Neutrino GDR meeting Paris, France Nov 20-21, 2017

Scientific potential of a neutrino beam from Protvino to ORCA (P2O)

J. Brunner & **D. Zaborov** (CPPM - Marseille) In cooperation with A. Sokolov, V. Garkusha & A. Zaitsev (IHEP – Protvino) and the KM3NeT collaboration

> Unique opportunity for a very long baseline experiment (2600 km)

Sensitivity to neutrino mass hierarchy and CP violation

The far detector : KM3NeT / ORCA

Digital Optical Module (DOM)

31 3-inch PMTs in 17-inch glass sphere

115 strings
18 DOMs / string
31 PMTs / DOM
Total: 64 000 PMTs (3")

See talk by Liam Quinn

D. Zaborov, et al. - P2O

2

P2O : Protvino to ORCA

- Baseline 2588 km ; beam inclination : 11.7° (cos θ = 0.2)
- Deepest point 134 km : 3.3 g/cm³
- First oscillation maximum 5.1 GeV
- Sensitivity to mass hierarchy and CP violation

J. Brunner, arXiv:1304.6230; Adv. High En. Phys., 2013, Art. 782538, http://dx.doi.org/10.1155/2013/782538, D. Zaborov et al., Lomonosov conference, Moscow, August 2017

What baseline is best

- Optimal baseline to measure mass hierarchy with beam neutrinos is between 2000 km and 4000 km
- Degeneracy between MH and δ_{CP} for L < 1000 km
- Peak energy follows initially first oscillation maximum at $E = 25 \text{ GeV} * \cos\theta$
- levels off at mantle resonance energy (~ 6 GeV)

Protvino accelerator complex (100 km South of Moscow)

Operated by NRC «Kurchatov Institute» – Institute for High Energy Physics (IHEP), Protvino

The OMEGA project proposal

- New high intensity linac and booster synchrotron (3.5 GeV)
- 1.1 MW proton beam
- High-intensity spallation neutron source (similar to J-PARC in Japan and SNS in USA)
- 450 kW power at 70 GeV using existing U-70 synchrotron
- A long baseline neutrino beam

N.E. Tyurin et al, Facility for intense hadron beams (letter of intent), News and Problems of Fundamental Physics 2 (9), 2010, http://exwww.ihep.su/ihep/journal/IHEP-2-2010.pdf

D. Zaborov, et al. - P2O

Simulated Neutrino Beam

Beam spectra from V. Garkusha, F. Novoskoltsev & A. Sokolov, Study of Neutrino Oscillations with the U-70 Accelerator Complex, IHEP Preprint 2015-5 – beam optimized for Protvino-Gran Sasso (on-axis)

Focus π + (Neutrino beam)

Beam power : 450 kW, $4 * 10^{20}$ p.o.t. per year

(for reference: Fermilab-Nova beam is 700 kW)

ORCA effective mass

After triggering, atmospheric muon rejection and containment cuts

- Energy threshold determined by DOM spacing
- 1 Mton @ 3 GeV
- 6 Mton @ 10 GeV

Expected neutrino rates in ORCA normal mass hierarchy

Vacuum oscillation maximum at E = 5.1 GeV Most V_{μ} convert to V_{τ} which remains largely invisible (CC reaction suppressed by τ mass) $V_{\mu} \rightarrow V_{e}$ transitions are enhanced by the MSW effect, resonance energy 3.8 GeV Nov 21, 2017 D. Zaborov, et al. - P2O

Expected neutrino rates in ORCA inverted mass hierarchy

 $V\mu \rightarrow Ve$ transitions suppressed by the MSW effect

If inverted mass hierarchy is true, switch to anti-neutrino beam (for CPV studies)

Multi-Parameter fit of simulated data

- Combined fit of nuisance and oscillation parameters
- No neutrino/anti-neutrino skew
- No spectral index skew
- No energy scale shift

Parameter	True value	Prior	Start value	Parameter	True value	Prior	Start value
$\theta_{_{12}}$	33.4°	fix	fix	Norm $v_e^{}$ CC	from v_{μ} CC	fix	fix
$\Delta m^2 [eV^2]$	7.53 10-5	fix	fix	Norm $v_{\mu}CC$	1	0.05	1
$\theta_{_{13}}$	8.42°	0.15°	8.42°	Norm $v_{\tau}^{}CC$	1	0.10	1
$\theta_{_{23}}$	41.5°	1.3°	41.5°	Norm NC	1	0.05	1
$\Delta M^2 [eV^2]$	2.44 10 ⁻³	0.06	2.44 10-3	PID	1	0.10	1
$\delta_{_{CP}}$	many	no	many	v / v	1	fix	fix

* Only used for CP fits, not for NMH

P2O sensitivity to mass hierarchy

Sensitivity to CP violation

Simulated measurement of δ_{CP}

Measurement accuracy for δ_{CP}

NB: this study uses preliminary estimates of systematic uncertainties

Beam optimization (work in progress)

- Red: two 3 m horns as in arXiv:1412.0804
- Blue: target shifted towards the beam
- Black: target shifted towards the beam + horns moved further away from each other

Idea: choose the beam option which gives best sensitivity to CP violation

Possible location of the neutrino beam line

Thinking of Near detector

Suggestions are very welcome

D. Zaborov, et al. - P2O

The low intensity (& low cost) option

- Use existing accelerator chain upgraded to maximum possible intensity
- Assume we have a 45 kW beam (upgrade to 30 kW currently in progress)
- Assume we gain a factor of 2 by optimizing the beam and the ORCA data analysis

5 sigma on mass hierarchy after 5 yr of 45 kW beam

but marginal sensitivity to CP violation, unless ORCA is also upgraded

Could serve as Phase 1 on the way to full intensity

Conclusion

- Directing a neutrino beam from Protvino to ORCA is of high scientific interest
- Determination of the neutrino mass hierarchy with a high statistical significance and well controlled systematic uncertainties
- Measurement of the CP-violating phase δ (competitive with DUNE, T2HK)
- Informal collaboration with IHEP established, initiative supported by IHEP directorate

New collaborators are welcome

Backup slides

Particle ID

Particle ID performance

At 10 GeV:

- 90% correct ID of n_e^{CC}
- 70% correct ID of n_m^{CC}

Energy resolution

Energy resolution better than 30% in relevant range

Distribution close to Gaussian

D. Zaborov, et al. - P2O

Benefits of beam neutrinos

- Clean muon neutrino or anti-neutrino beam (chosen by horn polarity)
 - Flavor oscillations more pronounced (ν_{μ} / ν_{e})
 - Matter effect more pronounced (ν / anti- ν)
- Known baseline
 - No zenith angle uncertainty
- Known direction
 - kinematics constraints

better event reconstruction / particle ID possible

- Short beam spills
 - Factor 1 000 000 suppression of atmospheric muon and atmospheric neutrino backgrounds
 - Background estimation from "off" data

Neutrino mass hierarchy (ordering)

Peak energy example

The OMEGA project

The OMEGA project proposal (continued)

Intended primarily for applied research (material science, protein structure, rapid processes, etc)

ESS: European Spallation Source: 2-5 MW, under construction in Lund, Sweden

PIC: 100 MW nuclear reactor, NRC «Kurchatov Institute» – PNPI, Gatchina (near St. Petersburg), construction 1976-2019

Cost estimates

Table extracted from the OMEGA project LoI

Nº	Object	Cost (million rubles)	M € (approx)
1	Linac LU-400	7 200	180
2	RC PS U-3.5	10 100	250
3	Neutrino channel	1 500	40
4	Near Neutrino Detector	1 000	25
5	Neutron source (target station T1)	8 400	210
6	Neutron research set-ups	1 500	40
7	Injection from U-3.5 to U-70	800	20
8	Target stations T2 and T3	800	20
9	Infrastructure	700	17
10	Total	32 000	800

Using 2003 exchange rate 40:1

Costs dominated by accelerator construction and neutron source

D. Zaborov, et al. - P2O