur. Phys. J. C67, 321-334 (2010)

6

Statistical and systematic uncertainties

• Statistical uncertainties dominate

channel	statistical uncertainty
muon	0.00044
electron	0.00060
combined	0.00036

• Experimental uncertainties are small (dominated by limited number of simulated events)

Source	muons	electrons
MC statistics	0.00015	0.00033
Lepton momentum calibration	0.00008	0.00019
Lepton selection efficiency	0.00005	0.00004
Background subtraction	0.00003	0.00005
Pileup modeling	0.00003	0.00002
Total	0.00018	0.00039

• Modeling uncertainties small compared to the statistical uncertainties

Dominated by QCD scale

model variation	Muons	Electrons
Dilepton py reweighting	0.00003	0.00003
QCD $\mu_{R/F}$ scale	0.00011	0.00013
POWHEG MiNLO Z+j vs NLO Z model	0.00009	0.00009
FSR model (PHOTOS vs PYTHIA)	0.00003	0.00005
UE tune	0.00003	0.00004
Electroweak $(\sin^2 \theta_{eff}^{lept} - \sin^2 \theta_{eff}^{u, d})$	0.00001	0.00001
Total	0.00015	0.00017

PDF uncertainties

- Measured AFB is sensitive to the PDFs
 - Different couplings of u and d-type quarks to Z boson
 - Size of the dilution effect (large-x antiquarks)
- PDF dependence is large at small and large masses, small near the peak

PDF uncertainties

- Bayesian χ^2 reweighing method used to constrain the PDFs
- Perform the $\sin^2 heta_{
 m eff}^\ell$ fit for each NNPDF3.0 replica
- Weight each replica by:

CMS Preliminary

18.8-19.6 fb⁻¹ (8 TeV)

Results

- Results are consistent with the mean value of LEP and SLD and other available measurements
 - Comparable to precision at the Tevatron!
 - Statistical uncertainties dominate

$$\begin{split} \sin^2\theta_{eff}^{lept} &= 0.23101 \pm 0.00036(stat) \pm 0.00018(syst) \pm 0.00016(theory) \pm 0.00030(pdf) \\ \sin^2\theta_{-cc}^{lept} &= 0.23101 \pm 0.00052. \end{split}$$

03/12/17

Future

- What can we expect at the high-luminosity LHC
 - Negligible statistical uncertainties
 - PDF uncertainties further constrained with profiling
 - Extended lepton acceptance with the upgraded CMS detector
 - Smaller A_{FB} at 14 TeV (less valence quark contribution)

• Larger lepton |η| acceptance

CMS-PAS-FTR-17-001

Gauge boson couplings

- · Shift from precision observables to first measurements
- Probe the non-Abelian gauge structure of the EW interactions
- Vector boson scattering processes
 - What mechanism ensures the unitarity is respected
 - Is the 125 GeV Higgs boson the only solution
 - Characterized by VV and 2 jet final state

 W^{-}

Vector boson scattering

- Events are selected by requiring 2 same-sign leptons and 2 jets with large pseudorapidity separation and large mass
- First observation of EW production of same-sign W boson pairs
 - Observed (expected) significance is 5.5 (5.7) standard deviations
 - Observed signal is consistent with SM predictions
 - Evidence by ATLAS and CMS in Run 1

PRL. 120, 081801 (2018)

Electroweak Z+2jet production

- Pure EW production of dileptons in association with two jets
- Measured cross section is in agreement with the leading order SM predictions $\sigma_{EW}(\ell\ell jj) = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst) fb}$ $m_{\ell\ell} > 50 \text{ GeV}, m_{ii} > 120 \text{ GeV}, \text{ and transverse momenta } p_{Ti} > 25 \text{ GeV}. W$
- Best limits of anomalous triple gauge couplings

Summary

- Electroweak precision measurements with the CMS detector
- Precise measurement of the effective weak mixing angle
 - Comparable to precision at the Tevatron!
 - PDF and statistical uncertainties dominate
 - Experimental uncertainties are under control
- First observation of electroweak production of same sign W boson pairs
 - Observed (expected) significance is 5.5 (5.7) standard deviations
- Many more results to come

15

ADDITIONAL MATERIAL

Angular coefficients

- Accurate modeling of QCD effects is crucial to perform the EW precision measurements
- Factorizing the Drell-Yan production cross section from the decay kinematics

A₀-A₂ is non-zero for QCD calculations beyond NLO: Lam-Tung relation violated

Angular event weighting

- Observable: weighted A_{FB} (Eur. Phys. J. C67, (2010) 321) (also used by CDF measurement)
- For each event with $\cos\theta = c$, define two weights:

$$\begin{split} w_{\rm D} &= \frac{1}{2} \frac{c^2}{(1+c^2+h)^3}. \qquad h = 0.5 A_0 (1-3c^2) \\ w_{\rm N} &= \frac{1}{2} \frac{|c|}{(1+c^2+h)^2}. \end{split}$$

- In 4π , Raw A_{FB} = Weighted A_{FB} = Weighted A_{FB} within lepton acceptance => less sensitive to $\cos\theta$ acceptance modeling
- Also, weighted $A_{\rm FB}$ yield smaller stat. uncertainty of extracted sin² $\theta_{\rm eff}$

The slide is from: https://indico.cern.ch/event/661916/contributions/2702568/attachments/ 1536039/2406301/171005_WmW.pdf