Electroweak measurements at the Fermilab Tevatron

Chris Hays, Oxford University

on behalf of the CDF and D0 Collaborations

Rencontres de Moriond Electroweak 12 March 2018

Overview

Moriond EW 2018

C. Hays, Oxford University

Fermilab Tevatron

FERMILAB'S ACCELERATOR CHAIN

DZERC

TEVATRON

RECYCLER

C. Hays, Oxford University

MAIN INJECTOR

ANTIPROTON

SOURCE

BOOSTER

LINAC

The Fermilab Tevatron delivered >10 fb⁻¹ of protonantiproton collisions at $\sqrt{s}=1.96$ TeV from 2001-2011

Many discoveries and measurements made by the CDF and D0 experiments

Moriond EW 2018

Z boson couplings

Vector coupling of the Z boson to fermions has contributions from weak and hypercharge couplings (electroweak mixing)

$$-i\frac{g}{2\cos\theta_{W}}\bar{f}\gamma^{\mu}(g_{V}^{f}-g_{A}^{f}\gamma_{5})fZ_{\mu}$$

$$-i\frac{g}{2\cos\theta_{W}}\bar{f}\gamma^{\mu}(g_{V}^{f}-g_{A}^{f}\gamma_{5})fZ_{\mu}$$

$$g_{A}^{f}=T_{3}^{f}-2Q_{f}\sin^{2}\theta_{W} \text{ and } g_{A}^{f}=T_{3}^{f}$$

$$g_{A}^{f}=T_{3}^{f}$$

$$sin^{2}\theta_{W}=1-1$$

Loop corrections modify the vector coupling relative to axia

$$\sin^2 \theta_{\text{eff}}^f = \operatorname{Re}(\kappa_f) \sin^2 \theta_{W} = \frac{1}{4|Q_f|} \begin{pmatrix} \operatorname{Couplings} \operatorname{can} \operatorname{be} \operatorname{affected} \\ 1 - \operatorname{Re}[g_A] \end{pmatrix}$$
 interacting with leptons \mathcal{L}_{W}

Forward-backward asymmetry of Z-pole leptons probes relative vector and axial couplings

$$sin^{2}\theta_{\text{eff}}^{\text{Lept}} = \operatorname{Re}[\kappa_{l} \underbrace{\int_{0}^{1} d\cos\theta \frac{d\sigma}{d\cos\theta}}_{0} \frac{1}{2} \int_{-1}^{0} d\cos\theta \frac{d\sin^{2}\theta_{\text{eff}}}{d\cos\theta}}_{0} \frac{\theta_{\text{eff}}}{\theta_{\text{eff}}} \approx \sin^{2}\theta_{\text{eff}}^{l} \frac{1}{2} \underbrace{0.0001}_{0.0001}, \\ \frac{\partial^{2}\theta_{\text{eff}}}{\partial^{2}\theta_{\text{eff}}} \frac{\partial^{2}\theta_{\text{eff}}}{\partial^{2}\theta_{\text{eff}}} \underbrace{\partial^{2}\theta_{\text{eff}}}_{0} \frac{\partial^{2}\theta_{\text{eff}}}{\partial^{2}\theta_{\text{eff}}} \frac{\partial^{2}\theta_{\text{eff}}}{\partial^{2}\theta_{\text{eff}}} \underbrace{\partial^{2}\theta_{\text{eff}}}_{0} \underbrace{\partial^{2}\theta_{\text{eff}$$

Capture leading loop effects with the replacements $g_V^f \rightarrow \sqrt{\rho_{eq}}(T_3^f - 2Q_f \kappa_f \sin^2 \theta_W)$ and $g_A^f \rightarrow \sqrt{\rho_{eq}}T_3^f$

Define
$$\sin^2 \theta_{\text{eff}}^f = \kappa_f \sin^2 \theta_V$$

"Enhanced Born Approximation"

 M_W^2

Moriond EW 2018

Ζ

Leptons have more sensitivity to κ variations: fix κ_q to the SM value and measure sin² θ_{eff}^{lept}

Measurement strategy:

Measure number of selected negative leptons in the forward and backward regions as a function of mass Correct for detector acceptances and resolutions

Experimental and theoretical requirements:

Accurate simulation of detector response and acceptance

Accurate model of the parton distribution functions (affect detector acceptance & quark couplings)

D0 & CDF have performed measurements in e and μ channels with complete data sets Final combination submitted for publication

CDF use an event weighting to effectively measure asymmetry as a function of cos0 Reduces reliance on simulated acceptance

D0 have recently completed a measurement in the muon channel using the full data set

Combine with previous measurement in electron channel to give a precision of two parts per thousand

PRL 115, 041801 (2015)

₽⁶⁶ ∎0.1

0.05

-0.05

DØ 9.7 fb⁻¹

 χ^{2} /d.o.f = 0.3

Data EC-EC

PYTHIA EC-EC

M_{ee} (GeV)

Combined results use common PDFs (NNPDF 3.0) and EW corrections (from ZFITTER)

	Source Statistics	Uncertain CDF inputs D + 0.00043 +	ties on $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ 0 inputs 0.00035	$\frac{\text{Tevatron combination}}{+ 0.00027}$	
	Uncorrelated syst. PDF	$\begin{array}{cccc} \pm 0.00007 & \pm \\ \pm 0.00016 & \pm \end{array}$	0.00007 0.00019	$\begin{array}{c} \pm \ 0.00005 \\ \pm \ 0.00018 \end{array}$	
ſ					
LEP-1 and SLD: Z-pole	• 0.23149±0.00016	Tevatron uncertainty a	factor		
LEP-1: A _{FB}	0.23221±0.00029	of ~2 higher than all	e+e-	Indirect measurements	
SLD: <i>A</i> ₁	••• 0.23098±0.00026	measurements comb	pined	LEP-1 and SLD - 80.363±0.020	
$CMS \mu\mu 1 \text{ fb}$	0.2287±0.0032			(m _H free parameter)	
ATLAS $ee+\mu\mu$ 5 fb ⁻¹	0.2308±0.0012	Combined measurer	ante	CDF $ee + \mu \mu$ 9 fb ⁻¹ \longrightarrow 80.328±0.024	
LHCb $\mu\mu$ 3 fb ⁻¹	0.23142±0.00107		101113		
CDF $\mu\mu$ 9 fb ⁻¹	0.2315±0.0010	CONSISTENT		D0 ee+ $\mu\mu$ 10 fb \sim 80.396±0.021	
CDF ee 9 fb ⁻¹	0.23248±0.00053				
CDF ee+ $\mu\mu$ 9 fb ⁻¹	0.23221±0.00046	Applying SIVI higher-o	order	TeV combined: CDF+D0 80.367±0.017	
D0 $\mu\mu$ 9 fb ⁻¹	• 0.23016±0.00064	corrections indirec	tly	(m _H fixed)	
D0 ee 10 fb ⁻¹	0.23137±0.00047	determines W boson	mass	Direct measurement	
D0 ee+ $\mu\mu$ 10 fb ⁻¹	0.23095±0.00040			TeV and LEP-2 80 385+0 015	
TeV combined: CDF+E	00 ••-0.23148±0.00033	Comparison with the	direct		
		measurement provides	s a test	80 80.1 80.2 80.3 80.4 80.5 80.6	
$\sin^2 \theta_{ept}^{\text{lept}}$		of the SM prediction		<i>W</i> -boson mass (GeV/ c^2)	
Moriond EW 201	[°] еп 8	arXiv:1801.06283 8 ^{sir}	$h^2 \theta_W = 1 - M_W^2$	$/M_Z^2$ C. Hays, Oxford University	

W boson mass

W boson mass predicted at tree level using Fermi & EM couplings, and Z boson mass

$$M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_{\rm Z}^2} \right) = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_{\rm F}} \frac{1}{1 - \Delta r}$$

Loop corrections constrained the Higgs boson mass prior to its discovery

Given the measured m_H, constrain loop corrections from Supersymmetry or other new physics

$$\begin{split} \Delta\rho_0^{\rm SUSY} &= \frac{3G_{\mu}}{8\sqrt{2}\pi^2} \left[-\sin^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{t}}F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2\right) - \sin^2\theta_{\tilde{b}}\cos^2\theta_{\tilde{b}}F_0\left(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2\right) \right. \\ &\left. +\cos^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{b}}F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{b}_1}^2\right) + \cos^2\theta_{\tilde{t}}\sin^2\theta_{\tilde{b}}F_0\left(m_{\tilde{t}_1}^2, m_{\tilde{b}_2}^2\right) \right. \\ &\left. +\sin^2\theta_{\tilde{t}}\cos^2\theta_{\tilde{b}}F_0\left(m_{\tilde{t}_2}^2, m_{\tilde{b}_1}^2\right) + \sin^2\theta_{\tilde{t}}\sin^2\theta_{\tilde{b}}F_0\left(m_{\tilde{t}_2}^2, m_{\tilde{b}_2}^2\right) \right] \end{split}$$

$$\rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = \frac{1}{1 - \Delta \rho} \qquad F_0(x, y) = x + y - \frac{2xy}{x - y} \ln\left(\frac{x}{y}\right)$$

arXi

Moriond EW 2018

9

M_w [GeV]

W boson mass @ the Tevatron

Measurement strategy:

Measure momenta of charged lepton and neutrino in transverse plane Construct the transverse mass in this plane and fit three distributions for m_w

Experimental and theoretical requirements:

Precise calibration of lepton momentum

Accurate calibration of detector response to initial-state radiation and underlying event Accurate model of longitudinal and transverse momentum of the W boson

Tevatron instantaneous luminosities produce <10 overlapping collisions on average A large majority of W bosons are produced by valence quarks

CDF, 2.2 fb⁻¹

Source	Uncertainty (Me
Lepton energy scale and resolution	7
Recoil energy scale and resolution	6
Lepton removal from recoil	2
Backgrounds	3
Experimental subtotal	10
Parton distribution functions	10
QED radiation	4
$p_T(W)$ model	5
Production subtotal	12
Total systematic uncertainty	15
W-boson event yield	12
Total uncertainty	19

D0, 4.3 fb⁻¹

Source	Uncertainty (MeV)
Electron energy calibration	16
Electron resolution model	2
Electron shower modeling	4
Electron energy loss model	4
Recoil energy scale and resolution	5
Electron efficiencies	2
Backgrounds	2
Experimental subtotal	18
Parton distribution functions	11
QED radiation	7
$p_T(W)$ model	2
Production subtotal	13
Total systematic uncertainty	22
W-boson event yield	13
Total uncertainty	26

70

80

m_τ (GeV)

15000

10000

5000

s / 0.5 GeV

Even

Moriond EW 2018

PRD 88, 052018 (2013)

C. Hays, Oxford University

 $\bm{W} \!\rightarrow\! \mu \nu$

 γ^{2} /dof = 58 / 48

90

PRD 89,

072003 (2014)

100

W boson mass @ the Tevatron

CDF & D0 analysing complete data sets

Moriond EW 2018

11

052018 (2013)

M_w [MeV]

C. Hays, Oxford University

Summary

Tevatron completing legacy electroweak measurements

Z boson coupling final measurements combined

By Rhianna Wisniewski

W boson mass final measurements ongoing

Summary

Tevatron completing legacy electroweak measurements

Z boson coupling final measurements combined

Fermilab's game-changing accelerator revolutionized

W boson mass final measurements ongoing

Moriond EW 2018