# Update of the electroweak fit and BSM constraints in the scalar sector

Diagnosing the SM's Physical Condition with the Global EW Fit

Roman Kogler (with the Gfitter group and C. Englert, H. Schulz, M. Spannowsky)

Moriond EW La Thuile, March 12, 2018



The Gfitter group: J. Haller (Univ. Hamburg), A. Hoecker (CERN), RK (Univ. Hamburg), K. Mönig (DESY), T. Peiffer (Univ. Göttingen), M. Schott (Mainz), J. Stelzer (CERN)

Based on 1509.00672, 1708.06355, 1803.01853





#### Let's assume we live in











### **The Standard Model**

Z= - 4 Fre FMV titte +h.c. + 4: Yii 4: \$+ h. c. +  $D\phi |^2 - V(\phi)$ 





### **The Standard Model**

Z= - 4 Fre FMV tiupy + h.c. + 4: Yii 4: \$+ h. c. +  $D\phi |^2 - V(\phi)$ 

Looks good so far...



But is it healthy?



Roman Kogler

UН

ЦЦ Ц



### **EW Symmetry Breaking**

#### **Predicting Mw**

$$M_W = \frac{1}{2} \frac{\sqrt{4\pi\alpha}}{\sin\theta_W} 246 \,\text{GeV} = \frac{37}{\sin\theta_W} \,\text{GeV}$$

#### How large is $sin\theta_W$ ?

Polarised electrons on deuterium (asymmetry in cross section for different polarisations)

$$\sin^2 \theta_W = 0.20 \pm 0.03$$



#### Here is our expectation:

$$M_W = 82 \pm 6 \,\mathrm{GeV}$$

and 
$$M_Z = \frac{M_W}{\cos \theta_W} = 92 \pm 5 \,\mathrm{GeV}$$

#### (we need a new collider)





### UAI and UA2 (1983-1989)









#### Verified by countless measurements...





# **Comprehensive Medical Assessment**

#### Fit is overconstrained

- all free parameters measured (α<sub>s</sub>(M<sub>Z</sub>) unconstrained in fit)
  - most input from e<sup>+</sup>e<sup>-</sup> colliders
    - $M_Z$  :  $2 \cdot 10^{-5}$
  - but crucial input from hadron colliders:
    - $m_t$  :  $4 \cdot 10^{-3}$
    - M<sub>H</sub> : 2 · 10<sup>-3</sup>
    - M<sub>W</sub>: 2·10<sup>-4</sup>
  - remarkable precision (<1%)</li>
- require precision calculations (NNLO corrections available)

| $\longrightarrow$ $M_H \; [GeV]$                    | $125.1\pm0.2$          | LHC                 |
|-----------------------------------------------------|------------------------|---------------------|
| $\longrightarrow M_W \; [\text{GeV}]$               | $80.379 \pm 0.013$     |                     |
| $\Gamma_W [{ m GeV}]$                               | $2.085\pm0.042$        | III Iev.+LHC        |
| $M_Z [{ m GeV}]$                                    | $91.1875 \pm 0.0021$   |                     |
| $\Gamma_Z [{ m GeV}]$                               | $2.4952 \pm 0.0023$    |                     |
| $\sigma_{ m had}^0~[{ m nb}]$                       | $41.540 \pm 0.037$     |                     |
| $R^0_\ell$                                          | $20.767 \pm 0.025$     |                     |
| $A_{ m FB}^{0,\ell}$                                | $0.0171 \pm 0.0010$    |                     |
| $A_\ell$ (*)                                        | $0.1499 \pm 0.0018$    | SLD                 |
| $\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$        | $0.2324 \pm 0.0012$    |                     |
| $\sin^2 \theta_{\rm eff}^{\ell}({\rm TEV})$         | $0.23148 \pm 0.00033$  | <b>Tev.</b> (+LHC?) |
| $A_c$                                               | $0.670\pm0.027$        |                     |
| $A_b$                                               | $0.923 \pm 0.020$      |                     |
| $A_{ m FB}^{0,c}$                                   | $0.0707 \pm 0.0035$    |                     |
| $A_{ m FB}^{0,b}$                                   | $0.0992 \pm 0.0016$    | LEP                 |
| $R_c^0$                                             | $0.1721 \pm 0.0030$    | 1                   |
| $R_b^0$                                             | $0.21629 \pm 0.00066$  |                     |
| $\Delta \alpha_{s}^{(5)}(M_{\pi}^{2})$              | $2760 \pm 9$           | 1                   |
| $\frac{-\infty_{had}(m_Z)}{\overline{m}_{a} [GeV]}$ | $1.27^{+0.07}_{-0.07}$ | low F               |
| $\overline{m}_{\iota} [\text{GeV}]$                 | 420 + 0.17             |                     |
| $m_{i} [\text{GeV}](\nabla)$                        | $172.47 \pm 0.68$      |                     |
|                                                     | 112.11 - 0.00          |                     |





### **Comprehensive Medical Assessment**

#### Fit is overconstrained

- all free parameters measured  $(\alpha_s(M_Z) \text{ unconstrained in fit})$ 
  - most input from e<sup>+</sup>e<sup>-</sup> colliders
    - M<sub>Z</sub> : 2 · 10<sup>-5</sup>
  - but crucial input from hadron colliders:
    - $m_t$  :  $4 \cdot 10^{-3}$
    - M<sub>H</sub> : 2 · 10<sup>-3</sup>
    - M<sub>W</sub>: 2·10<sup>-4</sup>
  - remarkable precision (<1%)</li>
- require precision calculations (NNLO corrections available)





7



### **Global Fit: News**

#### sin<sup>2</sup>θ<sup>I</sup><sub>eff</sub> Tevatron Combination [CDF, D0, 1801.06283]



 0.23149±0.00016
 e and  $\mu$  combined, full dataset

  $0.23221\pm0.00029$  In EW fit:  $\Delta \chi^2 = +0.02$ 
 $0.23148\pm0.00033$  In EW fit:  $\Delta \chi^2 = +0.02$ 

#### Hadronic vacuum polarisation [M. Davier et al., EPJC 77, 827 (2017)]

Newest  $e^+e^- \rightarrow hadrons data$  (e.g. Barbar and VEPP-2000)  $\Delta \alpha^{(5)}_{had}(M_Z^2) = (2760 \pm 9) \cdot 10^{-5}$ previously:  $(2757 \pm 10) \cdot 10^{-5}$ In EW fit:  $\Delta \chi^2 = +0.17$ 





### **ATLAS M<sub>w</sub> Measurement**

#### [ATLAS, EPJC 78 (2018) 110]



Tevatron [CDF, D0, 1204.0042]  $M_W = 80387 \pm 8_{(stat)} \pm 8_{(exp.syst)}$  $\pm 12_{(mod. syst)} MeV$ 

#### **New average**

#### smaller by 6 MeV, uncertainty of 13 MeV

(15 MeV previously)

Obtained by assuming 50% correlation of model systematic, very robust against changes

ATLAS  $M_{W} = 80370 \pm 7_{(stat)} \pm 11_{(exp.syst)}$  $\pm 14_{(mod. syst)} MeV$ 





### New m<sub>t</sub> Measurements

#### 7 and 8 TeV combinations by ATLAS and CMS published









# **SM Fit Results**

$$\chi^{2}_{min}$$
 = 18.6 Prob( $\chi^{2}_{min}$ , 15) = 23%

- $\chi^{2}_{min}(old m_{t}) = 17.3$
- $\chi^{2}_{min}(old M_{VV}) = 19.3$
- $M_W$ : -1.5 $\sigma$  (-1.4 $\sigma$  previously)
  - central value smaller by 4 MeV
  - uncertainty reduced by I MeV

#### m<sub>t</sub>: 0.5σ (unchanged)

- central value: 177 → 176.4 GeV
- uncertainty reduced by 0.3 GeV
- can reach  $\pm 0.9~GeV$  with perfect knowledge of  $M_{\rm W}$
- Iargest deviations in b-sector:
  - $A^{0,b}_{FB}$  with  $2.5\sigma$

#### [Gfitter, 1803.01853]



Roman Kogler



# **Predicting M<sub>H</sub>**





# **SM: Incredibly Healthy!**

[Gfitter, 1803.01853]









### **Extending the Scalar Sector**

#### 2HDM with Z<sub>2</sub> symmetry, no CP violation at tree level

- ▶ Five scalars: h, H,A, H<sup>±</sup>
- Light h set to the observed scalar state at 125 GeV
- Free parameters:  $\alpha$ ,  $\beta$ ,  $M_H$ ,  $M_A$ ,  $M_{H\pm}$ , breaking scale  $M_{12}^2$

| Coupling scale factor | Type I                     | Type II                     | Lepton-specific             | Flipped                     |  |
|-----------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|--|
| KV                    | $\sin(\beta - \alpha)$     |                             |                             |                             |  |
| κ <sub>u</sub>        | $\cos(\alpha)/\sin(\beta)$ |                             |                             |                             |  |
| Kd                    | $\cos(\alpha)/\sin(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $\cos(\alpha)/\sin(\beta)$  | $-\sin(\alpha)/\cos(\beta)$ |  |
| κ <sub>ℓ</sub>        | $\cos(\alpha)/\sin(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $-\sin(\alpha)/\cos(\beta)$ | $\cos(\alpha)/\sin(\beta)$  |  |

#### **Constraints on free parameters?**

- Data from H coupling measurements, flavour decays, EWPO
- Full fit to all data, let 2HDM parameters vary freely
  - Identify preferred or excluded regions





### **2HDM Flavour Constraints**

New scalars give important contributions to flavour observables

tan  $\beta$ 

• Example:  $B \rightarrow X_s \gamma$ 



Sensitivity to M<sub>H±</sub> and tanβ

- R(D) and R(D\*) can only be explained in Type II (large tanβ and small M<sub>H+</sub>)
  - $\rightarrow$  excluded by other flavour data
    - excluded from further fits







# Muon g-2

Long-standing deviation in the SM:  $\Delta a_{\mu} = (268 \pm 63 \pm 43) \cdot 10^{-11}$  (3.5 $\sigma$ )







# **2HDM Global Fit**

Combination of EWPO (through oblique parameters S,T,U), flavour data,  $(g-2)_{\mu}$  and H coupling measurements

#### Exclude

M<sub>A</sub>, M<sub>H</sub> < 400-500 GeV in Type II and flipped

#### No exclusions

of MA and MH in Type I and lepton specific



#### Direct searches

- No absolute limits on  $M_A$ ,  $M_H$ ,  $M_H$ : large freedom of parameter choices
- Important constraints in specific parameter regions





### Back to what we know

A man should look for what is, and not for what he thinks should be. A. Einstein

#### Or: Based on what we know, what can we add?

Adding new terms to the Lagrangian, SMEFT:



- operators of dimension 6
   respect SM gauge symmetry (SU(2) x U(1))
  - include only SM fields

SILH basis, focus on operators with H involvement, EWPO: c<sub>T</sub> = 0, c<sub>W</sub> = -c<sub>B</sub>
8 operators of interest

Focus on linear contribution:  $|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2 \operatorname{Re}\{\mathcal{M}_{SM}\mathcal{M}_{d=6}^*\} + \mathcal{O}(1/\Lambda^4)$ 

[Englert, RK, Schulz, Spannowsky, 1509.00672]





### **Constraints from HL-LHC**



- Signal strength only
  - Combinations of coefficients c<sub>i</sub> can result in same signal strength
  - Weak constraints, even with 3000 fb<sup>-1</sup>

- Different behaviour at high energies
  - go differential in рт,н
    - generate pseudo-data
    - uncertainties extrapolated from  $\mu$ s
  - Lift flat directions
  - Much tighter constraints!
    - Improves LHC physics potential

[Englert, RK, Schulz, Spannowsky, 1708.06355]





### **Prospects of the EW Fit**

#### Future developments for the SM EW fit

- $\Delta \alpha^{(5)}_{had}(M_Z^2)$  Low energy data (esp.  $\pi + \pi -$ ), also pQCD/lattice
- M<sub>W</sub> LHC Measurements! Theory uncertainty of 4 MeV!
- m<sub>t</sub> Experimental progress and theoretical interpretations
- $sin^2 \theta_{eff}$  Can the LHC improve?
- AFB<sup>0b</sup> Z+b production at LHC, e.g. [M. Beccaria et al., PLB 730, 149 (2014)]

#### Extensions of the scalar sector

- ►  $B \rightarrow X_s \gamma, B_s \rightarrow \mu \mu, (g-2)_{\mu}..., \text{ precision H coupling measurements}$
- Direct searches: cover all possible final states

#### **General extension with the SMEFT**

- EWPO, LEP 2 data, flavour data []. Ellis et al., 1803.03252]
- Differential H measurements, also sensitivity to H self-coupling  $\lambda$ !





### **Additional Material**





# **Precision Estimates: Corrections**

#### Modifications of Propagators and Vertices

- QED corrections
  - leptonic loop insertions
    - calculable to high precision
  - quark loop insertions (hadronic)
    - partially not calculable in pure pQCD

#### Weak corrections

- Insertion of fermion loops
  - high sensitivity to  $m_f$  (if  $m_f \gg m_{VV}$  )
- Insertion of boson loops
  - logarithmic sensitivity to  $M_{\rm H}$
- QCD corrections
  - Sensitivity to strong coupling
    - numerically small contribution (I +  $\alpha_s/\pi)$







### **Predicting M**<sub>w</sub>



$$\begin{split} M_W &= 80.3535 \pm 0.0027_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0026_{\alpha_S} \\ &\pm 0.0024_{\Delta\alpha_{\text{had}}} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV} , \\ &= 80.354 \pm 0.007_{\text{tot}} \text{ GeV} \quad \text{(exp: \pm 0.013 GeV)} \end{split}$$





# **Predicting m**t







### **2HDM and H measurements**

#### Alignment solution

•  $cos(\beta - \alpha) = 0$  (light h is SM solution,  $\kappa_V = 1$ )



26



# **Dim-6 SILH Basis**

- Focus on operators with Higgs involvement
- Do not consider operators constrained by electroweak precision measurements (and c<sub>T</sub> = 0, c<sub>W</sub> = -c<sub>B</sub>)

$$\begin{aligned} \mathcal{L}_{\text{SILH}} = & \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} \left( H^{\dagger} H \right) \partial_{\mu} \left( H^{\dagger} H \right) + \frac{\bar{c}_{T}}{2v^{2}} \left( H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left( H^{\dagger} \overrightarrow{D}_{\mu} H \right) - \frac{\bar{c}_{6} \lambda}{v^{2}} \left( H^{\dagger} H \right)^{3} \\ & + \left( \frac{\bar{c}_{u,i} \mathcal{Y}_{u,i}}{v^{2}} H^{\dagger} H \bar{u}_{L}^{(i)} H^{c} u_{R}^{(i)} + \text{h.c.} \right) + \left( \frac{\bar{c}_{d,i} \mathcal{Y}_{d,i}}{v^{2}} H^{\dagger} H \bar{d}_{L}^{(i)} H d_{R}^{(i)} + \text{h.c.} \right) \\ & + \frac{\bar{v}_{C}}{2m_{W}^{2}} \left( H^{\dagger} \sigma^{i} \overrightarrow{D^{\mu}} H \right) \left( D^{\nu} W_{\mu\nu} \right)^{i} + \frac{\bar{v}_{C}}{2m_{W}^{2}} \left( H^{\dagger} \overrightarrow{D^{\mu}} H \right) \left( \partial^{\nu} B_{\mu\nu} \right) \\ & + \frac{\bar{v}_{C}}{m_{W}^{2}} \left( D^{\mu} H \right)^{\dagger} \sigma^{i} \left( D^{\nu} H \right) W_{\mu\nu}^{i} + \frac{\bar{c}_{H}}{m_{W}^{2}} \left( D^{\mu} H \right)^{\dagger} \left( D^{\nu} H \right) B_{\mu\nu} \\ & + \frac{\bar{c}_{\gamma} \mathcal{Y}^{\prime 2}}{m_{W}^{2}} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_{g} \mathcal{Y}_{S}}{m_{W}^{2}} H^{\dagger} H G_{\mu\nu}^{a} G^{a\mu\nu} . \end{aligned}$$

8 operators of interest left

Focus on linear contribution:  $\mathcal{M} = \mathcal{M}_{SM} + \mathcal{M}_{d=6}$ 

 $|\mathcal{M}|^2 = |\mathcal{M}_{\rm SM}|^2 + 2\operatorname{Re}\{\mathcal{M}_{\rm SM}\mathcal{M}_{d=6}^*\} + \mathcal{O}(1/\Lambda^4)$ 





### How well can the LHC do?

- Study LHC's reach for 300 and 3000 fb<sup>-1</sup> (per experiment)
- Extrapolate run I measurements
  - Consider measurements only for leptonic decays of W, Z



• Estimate expected number of events

 $N = \epsilon_p \times \epsilon_d \times \sigma(H + X) \times BR(H \to YY) \times BR(X, Y \to \text{final state}) \times L$ 

- Additional uncertainties from systematics and backgrounds for each process
- Scale systematic uncertainties with luminosity
- Cross check extrapolations with ATLAS/CMS results





### Fit Framework

- Fast parametrisation of calculations: Professor [Buckley et al., 0907.2973]
  - production: VBFNLO [Arnold et al., 1207.4975]
  - decay: eHDECAY [Contino et al., 1403.3381]
  - predictions normalised to results from HXSWG
- Run I Higgs data: HiggsSignals [Bechtle et al., 1305.1933]
- Statistical framework: Gfitter [Gfitter group, 0811.0009]







### **Theoretical Uncertainties**

#### assume uncertainties from SM h.o. calculations

| production process      |      | decay process                  |     |  |
|-------------------------|------|--------------------------------|-----|--|
| $pp \to H$              | 14.7 | $H \rightarrow b \overline{b}$ | 6.1 |  |
| $pp \rightarrow H + j$  | 15   | $H 	o \gamma \gamma$           | 5.4 |  |
| $pp \rightarrow H + 2j$ | 15   | $H \to \tau^+ \tau^-$          | 2.8 |  |
| $pp \to HZ$             | 5.1  | $H \to 4l$                     | 4.8 |  |
| $pp \to HW$             | 3.7  | $H \rightarrow 2l 2 \nu$       | 4.8 |  |
| $pp \to t\bar{t}H$      | 12   | $H \to Z\gamma$                | 9.4 |  |
|                         |      | $H \to \mu^+ \mu^-$            | 2.8 |  |

- two nuisance parameters ( $\delta_{SM}$ ,  $\delta_{O6}$ ) for each
  - production
  - decay

$$\mu_{i,f} = \frac{\sigma_{i,f}^{O6} + u_{i,f}^{O6}(1 - \delta_{i,f}^{O6})}{\sigma_{i,f}^{SM} + u_{i,f}^{SM}(1 - \delta_{i,f}^{SM})}$$

process, in other words: rate uncertainties only (for now)

26 nuisances, 8 Wilson coefficients = 34 free parameters





# Impact of Theory Uncertainties

#### Uncertainties in tails of рт,н

- One additional nuisance parameter for each production mode (+6)
  - vary inclusive rate and tails independently
  - logarithmic or linear dependence





### **Constraints from Run I**



No noteworthy constraints on other 4 operators (within region of validity)

[Englert, RK, Schulz, Spannowsky, 1509.00672]





### **Constraints from HL-LHC**





### **Flat Directions**

#### Multi-parameter fit

- Combinations of coefficients c<sub>i</sub> can result in same signal strength
- No sensitivity without fixing some to 0

#### Solution

- different behaviour at high energies
- include differential measurements of рт,н







#### Pseudo data

- extrapolate uncertainties from inclusive measurements
- correlated systematics across pT,H
- assume perfect separation into production and decay channels



### Lifting flat directions



only signal strengths

including pt,H measurements

Strong correlations between coefficients are lifted

 Simultaneous constraints on all parameters possible

#### [Englert, RK, Schulz, Spannowsky, 1509.00672]



### Invisible Width

- Consider additional light degree of freedom
  - if  $\Gamma_{tot}$  (and  $\Gamma_{inv}$ ) increases, signal strengths decrease



Η

(e.g. dark portal)



χ (DM)

····· χ (DM)

### Invisible Width with HL-LHC







### **Off-shell Measurement**

#### **Can H** $\rightarrow$ **ZZ off-shell measurement help to constrain** $\Gamma_{inv}$ ?

- Extrapolate run I measurement of m4e, similar to pt,H
  - off-shell:  $m_{4\ell} > 330 \text{ GeV}$
  - dominated by statistics,
    - ~ 15% uncertainty with HL-LHC



[Englert, Spannowsky, 1405.0285]







### **On-shell and off-shell**

#### **Consider only pp \rightarrow ZZ \rightarrow 4\ell measurements**

- on-shell: precision of 3%  $\sim \frac{g_i^2 g_f^2}{\Gamma_H}$
- $\blacktriangleright$  off-shell: precision of 15%  $\,\sim g_i^2\,g_f^2$

marginalise over  $c_g$ ,  $c_{u3}$ ,  $c_H$  (others fixed to 0)





### Off-shell measurement and $\Gamma_{inv}$

#### Study impact of off-shell measurement in full fit



marginalise over all c<sub>i</sub>

Correlating on-shell and off-shell region a la Caola-Melnikov does not improve width constraint within EFT framework

(less sensitivity of off-shell compared to over-constrained measurement system)



