$K^+ \rightarrow \pi^+ v \bar{v}$: first NA62 results

Speaker: Radoslav Marchevski On behalf of the NA62 collaboration Moriond EW Conference, 10-17th March 2018, La Thuile, Italy,

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Kaon physics @ NA62

`14-`18 NA62:K $\rightarrow \pi^+ \nu \overline{\nu}$

- ጵ 🛛 2014 Pilot run
- ጵ 🛛 2015 Commissioning run
- ★ Full detector installation completed in September 2016
- **First** $\pi v \overline{v}$ dataset in 2016 (This talk)
- ☆ Continuous data-taking until the end of 2018

~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Merced, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

The FCNC process $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

- **FCNC** loop processes: $s \rightarrow d$ coupling and highest CKM suppression
- Theoretically clean: Short distance contribution.
- Hadronic matrix element measured with K₁₃ decays
- SM predictions:[Brod, Gorbahn, Stamou, Phys. Rev.D 83, 034030 (2011)],[Buras. et. al., JHEP11(2015)033] $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (8.4 \pm 1.0) \times 10^{-11}$
- Experimental result: [Phys. Rev. D 79, 092004 (2009)]
- $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ (BNL, "kaon decays at rest")

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ beyond the Standard Model

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Constraints from existing measurements (correlations model dependent)
 - ★ Kaon mixing, CKM elements, K, B rare meson decays, NP limits from direct searches

Moriond EW 2018

 $K^+ \rightarrow \pi^+ v \bar{v}$: first NA62 results (R. Marchevski)

Analysis strategy

NEW

Decay in flight technique

 $m_{miss}^2 = (P_K - P_{\pi} +)^2$

Keystones of the analysis:

- ★ Timing between sub-detectors ~ O(100 ps)
- ★ Kinematic suppression ~ $O(10^4)$
- ***** Muon suppression > 10^7
- ★ π^0 suppression (from K⁺→ $\pi^+\pi^0$) > 10⁷
- Signal and background control regions are kept blind throughout the analysis

 $15 < P_{\pi^+} < 35 \text{ GeV/c}$

Particle ID(Cherenkov detectors)
Particle ID(Calorimeters)
Photon veto

NA62 beam and detector

NA62 beam and detector

- SPS Beam:
- ★ 400 GeV/c protons
- 2.10^{12} protons/spill
- 🜟 3.5s spill

Secondary positive Beam:

- ★ 75 GeV/c momentum, 1 % bite
- 📌 100 μrad divergence (RMS)
- ★ 60x30 mm² transverse size
- \star K⁺(6%)/ π ⁺(70%)/p(24%)
- ★ 33x10¹¹ ppp on T10 (750 MHz at GTK3)

Decay Region:

- ★ 60 m long fiducial region
- ጵ ~ 5 MHz K⁺ decay rate
- \star Vacuum ~ O(10⁻⁶) mbar

Signal selection

Selection criteria

- ★ single track decay topology
- \star π^+ identification
- 🖈 photon rejection
- \star multi-track rejection

Performance

Signal region definition

- Three ways to compute the m²_{miss}
 - \bigstar $m^2_{miss}(STRAW, GTK)$
 - \bigstar m_{miss}^2 (RICH, GTK)
 - \bigstar m^2_{miss} (STRAW, Beam)
- Protects against mis-reconstruction
- Kinematic suppression
 - ★ Measured using data
 - \bigstar Samples of $K_{\pi\pi}$ and $K_{\mu\nu}$
 - ★ Selected using calorimeters
- Fraction of events in signal regions
 - ★ $K^+ \rightarrow \pi^+ \pi^0 \sim 1 \cdot 10^{-3}$ (resolution tails)

$$\bigstar K^+ \to \mu^+ \nu_\mu \sim 3 \cdot 10^{-4}$$

Single Event Sensitivity (SES)

	Signal	acceptance	:	4	%
_	0-0	acceptance		-	

Source	$\delta SES(10^{-10})$
Random veto	0.09
N_K	0.05
Trigger efficiency	0.04
Definition of $\pi^+\pi^0$ region	0.10
Momentum spectrum	0.01
Simulation of π^+ interactions	0.03
Extra activity	0.02
GTK Pileup simulation	0.02
Total	0.24

- Normalization acceptance : 10 %
- Control triggered $K^+ \rightarrow \pi^+ \pi^0$ used for normalization
- Number of kaon decays in the fiducial volume : $N_K = 1.21(2) \ge 10^{11}$

$SES = (3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \cdot 10^{-10}$

K^+ → π^+ π^0 (γ) background

- Data driven background estimation
- Control region validation: 1 event observed (1.5 expected)

$$N_{\pi\pi(\gamma)}^{bg} = 0.064 \pm 0.007_{stat} \pm 0.006_{syst}$$

$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$ background

- Data driven background estimation
- Control region validation: 2 event observed (1.1 expected)

$$N^{bg}_{\mu\nu(\gamma)} = 0.020 \pm 0.003_{stat} \pm 0.003_{syst}$$

$K^+ \rightarrow \pi^+ \pi^- e^+ v_e(K_{e4})$ background

- Background estimated with 400 million MC generated $K^+ \rightarrow \pi^+\pi^-e^+\nu_e$ decays
- Good agreement across the 5 validation samples

$$N_{K_{e4}}^{bg} = 0.018_{-0.017}^{+0.024}|_{stat} \pm 0.009_{syst}$$

Upstream background

Process	Expected events in $R1 + R2$
$K^+ \to \pi^+ \nu \overline{\nu} \; (SM)$	$0.267 \pm 0.001_{stat} \pm 0.029_{syst} \pm 0.032_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma) \text{ IB}$	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^- \pi^+$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream background	$0.050\substack{+0.090\\-0.030}$
Total background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$

Results

Results

Results: RICH ring for the event

Results

 $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 11 \times 10^{-10} @ 90\% CL$ $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$

- One event observed in Region 2
- Full exploitation of the CLs method in progress
- The results are compatible with the Standard Model
- For comparison: $BR(K^+ \to \pi^+ \nu \overline{\nu}) = 28^{+44}_{-23} \times 10^{-11} @ 68\% CL$

$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$$
$$BR(K^+ \to \pi^+ \nu \overline{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ (BNL, "kaon decays at rest")}$$

Prospects

Processing of 2017 data is ongoing

- $\star~\sim 20$ times more data than the presented statistics
- ★ expected reduction of upstream background
- ★ improvements of the reconstruction efficiency
- Preparing 2018 data taking
 - ★ 218 days including stops
 - ★ ongoing studies to improve the signal acceptance
- ~ 20 SM events expected before LS2
- Running after 2018 to be approved
 - ★ Conditions for ultimate sensitivity under evaluation

- The new NA62 decay in flight technique works
- One event observed in the 2016 data
- $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$