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1. Motivations 3. The WA105 demonstratoi

Neutrinos oscillations could explain why the universe is not empty
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Fig. 1: Probability of oscillation of v, to v. vs v, energy Fig. 4: Double phase modification (left) of a Time Projection Chamber (right).

A charged particle ionizes the liquid argon, the electrons drift towards an anode and give

The Deep Underground Neutrino Experiment an x and y information. The time of arrival at the anode, compared to the ionization time
given by light emission, gives the z information.

Modification: Amplify electrons in a gaseous phase above the liquid. WA105 tests this

possibility in a 300T volume scalable to DUVE size.
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Fig. 2: The DUVE experiment in the USA: (anti)neutrino beam produced in Fermilab (right), goes through

e . . . . 47 m 3m? DLAr TPC
a near detector where it is characterized, traverses the earth and oscillates, and arrives in the Far -

Detector at Sanford (left) to be detected.
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Main objectives: | ram
e Send (anti)v, and detect (anti)ve and compare results to measure ocp Fig. 5: The 6x6x6 m? DLAr TPC demonstrator at 49m
e Determine mass ordering of mass eigenstates CERN (starts in 2018)
. ] 3 . ~ .
e Study ve bursts from supernovae (if any) e Will measure interactions from beam Figl 6 Ui 321 21 e (il iracs th hine 2017)
o Study proton decay (BSM models) charged particles o Test bench for the 6 x 6 x 6 m>
S Predlee measuirernent of EMING matdy elemeie e Results can be scaled to the 12x12x45 e Data taken with cosmic muons
m3 DUVE far detector
= Will tell if DLAr is viable for DUVE
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2. DUvE's far detector: a Tii
4. LEM characterisation at (thesis work)
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Fig. 7: A Large Electron Multiplier used in DLAr 0 20 40 80 80 100 120 x1:h0anne|
TPC (Fig [4)

3 ) ) Fig. 8: Simulation of collection efficiency of a
Fig. 3: DUvE’s Far Detector, in Sanford, (see Fig. [2) will consists of 4 10kT TPCs ® 50x50x0.Tem> FR4 covered by coppe

. : . LEM
on each sides, drilled with 450k holes.
A detector of 12x12x45 meters filled with liquid argon in which neutrinos will interact Done with ANSYS, GarField and Root

. . Lo I . e Measure gain and spark rate at Saclay,
and produce charged particles. Basic functioning is shown in Fig 4 right. J | ]

and send to CERN for assembly softwares by simulating drifting electrons
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on the LEM

5. CEA's responsibility

At Saclay CERN

e Commissioning of the 3 x 1 x 1
e Simulation of LEM collection efficiency (Fig [8, thesis work)

3 e lake and analyze cosmic data (thesis work)
e Production and characterization of LEM for 6 x 6 x 6 m> demonstrator (thesis work)

e Assembly of 6 x 6 x 6 and beam tests in 2018 (thesis work)




