

Status of SNO and SNO+

Nuno Barros University of Pennsylvania

GDR@LPNHE November 2017

Outline

- SNO
 - Introduction
 - The detector
 - Solar neutrino results
- The path forward
 - New SNO analyses
- SNO+
 - The detector and its upgrades
 - Physics program
 - Status and schedule

A question as old as the Sun

- Nuclear fusion reactions recognized early on as the only viable source of stellar energy production
- Hans Bethe (1930's): first solar model based on nuclear reactions
- John Bahcall: increasingly detailed solar model calculations of the solar neutrino fluxes, since the 60's

- Ray Davis@Homestake: pioneering radiochemical measurements of solar neutrino captures on chlorine.
- Measured flux consistently 1/3 of Bahcall's predictions

SNO Detector

SNOLAB Facility

- Located in Creighton Mine, Sudbury, Canada
- ~2070 m overburden (6000 m.w.e.)
- μ rate: 0.28 μ d⁻¹ m⁻²

Reactions on deuterium

$v_e + d \Rightarrow p + p + e^{-}$

Charged Current reaction W boson exchange Only electron neutrinos Detect electron in final state

$v_x + d \Longrightarrow p + n + v_x$

Neutral Current reaction Z boson exchange All neutrino flavors Detect neutron in final state

Elastic Scattering reaction Directional, lower statistics Less sensitive to v_{μ} , v_{τ}

The 3 phases of SNO

Phase I (D2O)Phase II (salt)Phase III (NCD)Nov. 99 - May 2001July 2001 - Sept. 2003Nov. 2004 - Dec. 2006

 $n + {}^{3}He \rightarrow p + {}^{3}H$

neutrons captured by deuterons $E(\gamma) = 6.25 \text{ MeV}$ neutrons captured by chlorine $\Sigma(E(\gamma)) = 8.6 \text{ MeV}$ neutrons captured by ³He array of 40 proportional counters

Experimental Observables

Solar Neutrino Problem, solved!

Precision Analyses

- Combine all phases in a single fit with less observables
 - Account for different responses of each phase
 - Correlated systematics
- Lowered threshold down to 3.5 MeV
 - Improved reconstruction, better background estimates
- Fit in neutrino energy space

$$\begin{split} \varPhi_{8_{\rm B}}^{\rm binned} &= 5.140^{+0.160}_{-0.158}({\rm stat})^{+0.132}_{-0.117}({\rm syst})\times 10^6{\rm cm}^{-2}s^{-1}\\ \varPhi_{8_{\rm B}}^{\rm kernel} &= 5.171^{+0.159}_{-0.158}({\rm stat})^{+0.132}_{-0.114}({\rm syst})\times 10^6{\rm cm}^{-2}s^{-1} \end{split}$$

Combination all phases

	Best fit	Stat.	Systematic uncertainty			
			Basic	D/N	MC	Total
Φ _B	5.25	±0.16	+0.11 -0.12	±0.01	+0.01 -0.03	+0.11 -0.13
<i>c</i> ₀	0.317	±0.016	+0.008 -0.010	± 0.002	+0.002 -0.001	±0.009
<i>c</i> ₁	0.0039	+0.0065 -0.0067	+0.0047 -0.0038	+0.0012 -0.0018	+0.0004 -0.0008	± 0.0045
c_2	-0.0010	± 0.0029	+0.0013 -0.0016	+0.0002 -0.0003	+0.0004 -0.0002	+0.0014 -0.0016
a_0	0.046	± 0.031	+0.007 -0.005	± 0.012	+0.002 -0.003	+0.014 -0.013
aı	-0.016	±0.025	+0.003 -0.006	±0.009	±0.002	+0.010 -0.011

 $\mathbf{5}$

Neutrino oscillations

- SNO results crucial to good precision on θ_{12}
- Complementary with KamLAND's Δm_{12}^2 sensitivity
- Tension led to early hints of non-zero θ_{13} , SBL experiments (Daya Bay, Reno, Double-Chooz, and also T2K, Minos) then measured it

Looking towards the future

- SNO data
 - Analysis group reactivated in 2016
 - Several analyses ongoing:
 - n/n-bar oscillations
 - HeP solar neutrinos
 - Neutrino lifetime
 - Lorentz invariance
 - Atmospheric neutrinos
- SNO detector
 - Refurbish, upgrade and fill with scintillator —> SNO+

n/n-bar oscillations

- Fresh off the press (Phys. Rev. D 96, 092005 – 20 November 2017)
 - First result of n/n-bar oscillations in deuteron target
 - Looking for multiple rings
 - In SNO n/n-bar has a signature of 200 MeV - 1.9 GeV
 - Atmospherics are the major background

Ring distribution of contained events

 $au_{n\overline{n}} > 1.18 imes 10^{31}
m{yr}$ (90% C.L.)

15

HeP neutrino search on full SNO dataset

 SNO still has the current best limit (phase I data only)

$$egin{aligned} & arPhi_{hep} < 2.3 imes 10^4 cm^{-2} s^{-1} \ & arPhi_{hep}^{SSM} = 7.93 \pm 1.23 imes 10^3 cm^{-2} s^{-1} \end{aligned}$$

- Signal: CC and ES electrons
 - Enhanced sensitivity due to CC
- Backgrounds: DSNB (fitted), atmospherics, ⁸B v

Status of hep search on full dataset

- Sensitivity puts us within range of SSM prediction
- Improvements to maximize sensitivity:
 - Quality cuts (FV, instrumental cuts)
 - atmospheric backgrounds (replace Nuance by Genie)
 - Introduce 8B combined fit
- Blinded analysis complete (1/3 dataset)
 - Undergoing internal review to unblind and fit full data

$$\Phi_{hep}^{\text{fill data}} < 1.90 \times 10^4 cm^{-2} s^{-1}$$
 (90% C.L.
 $\langle \Phi_{hep}^{\text{full data}}
angle < 9.21 imes 10^3 \text{ cm}^{-2} \text{ s}^{-1}$
 $(1.15 imes \text{BSB05(OP) SSM})$

The SNO+Detector

- SNO+ = successor to Sudbury Neutrino Observatory (SNO)
 - Replace heavy water with liquid scintillator
- Support structure holding ~9300 PMTs
 - ~50% coverage with concentrators
- ~63 muons/day in the detector
- Class-2000 clean room
- Target volume in 6 m radius acrylic vessel
- 7000 t ultra pure water shielding
 - 1700 t internal
 - 5300 t external

Detector Upgrades

- Replace heavy water with liquid scintillator
 - Load with ¹³⁰Te for $0\nu\beta\beta$ search
- Hold-down ropes
 - Compensate for lower density of scintillator
- Upgraded electronics
 - Handle higher event rates (> 1 kHz)
- Repaired PMTs
 - Maximize coverage
- New calibration system
 - Minimize source deployment

Detection principle

- Organic Scintillator (LAB+PPO) produces light when excited by charged particles
 - ~10000 photons/MeV
 - Few hundred detected by PMTs
 - ~20 m attenuation length
- Calorimetric measurement + pulse shape
 - Event energy from number of photons
 - Even position from photon time-of-flight
- α-β separation through decay-time
 - Background tagging by coincidence techniques

Separation α-β is possible

SNO+ physics program

- Main objective:
 - Search for $0v\beta\beta$ in ¹³⁰Te
- Other topics of interest
 - Solar neutrinos
 - Nucleon decay
 - Supernova neutrinos
 - Reactor neutrinos
 - Geo-neutrinos

Ovßß decay

Neutrino-less double beta decay

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$

If observed:

- Neutrinos are Majorana particles
- Lepton number violation: $\Delta L = 2$
- Input on absolute v mass scale and hierarchy

Experimental signature

Approach:

- Search for peak in energy spectrum at end of 2νββ spectrum
- Aim for low background, good energy resolution and large isotope mass

Ovββ decay with SNO+

- Load the scintillator with Te
- Double beta decay isotope: ¹³⁰Te
 - Long $2\nu\beta\beta$ half-life: ~ $7x10^{20}$ years
 - High Q-value : ~2.5 MeV
 - High natural abundance: ~30%
 - No absorption lines in PMT sensitive region
 - Scalable: by increasing loading
- Loading method: Te acid + butanediol (TeBD)
 - Initially loading 0.5% (funding secured)
 - ~1330 kg of ¹³⁰Te
 - Good optics: transparent, low scattering

SNO+ advantages

- Scalable loading
- Low backgrounds
 - External shielding
 - Scintillator self-shielding
 - LAB purification

SNO+ 0vββ backgrounds

SNO+ 0vßß backgrounds

Irreducible:

• ⁸B solar neutrinos

SNO+ 0vßß backgrounds

- Internal backgrounds:
 - · Cosmogenic
 - ⁶⁰Co, ¹³¹I, ^{110m}Ag, ¹²⁴Sb, ¹¹C
 - Scintillator cocktail
 - ²³⁸U, ²³²Th, ²¹⁰Po, ¹⁴C
 - Thermal neutrons
 - · Capture on H

- Irreducible:
 - ⁸B solar neutrinos

SNO+ 0vßß backgrounds

- Internal backgrounds:
 - · Cosmogenic
 - ⁶⁰Co, ¹³¹I, ^{110m}Ag, ¹²⁴Sb, ¹¹C
 - Scintillator cocktail
 - ²³⁸U, ²³²Th, ²¹⁰Po, ¹⁴C
 - Thermal neutrons
 - · Capture on H
- External backgrounds:
 - Acrylic vessel (AV)
 - Radon daughters (²¹⁰ Pb, ²¹⁰ Bi, ²¹⁰ Po)
 - AV, PMTs, H_2O , Ropes
 - Bi and TI

- Irreducible:
 - ⁸B solar neutrinos

SNO+ background model

⁸B solar v ES

• Mostly flat spectrum in ROI

External y's

- From AV, ropes, water, PMTs
- FV cut at 3.5 m (20%)
- PMT timing

 $2\nu\beta\beta$ decay from ^{130}Te

• Asymmetric ROI

Internal U/Th

- ²¹⁴BiPo, ²¹²BiPo
- Delayed coincidence

Cosmogenic activated isotopes

- ⁶⁰C, ^{110m}Ag, ⁸⁸Y, ²²Na,...
- Purification, cooldown (Te already underground)

(a, n)

- Thermal neutron capture
- Delayed coincidence

$SNO+OV\beta\beta$ spectrum

- Details
 - LAB+PPO (2g/L)+bisMSB(15mg/L)
 - FV 3.5 m (20%)
 - > 99.99% rejection ²¹⁴BiPo
 - 98% rejection ²¹²BiPo
 - 390 hits/MeV
- Assumptions
 - NME = 4.03 (IBM-2)
 - gA = 1.269
 - $G = 3.69 \times 10^{-14} \text{ y}^{-1}$

- Expected spectrum after 5 year run
 - $m_{\beta\beta} = 100 \text{ meV}$
 - 0.5% Te loading (~1330 kg 130Te)

SNO+ sensitivity

phase II goal

	1 year	5 years
T _{1/2} [10 ²⁶ y]	0.80	1.96
m _{ββ} [meV]	75.2	47.1

Other physics goals

Water Phase	Scintillator Phase	¹³⁰ Te loaded Scintillator Phase				
NOW	late 2017	late 2018				
Nucleon Decay						
		Ονββ				
	Solar Neutrinos*					
	Geo-neutrinos					
	Reactor Neutrinos					
Supernova Neutrinos						
Background Studies						
* low energy solar neutrinos after Te-loaded phase						

Nucleon decay

- Look for invisible decay modes
 - n ---> v v v
 - p ---> v v v
- Leaves unstable nuclei
 - ¹⁶O —> ¹⁵O^{*} —> ~ 6 MeV γ
 - ¹⁵N* —> ~6 MeV γ
- Sensitivity after 3 months of data taking:
 - $\tau_n < 1.2 \times 10^{30}$ years (current limit [KamLAND] : 5.8 \times 10^{29})
 - $\tau_p < 1.4 \times 10^{30}$ years (current limit [SNO] : 2.1 \times 10^{29})

decay signature

Reactor and geo-neutrinos

Detection through inverse beta decay

- Delayed coincidence e^+ annihilation and n capture
- · Geo
 - U, Th and K in Earth's crust and mantle
 - Investigate origin of the heat produced within Earth
- Reactor
 - 3 nearby reactors dominate flux
 - Precision probe of neutrino oscillations

Current Status

- A very active year:
 - Repaired leaks in cavity
 - Replaced repaired PMTs
 - Commissioned of internal calibration systems (LED/laser)
 - Commissioned electronics upgrades with high event rates
 - Commissioned of DAQ system

Current Status

- Detector filled with water
 - Taking low threshold data
- Laser and ¹⁶N source calibrations ongoing (literally now!)
- Reached exposure goal for nucleon decay
 - Blind data taking since May

Detector filled with water

Current Status

- Scintillator purification plant installed and being commissioned
- LAB shipments going underground
- TeA stored underground to cool off
- Currently undergoing construction of Te purification plant

Scintillator purification plant underground

First water data

Atmospheric neutrino candidate event, upward going, no OWLs, large number of hits (Feb 2017)

First water data

Downward going atmospheric neutrino candidate event, no OWLs, large number of hits

Conclusion

- SNO was instrumental to solve the solar neutrino problem
 - Now pursuing several non 8B analyses with its dataset
 - Motivating sensitivity for HeP neutrino detection
- SNO+ reuses SNO detector with liquid scintillator detector
 - Broad physics program
 - $0\nu\beta\beta$ is the primary goal
- The detector is currently filled with water and taking data
 - Nucleon decay search primary physics objective
- Scintillator purification system is being commissioned
- Tellurium systems under construction
- Neutrinoless double beta decay phase will begin in late 2018
- Water-phase results coming soon

backup

What if we see a bump?

Solar Neutrinos

- Solar neutrinos probe astrophysics and elementary particle physics models:
 - Solar metallicity (CNO)
 - Neutrino oscillations (pep)
- SNO+ solar neutrino goal: pep/CNO solar neutrino measurement
 - Low ¹¹ C background thanks to depth (100 times lower than Borexino)
 - Low energy threshold thanks to LAB

Neutrino decay lifetime

- Look for distortion of oscillation spectrum at higher solar v energies
 - Benefits from analysis being performed in v energy space

