

Precision Electroweak Measurement in ATLAS

Louis Helary (CERN)

on behalf of the ATLAS collaboration

Moriond Electroweak – March 12th 2018

Electro Microscolo Picture of an Influenza Virus http://www.biotop pages.info/l/ Influenza.html

Precision Electroweak Measurement in ATLAS

Matthias Schott (Uni. Mainz)

on behalf of the

Louis Helary (CERN)

on behalf of the ATLAS collaboration

Moriond Electroweak – March 12th 2018

Introduction

Why precision measurements?

SM measurements in ATLAS

Louis Helary (represented by M. SHere will focus on electroweak boson measurements properties.

ATLAS and data collected

Precision analyses at the LHC still use Run1 data.

JHEP 12 (2017) 059

 $\frac{d^3\sigma Z/\gamma^*}{dm_{\ell\ell}dY_{\ell\ell}dcos\theta^*}$

Z differential – AFB – Weak mixing angle

Motivation for Z-3D unfolding

CMS_PAS_SMP_16_007

Louis Helary (represented by M. Schott)

- Previous ATLAS weak mixing angle (*JHEP09(2015)049*) measurement obtained with 4.6 fb⁻¹ at 7 TeV.
 - Result sys. dominated (large PDF uncertainties):
 - sin²θ_w=0.23080±0.0005(stat)±0.0006(syst)±0.0009(PDF)
- Design new measurement to be sensitive to both PDFs and $sin^2 \theta_w$.

$$\frac{d^3\sigma}{dm_{\ell\ell}dY_{\ell\ell}dcos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s}\sum_q P_q f_q(x1,Q^2)f_{\bar{q}}(x2,Q^2) + (q\leftrightarrow\bar{q})]$$

- Differential measurement proportional to the product of propagator and PDFs.
 - Production mode sensitive to m_{ℓℓ} and y_{ℓℓ}:
 →sensitivity to PDF.
 - Interference $Z/_{X}^*$ responsible for asymmetry in $\cos\theta^*_{CS}$, which generate A_{FB} :

$$A_{FB} = \frac{d^3\sigma(\cos\theta^* > 0) - d^3\sigma(\cos\theta^* < 0)}{d^3\sigma(\cos\theta^* > 0) + d^3\sigma(\cos\theta^* < 0)}$$
$$\cos\theta^*_{cs} = \frac{p_{Z,\ell\ell}}{m_{\ell\ell}|p_{Z,\ell\ell}|} \frac{p_1^+ p_2^- - p_1^- p_2^+}{\sqrt{m_{\ell\ell}^2 + p_{T,\ell\ell}^2}}$$

Selection and 1D measurement

- Central-Central (CC) selection:
 - electrons and muons with $|\eta_{\ell}| < 2.4$, $p_{T\ell} > 20$ GeV
 - 7 bins in 46<m_{ll}<200 GeV+ 12 bins in ly_{ll}l<2.4+ $6 bins in cos<math>\theta^*_{cs} \rightarrow 504$ bins</sub></sub>
- Central-Forward (CF) Selection:
 - 1 central (p_{Te} >25 GeV) and 1 forward ($|\eta_e|$ >2.5 and p_{Te} >20 GeV) electron
 - 5 bins in 66<m_{ee}<150+ 5 bins in 1.2|y_{ee}|<3.6+
 6 bins in cosθ*_{cs} →150 bins.
- Signal MC: with PowhegPythia8 (CT10NLO, UA2 tune) from DYNNLO.
 - Output Stress Section integrated in 1D zo test consistency, Stress Show good agreement with PHP8 (here for m_{ℓℓ}).
- Z peak: reco+trigger+id eff. (<0.5%), scale and resolution (~1%), muon momentum (weak alignment mode ~1%).
- Off peak: Background (~15% low m_{II} CC, ~10% CF),
- Data accuracy~2%(1.9% lumi +0.5% syst. + 0.5% stat.)

Louis Helary (represented by M. Schott)

3D distribution

- Evolution of asymmetry: Negative below Z-pole, null at Z-pole, positive above it.
- Data accuracy is better than 0.5% in the Z-peak region for $|y_{00}| < 1.4$.
- Good agreement between data and Powheg-based predictions.

Louis Helary (represented by M. Schott)

1.8

A_{FB} extraction

- Symmetric uncertainties in $\cos\theta^*_{cs}$ (scale, resolution) cancel
- A_{FB} increases in $y_{\varrho\varrho}$ for CC, and drops for last bins due to fiducial acceptance.
- A_{FB} even larger for CF due to reduced dilution.
- Large ly_{ll} corresponds to important x values, where valence quarks carry a larger momentum with a longitudinal boost.
- Good agreement observed with predictions.
 Use these measurement to constrain PDFs and extract sin² θ_W.

W mass measurement

EPJC 78 (2018) 110

Motivation and challenges for m_W measurement

 $m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_u} (1 + \Delta r)$

• W mass expressed as:

Where Δr radiative corrections mostly dominated by top quarks and Higgs loops $\rightarrow \Delta r \propto m_t^2$ and $\ln(m_H)$

- Relation between m_W, m_t and m_H provides stringent test to SM consistency.
- Measured m_H and m_t better than theory, ∆m_W~8 MeV target for precision of future m_W.
 →Potential to constrain NP!
- LHC environment more challenging than Tevatron:
 - pp (@7TeV): 25% of W's induced by s and c.
 → implication on y_w and p_{Tw}.
 - pp (@1.96 TeV): only ~5% of the events.
 - But larger Z and W samples available at the LHC.
 Calibrate theoretical predictions and experimental measurement on the Z and transfer the knowledge to the W!

Louis Helary (represented by M. Schott)

	Measurement (GeV)	Prediction (GeV)
m _H	125.09±0.24	102.8±26.3
m _t	172.84±0.70	176.6±2.5
m _W	80.385±0.015	80.360±0.008

13

Physics Modelling

• Build physics modelling to get the best predictions using older ATLAS measurements, or from the state of the art theoretical predictions.

3) Reweight polarization coefficients (Ai) and compare to measurements @8TeV

Modelling uncertainties

- For perturbative QCD modelling:
 - Largest uncertainties are due to PDF:
 - Anti-correlated between W+ W- →reduced in combination.
 - Use Pythia8 to transfer the tuned p_{TZ} to p_{TW} and to evaluate theory uncertainties on W/Z p_T ratio.
 - Large uncertainty on p_{TW} due heavy-quarks initial state.
 - Similar for m_W extracted from p_T lepton and from m_{T.}
- For EW corrections:
 - Dominant contribution from QED FSR.
 - Larger impact in p_{TI} than in m_{TW}
 - Similar contributions in electron and muon channels.

Dr uncer o	G .0	4.0	2.0	4.4	1.0 1	.0
nts	5.8	5.3	5.8	5.3	5.8 5	.3
	15.9	18.1	14.8	17.2	11.6 12	2.9
			117		IIZ	-
	Decay channel Kinematic distribution	$p_{\mathbb{T}}^\ell$	$W \rightarrow e_{\Gamma}$	$egin{array}{ccc} u & & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$W \to \mu \nu$ $\Gamma m_{\rm T}$	
	$\delta m_W [{ m MeV}]$					-
	FSR (real) Pure weak and IFI corrections	< 0. 3.3	$\begin{array}{ccc} 1 & < 0. \\ 3 & 2. \end{array}$	$egin{array}{ccc} 1 & < 0.1 \ 5 & 3.5 \ \end{array}$	$\begin{array}{ccc} 1 & < 0.1 \\ 5 & 2.5 \end{array}$	
	FSR (pair production)	3.0	5 0.	8 4.4	4 0.8	
	Total	4.9	9 2.	6 5.6	3 2.6	_

15

Experimental model

- Uses events with (e,µ) where $p_{TI}>30$ GeV, $|\eta_I|<\!2.4$, $p_T^{miss}_>\!30$ GeV, $m_T\!>\!60$ GeV, $u_T<30$ GeV.

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\,\ell} + \vec{u}_{\rm T}\right) m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1 - \cos\Delta\phi)} \vec{u}_{\rm T} = \sum_{\rm T}\vec{E}_{{\rm T},i}$$

- Leptons are calibrated using the Z line shape.
- Hadronic recoil (u_T) is vector sum of E_T of all calo clusters: $\frac{30}{2}$ $\rightarrow u_T$ is a measure of p_{TW}
 - Calibration steps:
 - Correct pile-up profile in MC to match data
 - Correct for residual differences in SumET
 - Derive scale and resolution corrections from $\ensuremath{p_{\text{T}}}$ balance in Z events.
- Backgrounds are mostly determined using simulation, and normalized using NNLO predictions, or measurements.
- For multi-jet background:
 - Uses template fit of the lepton isolation variable.
 - Normalization and shape are extrapolated to the SR.

Why do we trust the $p_T(W)$ modeling?

- Enormous amount of additional studies triggered during the review process
 - $u_{II}(I)$ distribution is indeed governed by the modeling of $p_T(W)$
 - Good observable to test modeling
 - PDF/Scale uncertainties in NNLO/NNLL predictions do not account for the observed difference seen in data
 - Current working hypothesis: The treatment of heavy flavors in those generators has to be improved

Louis Helary (represented by M. Schott)

Measurement

$M_W = 80370 \pm 7 (stat) \pm 11(exp.syst.) \pm 14 (model.syst.) MeV = 80370 \pm 18.5 MeV$

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - p_{T}^{ℓ} , W^{\pm} , e - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

- Measurement consistent:
 - Between the different categories!
 - With previous LEP+Tevatron measurement!
 - Similar sensitivity as Tevatron!
- Measurement sys. dominated, with large uncertainty on the model (PDF & p_{TW}).

Future

Reduce W mass uncertainty using20Iow-μ (pileup) runsPTW 7 TeV: PRD 85 (2012) 012005

• ATLAS p_{TW} measurement 31pb⁻¹ at 7 TeV from 2010 with error >2.5% on coarse bins.

- Recent low-μ runs taken by ATLAS: ~150/pb at 13 TeV: 1.75M W, 220k Z ~270/pb at 5 TeV: 1.3M W, 150k Z
- Possibility to measure directly p_{TW}/p_{TZ} at low p_{TW} which is crucial to improve Δm_W !
 - Measurement of $p_{TW} \sim 1\%$ uncertainty & 5 GeV binning at low p_{TW} , with low- μ data.
- Low-μ necessary for good recoil resolution.

Louis Helary (represented by M. Schott)

Conclusions

Conclusions

- Publication of the Z cross-section measurement as a function of 3 variables: m_{ll},y_{ll}, cosθ*_{cs}.
 - Accuracy of the measurement better than 0.5% under the Z peak.
 - Measurement in agreement with the predictions.
 - Differential measurement of A_{FB} that can be used to extract $\sin^2\theta_W$.
- Publication of the first W mass measurement at the LHC using 4.5 fb⁻¹ at 7 TeV
 - One year review process helped a lot to sharpen our arguments
 - Measurement compatible with current WA and competitive with Tevatron results.
 - Future measurements can be improved using:
 - Low- $<\mu>$ data might allow for a direct precision p_{TW} measurement!
 - Improved PDF modeling and theoretical models
- Many discussions ongoing at the LPCC (LHC Physics Centre at CERN) Electroweak Working group: https://lpcc.web.cern.ch/electroweak-precision-measurements-lhc-wg
 - How to improve the modeling of vector boson production at the LHC?
 - How to combine electroweak precision measurements?
 - How to interpret precision measurements in an EFT approach?

•