

Latest oscillation results from T2K

Simon Bienstock (on behalf of the T2K Collaboration) LPNHE Paris

simon.bienstock@lpnhe.in2p3.fr

GDR Neutrino 2017 21/11/2017

Neutrino oscillations

Neutrino can change flavour while propagating

- This mechanism can be described by 6 parameters:
 - \rightarrow 3 mixing angles, θ_{12} θ_{13} and θ_{23} and 2 Δm_{ij}^2
 - \rightarrow A CP violating phase : δ_{CP}

Two neutrino mixing probability
$$P(\nu_x \to \nu_y) = sin^2 2\theta sin^2 (1.27 \Delta m^2) \frac{L(km)}{E(GeV)}$$

Three neutrino mixing

(+ Majorana phases)

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Flavour

Solar and reactor Reactor and accelerator Atmospheric and

Mass

Neutrino oscillations

Neutrino can change flavour while propagating

- This mechanism can be described by 6 parameters:
 - \rightarrow 3 mixing angles, θ_{12} θ_{13} and θ_{23} and 2 Δm^2_{ii}
 - \rightarrow A CP violating phase : δ_{CP}

(+ Majorana phases)

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Flavour

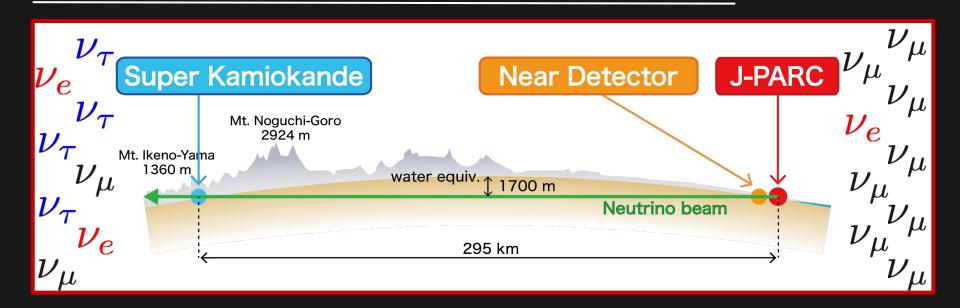
Solar and reactor

Reactor and accelerator

Atmospheric and accelerator

Mass

$$\theta_{12} = (33.6 \pm 0.8)^{\circ}$$
 $|\Delta m_{12}^{2}| = (7.50 \pm 0.18) \cdot 10^{-5} \text{ eV}^{2}$


 $\theta_{23} = (45 \pm 3)^{\circ}$ $|\Delta m^{2}_{32}| = (2.52 \pm 0.04) \cdot 10^{-3} \,\text{eV}^{2}$

$$\theta_{13} = (8.5 \pm 0.15)^{\circ}$$

 $\delta_{CP} \approx -90^{\circ}$ slightly favored

Tokai to Kamioka

IZA is a long-baseline neutrino oscillation experiment

- A ν_μ beam, peaked at ~600 MeV is produced at J-PARC (Tokai, Japan)
- ➤ The neutrinos are then detected in the near detector ND280, and in the far detector, 295 km away, Super-Kamiokande (Kamioka).

T2K physics goals

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- ➤ Two main initial goals :
 - \rightarrow Precise measurement of v_{μ} disappearance:
 - ightarrow~ Atmospheric sector, measurement of $heta_{23}$ and $\Delta m^2_{~32}$
 - \rightarrow Observation of v_e appearance in the v_u beam :
 - \rightarrow Access to the interference parameter θ_{13}
- Now taking data with anti-neutrino \Rightarrow combined v_e and \overline{v}_e appearance :
 - \rightarrow First constraints of δ_{CP}
- T2K is also doing various cross-section measurements in several of its sub-detectors!

Oscillation probability

- \rightarrow v_{u} disappearance probability
 - → In T2K, given the energy of the neutrino, we can simplify the formula to:

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \cdot \sin^2 \theta_{23}) \times \sin^2 \frac{\Delta m_{31}^2 \cdot L}{4E}$$

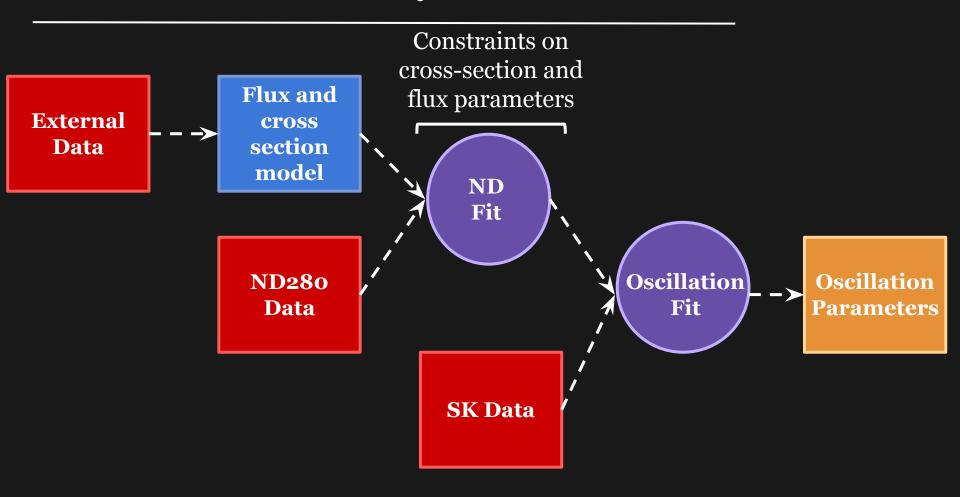
Leading term

Next-to-leading

Can be used to resolve octant

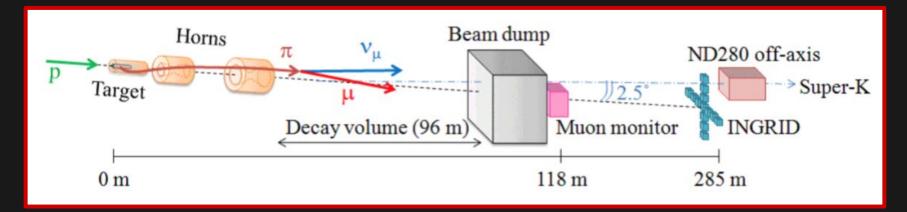
- v_e appearance probability
 - → Around T2K's oscillation maximum:

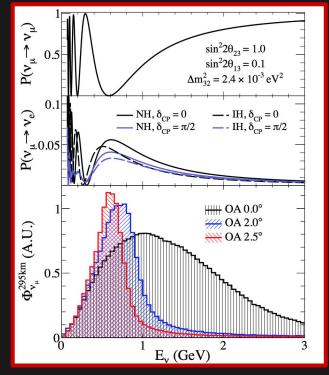
 $a = 2 \sqrt{2} G_F n_e$ E and becomes -a for anti-neutrino


$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\right) \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2\sin^{2}\theta_{13}\right)\right) \text{ Leading including matter effect}$$

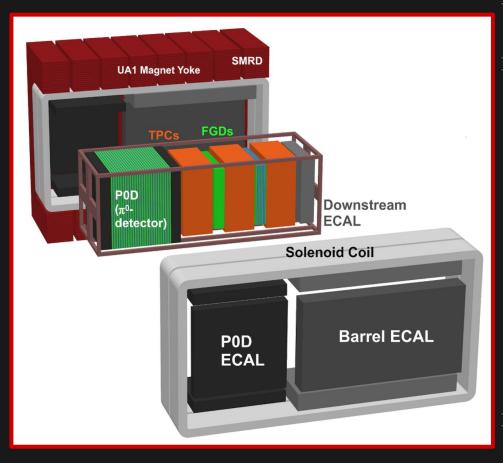
$$-\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta \sin^{2}\left(\frac{\Delta m_{32}^{2}L}{4E}\right) \sin\left(\frac{\Delta m_{21}^{2}L}{4E}\right) \text{ CP violating}$$

T2K oscillation analysis chain



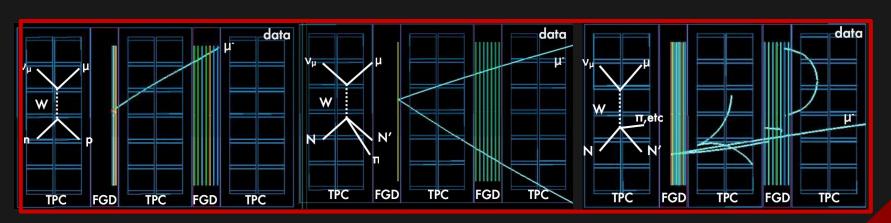

We do a first fit with the near detector data in order to constrain our flux and cross-section models, to have a precise prediction of the number of events we expect at the far detector.

T2K beam

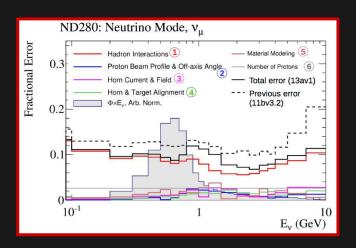


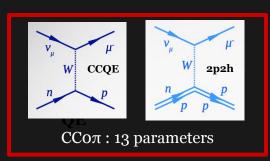
- First use of off-axis v_{μ} beam to get a beam more peaked in energy.
 - → The energy is peaked around oscillation maximum (0.6 GeV).
- The pion and kaon production at target is constrained by the NA61/SHINE experiment at CERN, allowing us to reduce systematic uncertainties on the flux of neutrino.
- An anti-neutrino beam can be obtained by reversing current in the magnetic horns.

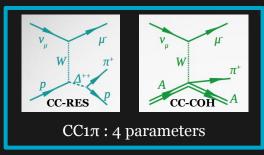
T2K near detector: ND280

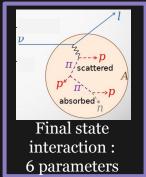


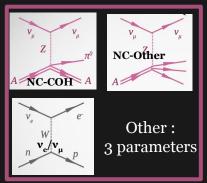
- ➤ ND280 is located 2.5° off-axis (same as Super-K).
- Several sub-detectors inside the magnet :
 - → Fine Grained Detector (FGD), plastic scintillator bars for FGD1 and scintillator/water for FGD2 as target.
 - → Time Projection Chamber (TPC) to reconstruct momentum and charge.
 - → Pi0 detector (P0D) and Electromagnetic calorimeter (ECal).
- Measure neutrino spectrum and composition before oscillations.

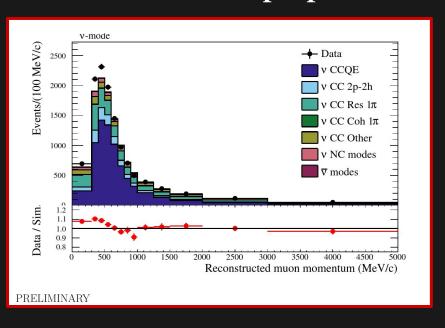

- > Select charged-current (CC) muon neutrino interactions in the tracker.
 - → The FGDs are used as targets.
 - → With the TPCs, retrieve the momentum and charge of the tracks produced.
- ➤ We break the CC inclusive into 3 samples, depending on the number of pions reconstructed.
- ➤ We have 14 samples: 6 in neutrino mode (3 per FGD), 4 in anti-neutrino mode with anti-neutrino selection and 4 in anti-neutrino mode with neutrino contamination.



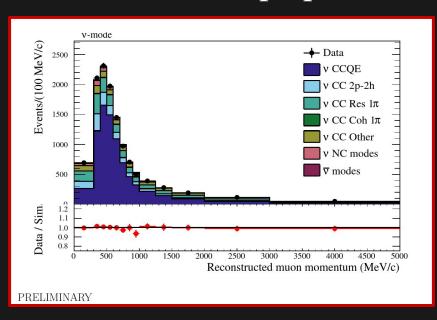



Flux Cross-section



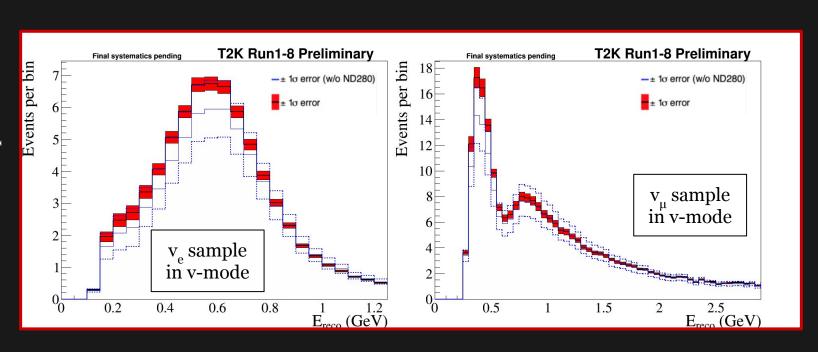


- ➤ Even constrained with external data, the flux and cross-section uncertainties are still quite large and don't represent perfectly the data.
- ➤ We fit the models to the ND data to constrain further the flux and cross-section, helping to improve the prediction in the far detector.



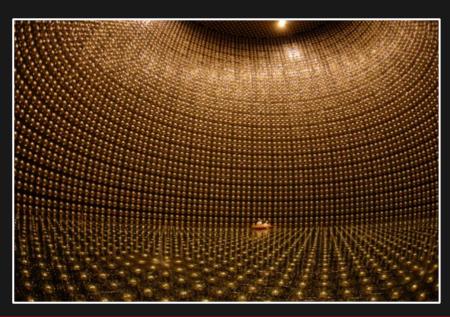
FGD2 CCoπ sample prefit

FGD2 CCoπ sample postfit

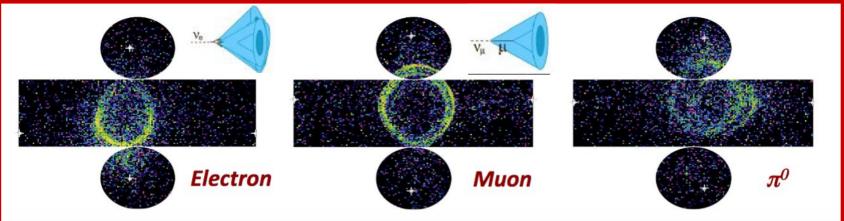

- ➤ Even constrained with external data, the flux and cross-section uncertainties are still quite large and don't represent perfectly the data.
- ➤ We fit the models to the ND data to constrain further the flux and cross-section, helping to improve the prediction in the far detector.

ND280 helps to reduce the systematic uncertainties in the oscillation analysis from ~14% to ~5%

Spectrum of events at SK for v-mode samples

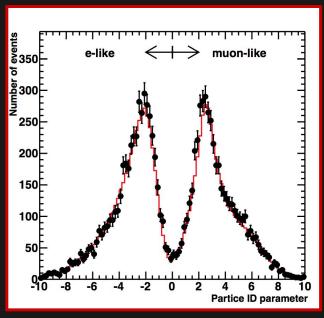


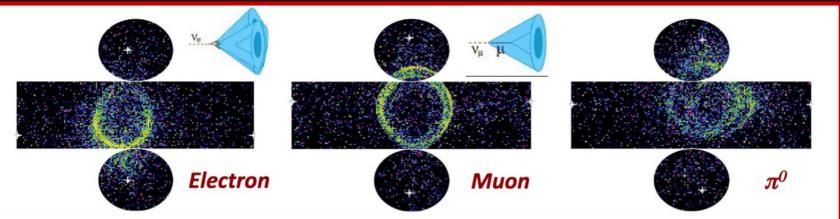
	${ m v}_{\mu} { m sample} _{{ m v \ mode}}$	${ m v_e}_{ m v\ mode}$	$\overline{\mathrm{v}}_{_{\mu}} \operatorname*{sample}_{_{\overline{\mathrm{v}}\mathrm{mode}}}$	$\overline{ extstyle v}_{ ext{e}} ext{sample}_{ ext{mode}}$
Total w/o ND280	13.9%	15.9%	11.7%	13.7%
Total with ND280	4.3%	7.3%	3.8%	7.7%



The far detector: Super-Kamiokande

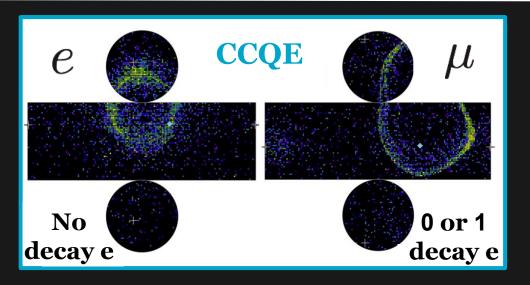
Cherenkov detector with 50 kT of water.

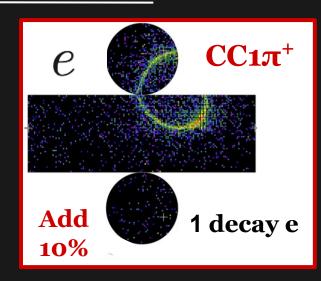

- Detect neutrino CC interactions
- Excellent muon/electron separation thanks to the shape of the Cherenkov ring.
- Only 1% of muons are misidentified as electrons.

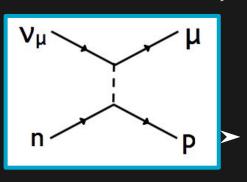


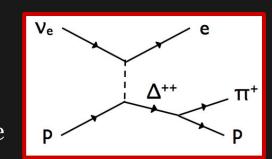
The far detector: Super-Kamiokande

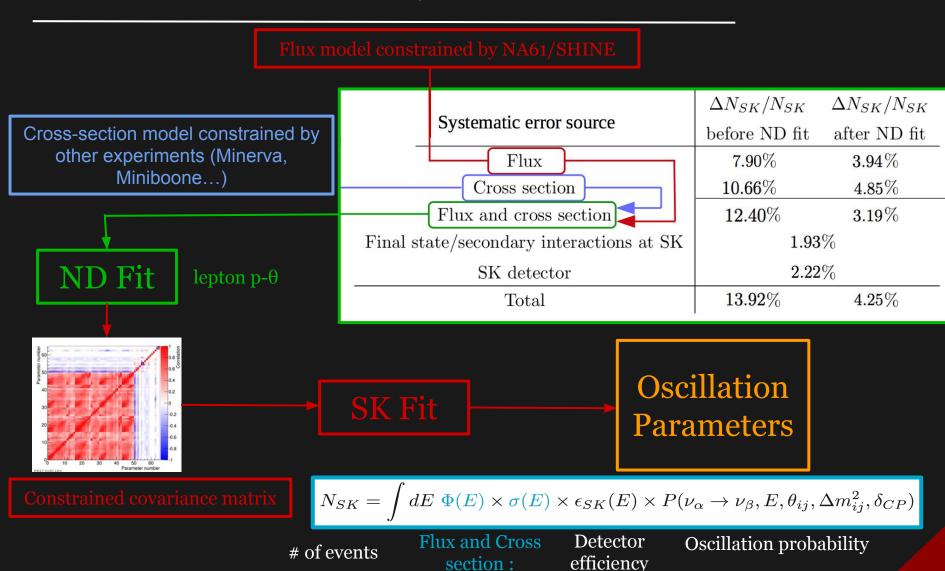
Cherenkov detector with 50 kT of water.


- Detect neutrino CC interactions
- ➤ Excellent muon/electron separation thanks to the shape of the Cherenkov ring.
- Only 1% of muons are misidentified as electrons.

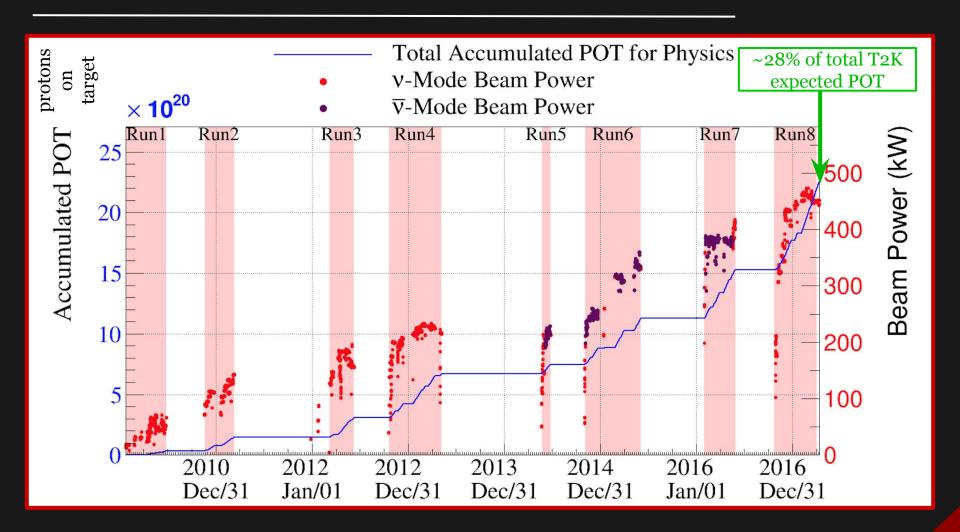





Five far detector samples

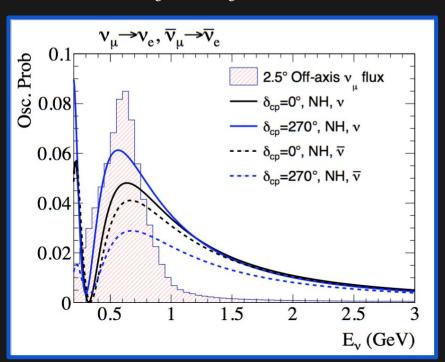

- One reconstructed ring electron and muon samples for both neutrino and anti-neutrino.
 - → Mainly CC quasi-elastic events.
- Added during winter 2016 a new sample with 1 electron ring and 1 decay electron which add ~10% of events.
 - → Mainly single pion production from electron neutrino.

T2K oscillation analysis



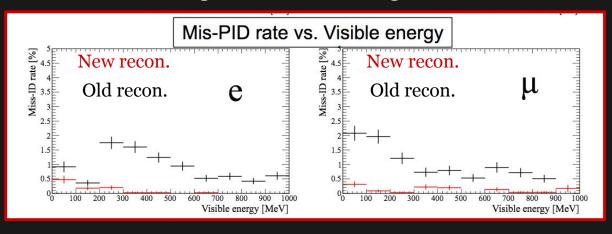
constrained by ND

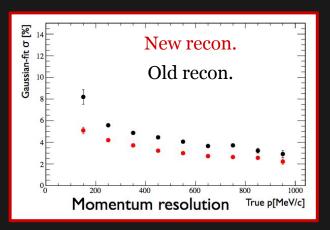
Data taking



Joint neutrino and anti-neutrino mode analysis

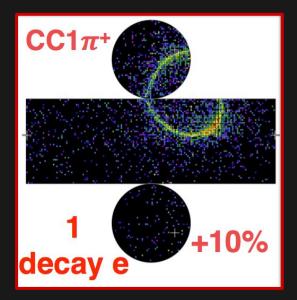
- The five SK samples presented earlier are used in the analysis, allowing simultaneous study of the $v_e^{}/\bar{v}_e^{}$ appearance channels, and $v_\mu^{}/\bar{v}_\mu^{}$ disappearance channels.
- Why is anti-neutrino mode data important?
 - \rightarrow The difference between v_e and \overline{v}_e appearance is directly related to δ_{CP}

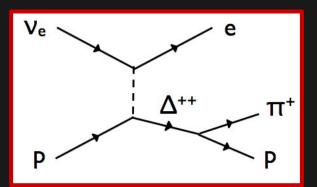




Changes for this year

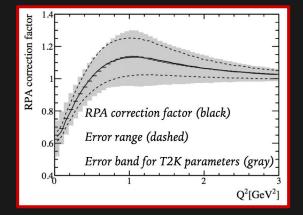
- ➤ New SK reconstruction algorithm has been used on SK selections.
 - → Improved momentum resolution and misId tagging.
 - → Allowing for almost 20% larger fiducial volume.

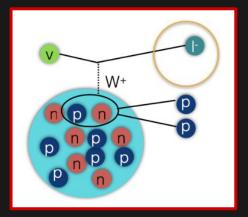

	${ m v}_{{}_{ m W}} { m sample}_{{}_{ m V} { m mode}}$		${ m v_e}_{ m v\ mode}$		$v_{ m e}^{} { m CC1}\pi_{ m v mode}$		$\mathop{ m v} olimits_{\mathop{\mu} \mathop{ar{ m v}} \mathop{\sf mode}}$		${ m v_e \ sample}_{{ m ar v \ mode}}$	
	New	Old	New	Old	New	Old	New	Old	New	Old
# Signal Events	110.0	97.3	28. 7	23.4	2. 7	2.1	49.9	43.4	4.7	3.9
Purity	83%	71%	81%	81%	79%	72 %	80%	68%	62%	63%



Changes for this year

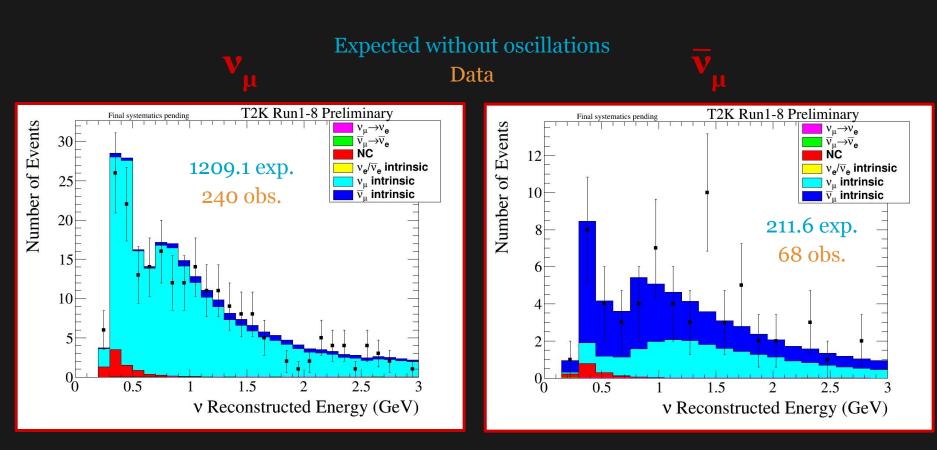
- ➤ New SK reconstruction algorithm has been used on SK selections.
 - → Improved momentum resolution and misId tagging.
 - → Allowing for almost 20% larger fiducial volume.
- This year added a new sample targeting v_e CC interaction with 1 pion in the final state (CC1pi).
 - → All the four other samples target CC quasi-elastic events (CCQE).
 - \rightarrow Add ~10% of new events for v_e .



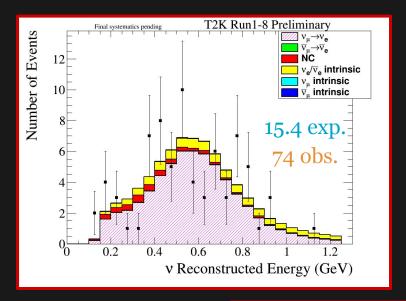


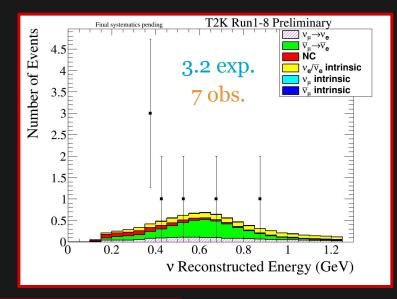
Changes for this year

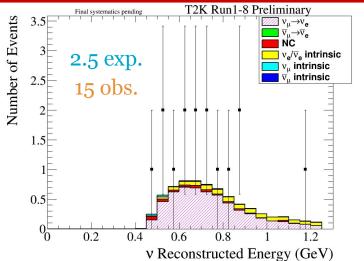
- New SK reconstruction algorithm has been used on SK selections.
 - → Improved momentum resolution and misId tagging.
 - → Allowing for almost 20% larger fiducial volume.
- This year added a new sample targeting v_e CC interaction with 1 pion in the final state (CC1pi).
 - → All the four other samples target CC quasi-elastic events (CCQE).
 - \rightarrow Add ~10% of new events for v_e .
- Updated cross-section model :
 - → Improved uncertainties to multi-nucleon interactions (2p2h).
 - → And to long range nuclear interactions (RPA).



v_{μ} and \bar{v}_{μ} disappearance



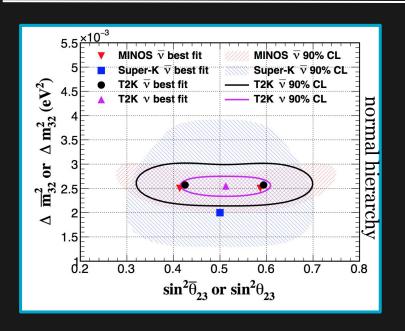

Reconstructed neutrino energy at the far detector for v_{μ} and \overline{v}_{μ} candidate samples with the expected distribution in the no-oscillations hypothesis (blue) and the best-fit (orange).

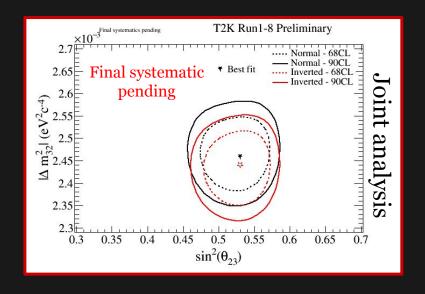


v_e and v_e appearance

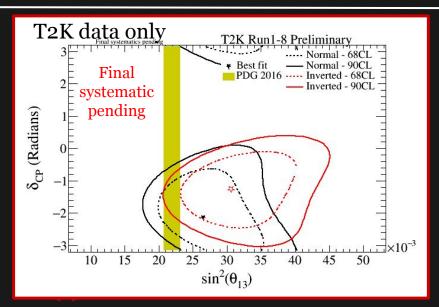
V_c CC1π⁻¹

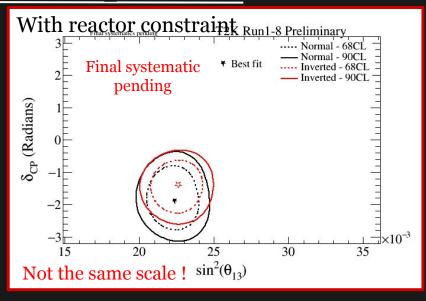
Expected without oscillations


Data

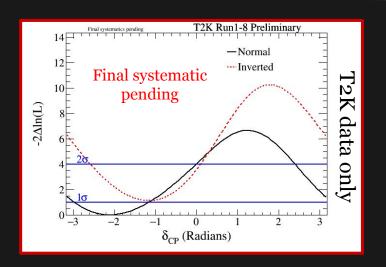


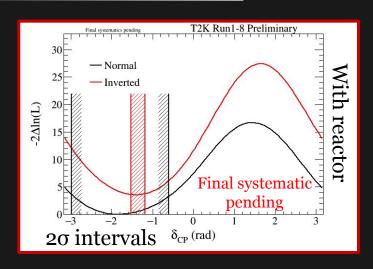
Confidence region in the $\sin^2 \theta_{23} |\Delta m^2_{32}|$ plane




- ➤ Final systematic pending : finalizing the result now for publication.
- ➤ T2K results are consistent with past analysis results, maximal mixing (45°).
- Weakly prefers second octant.
- \rightarrow From separated v and \overline{v} analysis comparison, no hint of CPT violation.

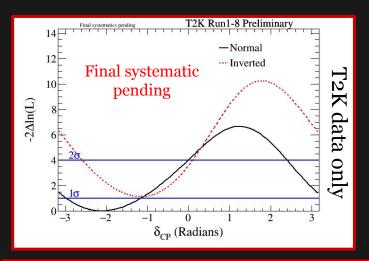
Confidence region in the $\sin^2 \theta_{13}$ / δ_{CP} plane

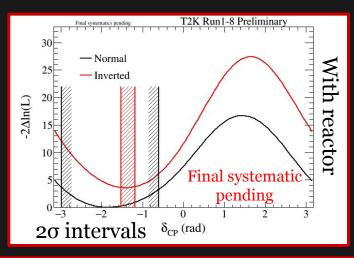



- With the anti-neutrino samples, T2K data by itself has already some sensitivity to δ_{CP} !
 - \rightarrow Disfavor region around $\delta_{\rm CP} = +\pi/2$.
 - Preference for the $\delta_{\rm CP}$ = - $\pi/2$ region for both normal and inverted hierarchy.
- ➤ Good agreement between the reactor measurement of θ_{13} and T2K results.
- When adding the reactor constraint (PDG2015 : $\theta_{13} = 0.085 \pm 0.005$) the contour is further reduced.

First hints about δ_{CP}

Confidence intervals are obtained through the Feldman-Cousins method. All the parameters are marginalized and θ_{13} is marginalized using reactor value.


Parameter	Reactor	CL	Normal hierarchy	Inverted hierarchy
δ_{CP}	Yes	90%	[-2.805, -0.830]	-
δ_{CP}	Yes	2σ	[-2.981, -0.600]	[-1.531, -1.184]

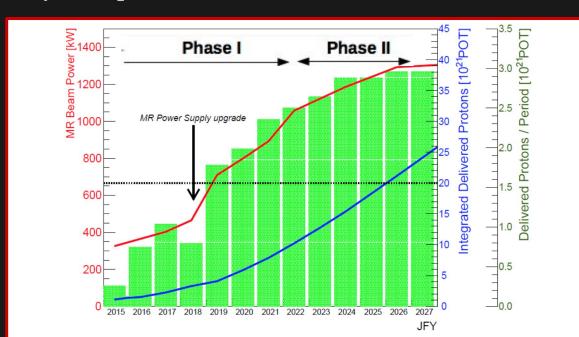

ightharpoonup CP conservation excluded at 2 σ confidence level ($\delta_{CP} \neq 0, \pi$)

First hints about δ_{CP}

Beam mode	Sample	$\delta_{\mathrm{CP}} = -\pi/2$	$\delta_{\rm CP} = 0$	Exp. w/o Osc.	Observed
Neutrino	e-like	73.5	61.5	15.4	74
Antineutrino	e-like	7.9	9.0	3.2	7

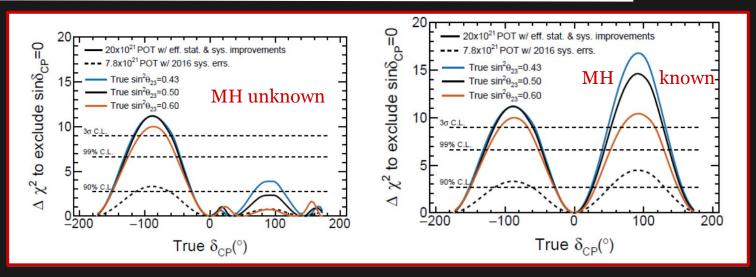
- ➤ We observe :
 - ightharpoonup Less $\overline{\mathbf{v}}_{e}$ candidates than expected
 - \rightarrow More v_e candidates
- $\delta_{\rm CP} = -\pi/2$ is the most asymmetric value, and is therefore favored.
- \triangleright CP conservation excluded at 2 σ confidence level ($\delta_{CP} \neq 0, \pi$).

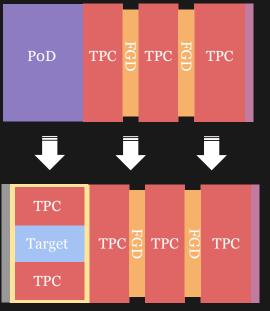
Future improvements


- ➤ Working on different longer term improvements :
 - → Reduced flux uncertainties thanks to new NA61/SHINE analysis.
 - → Improved selections in the Near Detector (anti-neutrino and improved angular acceptance).
 - → SK 2-rings samples.
- Also working tightly with other experiment to get combined analysis :
 - → Latest SK paper shows that combined analysis can get some sensitivity to mass ordering (https://arxiv.org/abs/1710.09126)
 - → Just had a workshop with NOvA, now aiming for combined analysis in 2020/2021.

T2KII

- ➤ T2K approved statistics (7.8 x 10^{21} POT) is expected to be reached in ~2021.
- ➤ 1st phase of J-PARC Main Ring improvement should begin in 2018.
 - → T2K II would extend T2K run to 20 x 10²¹ POT in ~ 2026 (expected start of Hyper-K).
 - → This requires both an accelerator and beamline upgrade to reach 1.3 MW and analysis improvements.


arxiv : 1609.04111



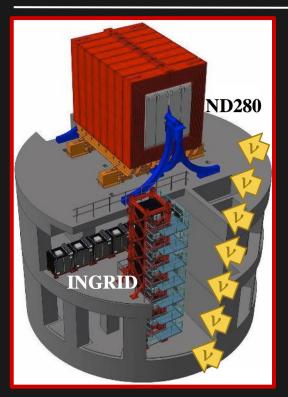
T2K II sensitivity and near detector upgrade

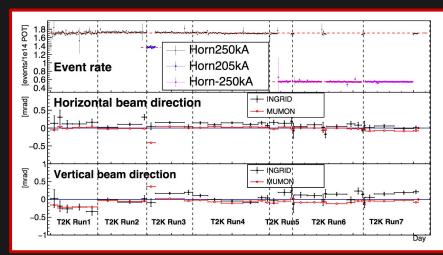
Presented by Sara during last GDR

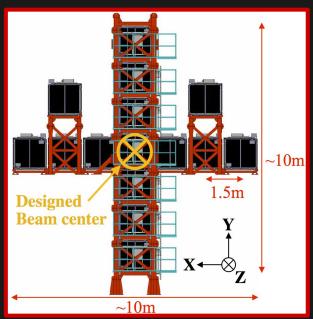
Current ND

- T2K II could reach ~3 σ sensitivity to $\delta_{\rm CP}$ for the parameter values currently favoured.
- This requires significantly lower systematics uncertainties
- An upgrade of the near detector is under study to see if we can achieve ~3% systematic uncertainties.

Summary

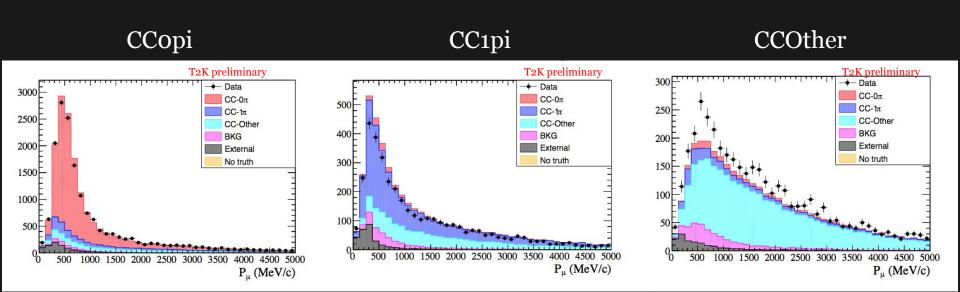

- > Presented an overview of the latest T2K oscillation results:
 - → Finalizing the analysis for publication.
 - Precise contour in the $\sin^2\theta_{23}/\Delta m_{23}^2$ plane, favoring maximal mixing (45°).
 - ➡ First hints of CP violation with neutrino and anti-neutrino data are getting stronger!
 - Good agreement between T2K and the reactor measurements for $\sin^2\theta_{13}$.
 - CP conservation hypothesis excluded at 20 CL
 - The new SK sample and the doubled statistics gives stronger δ_{CP} constraint
 - $ightharpoonup \delta_{\rm CP}({\rm rad}) = [-2.981, -0.6] \, {\rm for \, NH} \, , \, [-1.531, -1.184] \, {\rm for \, IH} \, {\rm at \, } 2\sigma \, {\rm CL}.$
- \succ 7.8 x 10²¹ POT expected to be reached in ~2021.
 - → Proposal for extending T2K data-taking period to 2026 and accumulate up to 20 x 10²¹ POT to continue doing nice physics!
 - → Planning an upgrade of the near detector around 2020 to further reduce the systematic uncertainties.
 - If interested, come and join the T2K II effort!


Thank you!


T2K near detector : INGRID

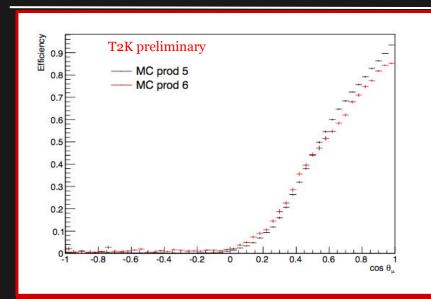

- ➤ Near detector pit at 280 m from the target
- ➤ INGRID is located on-axis.
 - → iron/scintillator tracking calorimeters (16 modules)
 - → Monitor beam, direction, stability.
 - → Used to constrain flux systematic errors.

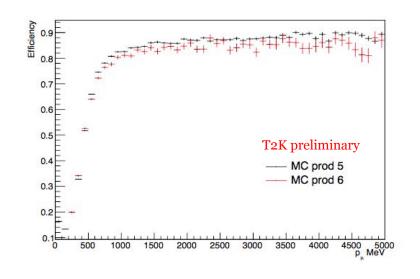
ND280 event selection

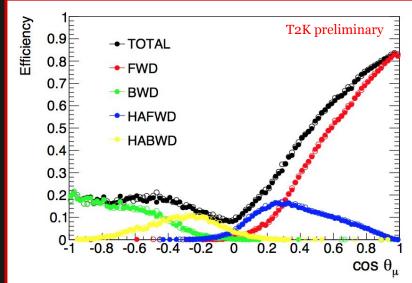


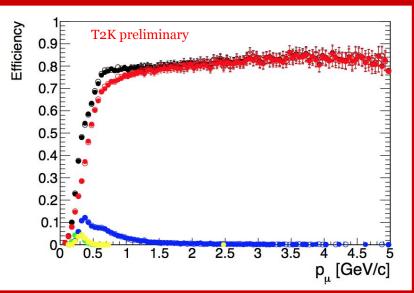
- We currently use a selection of v_{μ} CC events in the tracker, using the FGD as target and the TPC to reconstruct charge and momentum.
- ➤ We separate the CC inclusive events in three topologies depending on the number of pions reconstructed (0, 1 and ≥2)

ND280 event selection




- We currently use a selection of v_{μ} CC events in the tracker, using the FGD as target and the TPC to reconstruct charge and momentum.
- ➤ We separate the CC inclusive events in three topologies depending on the number of pions reconstructed (0, 1 and ≥2)





Current ND280 selection efficiency

Near detector fit: the BANFF

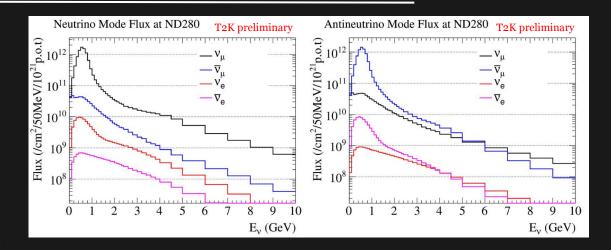
- This is a huge framework, with around 700 parameters!
- > We use a Likelihood as:

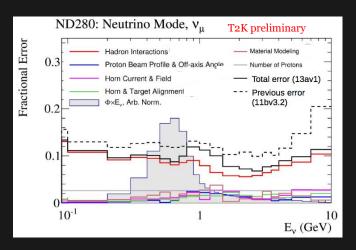
$$\mathcal{L} = \mathcal{L}_{Poisson} \times \mathcal{L}_{Syst}$$

$$\ln (\mathcal{L}) = \sum_{i} N_{i}^{pred}(\mathbf{x}) - N_{i}^{data} + N_{i}^{data} \ln \left(\frac{N_{i}^{data}}{N_{i}^{pred}(\mathbf{x})} \right)$$

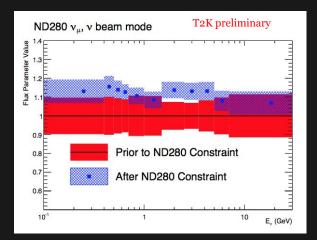
$$+ \frac{1}{2} \sum_{i} \sum_{j} \Delta \mathbf{x}_{i} \left(V_{\mathbf{x}}^{-1} \right)_{i,j} \Delta \mathbf{x}_{j}$$

- ➤ Where the vector x of systematics can be decomposed in three parts :
 - **→** Detector
 - **→** Flux
 - **→** Cross-section





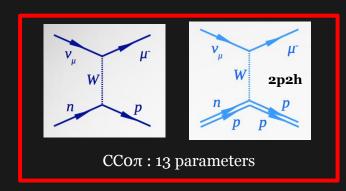
Flux uncertainties

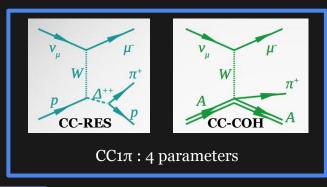

The flux model is produced from generator tuned with NA61/SHINE data

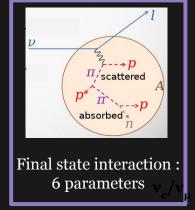
Flux uncertainties from NA61

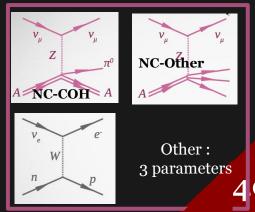
Still ~10% uncertainty around flux peak on the normalisation

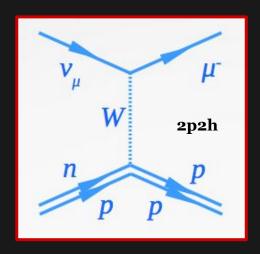
Need the BANFF fit to further reduce the error on the flux

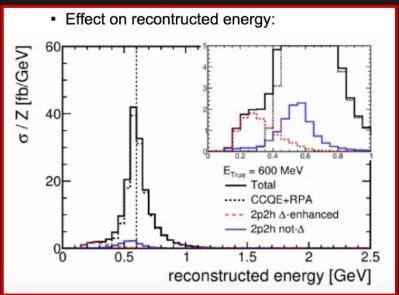


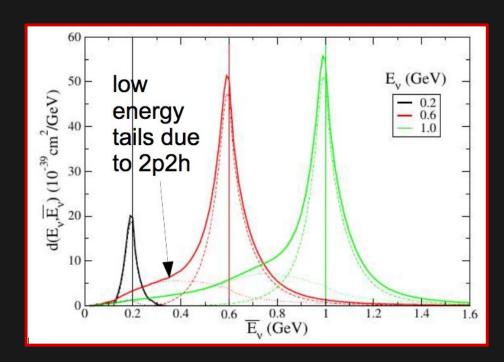



Cross section model

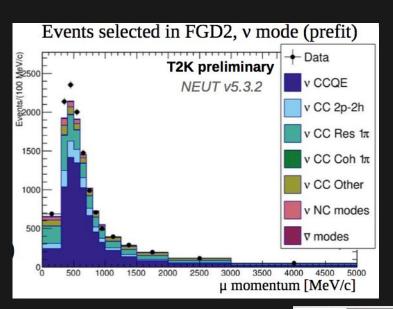

➤ For each interaction, we have a model with several parameters

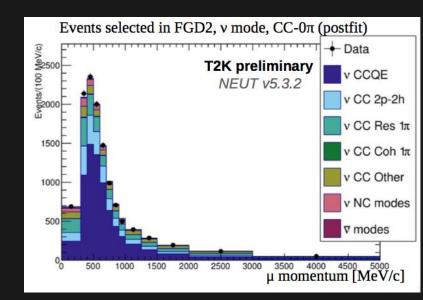






2p2h





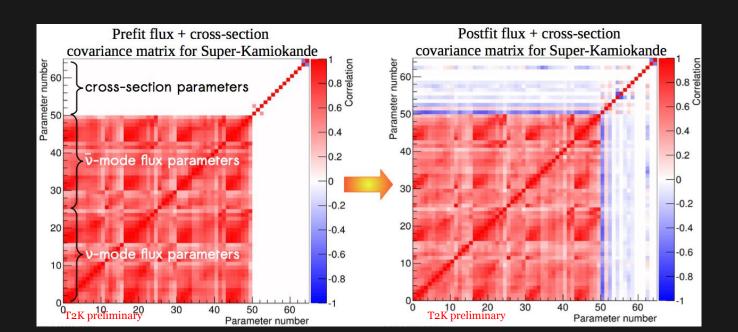
Cross section uncertainties


➤ We fit all those parameters with ND data to constrain them

Prefit

 $\Delta N_{SK}/N_{SK} = 7.1\%$

Postfit


$$\Delta N_{SK}/N_{SK} = 4.7\%$$

BANFF results

- The fitter itself is quite robust, it is tested with a bunch of fake data studies to verify we don't get any biases from the cross-section model we use, and if we do, to add it as a systematic.
- ➤ All those biases are taken into account in the ND280 covariance matrix
- Matrix that is the final output of the BANFF and is given to the oscillation group as an input to the SK data fit.

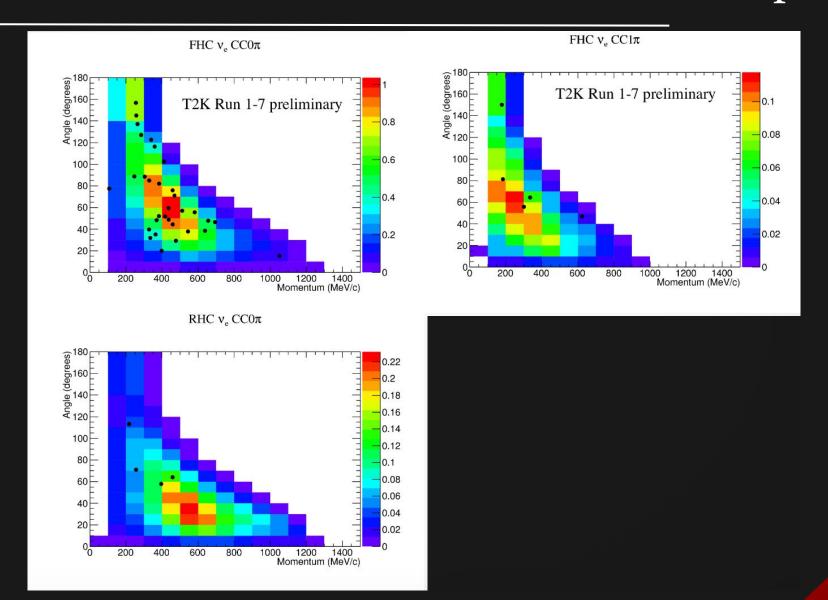
Source of uncertainty at SK

		SK event sample: $\Delta N_{SK}/N_{SK}$ (1 σ error)					
Source of Uncertainties				v-beam	⊽-beam		
			1-ring μ -like	1-ring <i>e</i> -like	$ ext{CC-1}\pi^+$ e-like	1-ring μ -like	1-ring <i>e</i> -like
SK: Detector + Final State Int. + 2ndary int.			4.2%	3.5%	14.0%	11.1%	4.0%
ors		Neutrino Beam flux	3.6%	3.7%	3.6%	3.8%	3.8%
ect	ection of	MEC (corr)	3.5%	3.9%	0.5%	3.0%	3.0%
det	tio	MEC bar (corr)	0.2%	0.1%	0.0%	1.8%	2.3%
ear	erac -sec	NC 1γ (uncorr)	0.0%	1.5%	0.4%	0.0%	3.0%
Ž +	v-interaction cross-section	$\sigma(v_e) / \sigma(v_\mu)$	0.0%	2.6%	2.4%	0.0%	1.5%
Beam + Near detectors	> p	(Cross-section: sub total)	4.0%	5.1%	4.8%	4.2%	5.5%
(Flux + Cross-section Sub total)			2.9%	4.2%	5.0%	3.5%	4.7%
Oscillation parameters: $\sin^2\!\theta_{13}$, $\sin^2\!\theta_{12}$, Δm^2_{21}			0.0%	4.2%	3.8%	0.0%	4.0%
Total			5.1%	6.8%	15.3%	11.7%	7.4%

The far detector fit

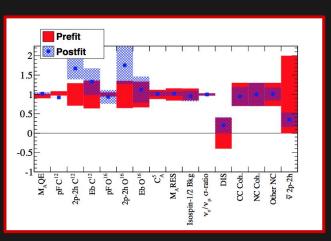
$$N_{SK} = \int dE \ \Phi(E) imes \sigma(E) imes \epsilon_{SK}(E) imes P(
u_{lpha}
ightarrow
u_{eta}, E, heta_{ij}, \Delta m_{ij}^2, \delta_{CP})$$
of events Plux Cross section Detector oscillation probability efficiency

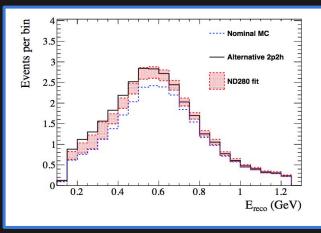
Constrained with the near detector

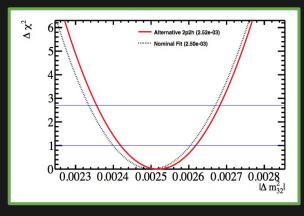

Three different analyses performed to extract the oscillation parameters:

- ightharpoonup A frequentist analysis with a $\Delta \chi^2$ fit to
 - \rightarrow E_{rec} / θ_{lep} for electron neutrino and anti-neutrino.
 - \rightarrow E_{rec} for muon neutrino and anti-neutrino.
- A Bayesian analysis with a likelihood fit to
 - \rightarrow p_{lep} / θ_{lep} for electron neutrino and anti-neutrino.
 - \rightarrow E_{rec} for muon neutrino and anti-neutrino.
- A Bayesian with a Markov-Chain MC
 - \rightarrow E_{rec} for all samples.
 - → Simultaneously fitting the near detector data.

2D distributions for electron neutrino samples







Fake data studies

- ➤ We produce some fake data set (example here alternative 2p2h model) that we fit to ND280 data.
- This fit results is used to adjust SK predicted spectra.
- ➤ We produce and fit SK fake data set, with the fit to ND280 data as input, to obtain the bias on the oscillation parameters.

Alternative model	Maximum bias on parameter (σ)				
	Δm^2_{23}	$sin^2 heta_{23}$	$sin^2 heta_{13}$		
$egin{array}{l} { m Alternative} \ {\it 2p-2h} \end{array}$	0.20	0.21	0.18		