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A question as old as the Sun
• Nuclear fusion reactions recognized early on as 

the only viable source of stellar energy production 

• Hans Bethe (1930’s): first solar model based on 
nuclear reactions 

• John Bahcall: increasingly detailed solar model 
calculations of the solar neutrino fluxes, since the 
60’s
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• Ray Davis@Homestake: pioneering 
radiochemical measurements of solar 
neutrino captures on chlorine.  

• Measured flux consistently 1/3 of Bahcall’s 
predictions 



SNO+ Detector
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shielded by 7 kt
ultra-pure water

1000 tons of
heavy water

contained in an 
acrylic vessel (AV)

12 m diameter

viewed by ~ 9500 PMTs (8’’)
mounted on 17 m diam. structure

electronics 
and DAQcalibration

systems

loaded with 
NaCl in phase 2



SNOLAB Facility
• Located in Creighton Mine, Sudbury, Canada 

• ~2070 m overburden (6000 m.w.e.) 

• μ rate: 0.28 μ d-1 m-2

5
SNO/SNO+



Reactions on deuterium
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Charged Current reaction 
W boson exchange  
Only electron neutrinos 
Detect electron in final state

Neutral Current reaction 
Z boson exchange  
All neutrino flavors 
Detect neutron in final state

Elastic Scattering reaction 
Directional, lower statistics 
Less sensitive to νμ, ντ

also:



The 3 phases of SNO
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Phase I (D2O) 
Nov. 99 - May 2001

Phase II (salt) 
July 2001 - Sept. 2003

Phase III (NCD) 
Nov. 2004 - Dec. 2006

neutrons captured 
by deuterons 

E(γ) = 6.25 MeV

neutrons captured 
by chlorine 

Σ(E(γ)) = 8.6 MeV

neutrons captured 
by 3He 

array of 40 
proportional counters



Experimental Observables
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Hit PMTs: 
• position 
• time 
• charge 

From these we calculate: 
• event position 
• direction 
• energy 
• isotropy

Used extensive 
calibrations to tune 
response models and 
determine 
systematics



Solar Neutrino Problem, solved!
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1) νe is 1/3 of all ν: neutrinos 
change flavour! 

2) measurement in all flavours                               
confirms solar model



Precision Analyses
• Combine all phases in a single fit with 

less observables 

• Account for different responses of 
each phase 

• Correlated systematics 

• Lowered threshold down to 3.5 MeV 

• Improved reconstruction, better 
background estimates 

• Fit in neutrino energy space 
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Φbinned
8B = 5.140+0.160

�0.158(stat)
+0.132
�0.117(syst)⇥ 106cm�2s�1

Φkernel
8B = 5.171+0.159

�0.158(stat)
+0.132
�0.114(syst)⇥ 106cm�2s�1



Combination all phases
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4% total 
uncertainty

Consistent with LMA 
(including MSW effect)



Neutrino oscillations

• SNO results crucial to good precision on θ12 

• Complementary with KamLAND’s Δm2
12 sensitivity 

• Tension led to early hints of non-zero θ13 , SBL experiments (Daya Bay, Reno, Double-
Chooz, and also T2K, Minos) then measured it
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Looking towards the future
• SNO data 

• Analysis group reactivated in 2016 

• Several analyses ongoing: 

• n/n-bar oscillations

• HeP solar neutrinos

• Neutrino lifetime 

• Lorentz invariance 

• Atmospheric neutrinos 

• SNO detector 

• Refurbish, upgrade and fill with scintillator —> SNO+
13



n/n-bar oscillations

• Fresh off the press (Phys. Rev. D 96, 
092005 – 20 November 2017) 

• First result of n/n-bar oscillations in 
deuteron target 

• Looking for multiple rings  

• In SNO n/n-bar has a signature 
of  200 MeV - 1.9 GeV 

• Atmospherics are the major 
background
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HeP neutrino search on full SNO dataset

• SNO still has the current best limit 
(phase I data only) 

• Signal: CC and ES electrons 

• Enhanced sensitivity due to CC 

• Backgrounds: DSNB (fitted), 
atmospherics, 8B ν 
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Φhep < 2.3⇥ 104cm�2s�1
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Status of hep search on full dataset
• Sensitivity puts us within range of SSM prediction 

• Improvements to maximize sensitivity: 

• Quality cuts (FV, instrumental cuts) 

• atmospheric backgrounds (replace Nuance by Genie) 

• Introduce 8B combined fit 

• Blinded analysis complete (1/3 dataset) 

• Undergoing internal review to unblind and fit full data
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The SNO+Detector
• SNO+ = successor to Sudbury Neutrino 

Observatory (SNO) 

• Replace heavy water with liquid 
scintillator 

• Support structure holding ~9300 PMTs  

• ~50% coverage with concentrators 

• ~63 muons/day in the detector 

• Class-2000 clean room 

• Target volume in 6 m radius acrylic vessel 

• 7000 t ultra pure water shielding 

• 1700 t internal 

• 5300 t external
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RockWater shield~9300 PMTs

6 m acrylic vessel ~780 t of liquid 
scintillator (LAB)



Detector Upgrades
• Replace heavy water with liquid 

scintillator 

• Load with 130Te for 0νββ search 

• Hold-down ropes 

• Compensate for lower density of 
scintillator 

• Upgraded electronics 

• Handle higher event rates (> 1 kHz) 

• Repaired PMTs 

• Maximize coverage 

• New calibration system 

• Minimize source deployment
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Detection principle
• Organic Scintillator (LAB+PPO) produces 

light when excited by charged particles 

• ~10000 photons/MeV 

• Few hundred detected by PMTs 

• ~20 m attenuation length 

• Calorimetric measurement + pulse shape 

• Event energy from number of photons 

• Even position from photon time-of-flight 

• α-β separation through decay-time 

• Background tagging by coincidence 
techniques
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SNO+ physics program
• Main objective: 

• Search for 0νββ in 130Te

• Other topics of interest 

• Solar neutrinos 

• Nucleon decay 

• Supernova neutrinos 

• Reactor neutrinos 

• Geo-neutrinos
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SNO

SNO+

Nature, 512,  pp. 383 (2014)

15O ɣ

ν 

ν 
ν 



0νββ decay
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Neutrino-less 
double beta decay

• Neutrinos are Majorana particles  

• Lepton number violation: ΔL = 2 

• Input on absolute ν mass scale and 
hierarchy

If observed:

Experimental signature

Approach:
• Search for peak in energy spectrum 

at end of 2𝜈ββ spectrum 
• Aim for low background, good 

energy resolution and large isotope 
mass

(A,Z) ! (A,Z + 2) + 2e�



0νββ decay with SNO+
• Load the scintillator with Te

• Double beta decay isotope: 130Te

• Long 2νββ half-life: ~ 7x1020 years 

• High Q-value : ~2.5 MeV 

• High natural abundance: ~30% 

• No absorption lines in PMT sensitive region 

• Scalable: by increasing loading 

• Loading method: Te acid + butanediol (TeBD)

• Initially loading 0.5% (funding secured) 

• ~1330 kg of 130Te 

• Good optics: transparent, low scattering
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SNO+ advantages
• Scalable loading 
• Low backgrounds 

• External shielding 
• Scintillator self-shielding 
• LAB purification



SNO+ 0νββ backgrounds
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SNO+ 0νββ backgrounds
• Irreducible:

• 8B solar neutrinos

•  2νββ 130Te
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SNO+ 0νββ backgrounds
• Irreducible:

• 8B solar neutrinos

•  2νββ 130Te
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• Internal backgrounds:

• Cosmogenic

•
60Co, 131I, 110mAg, 124Sb, 11C

• Scintillator cocktail

•
238U, 232Th, 210Po, 14C

• Thermal neutrons

• Capture on H



SNO+ 0νββ backgrounds
• Irreducible:

• 8B solar neutrinos

•  2νββ 130Te
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• Internal backgrounds:

• Cosmogenic

•
60Co, 131I, 110mAg, 124Sb, 11C

• Scintillator cocktail

•
238U, 232Th, 210Po, 14C

• Thermal neutrons

• Capture on H
• External backgrounds:

• Acrylic vessel (AV)

• Radon daughters (
210

Pb, 
210

Bi, 
210

Po)

• AV, PMTs, H2O, Ropes

•
214

Bi and 
208

Tl

Fiducial Volume



SNO+ background model
• 8B solar ν ES

• Mostly flat spectrum in ROI 

• External ɣ’s

• From AV, ropes, water, PMTs 

• FV cut at 3.5 m (20%) 

• PMT timing 

• 2νββ decay from 130Te 

• Asymmetric ROI 

• Internal U/Th 

• 214BiPo, 212BiPo 

• Delayed coincidence
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Na,… 

• Purification, cooldown  (Te already underground) 

• (α, n)

• Thermal neutron capture 

• Delayed coincidence



SNO+ 0νββ spectrum
• Details 

• LAB+PPO (2g/L)+bisMSB(15mg/L) 

• FV 3.5 m (20%) 

• > 99.99% rejection 214BiPo 

• 98% rejection 212BiPo 

• 390 hits/MeV 

• Assumptions

• NME = 4.03 (IBM-2) 

• gA = 1.269 

• G = 3.69x10-14 y-1
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• Expected spectrum after 5 year run 
• mββ = 100 meV 
• 0.5% Te loading (~1330 kg 130Te)
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SNO+ sensitivity

• Phase II  
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phase II goal

1 year 5 years

T1/2 [1026 y] 0.80 1.96

mββ [meV] 75.2 47.1



Other physics goals
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Geo-neutrinos

Nucleon Decay

Reactor Neutrinos

Solar Neutrinos*

0νββ

Supernova Neutrinos

Background Studies

Water Phase

NOW

130Te loaded Scintillator Phase

late 2018

Scintillator Phase

late 2017

* low energy solar neutrinos after Te-loaded phase



Nucleon decay
• Look for invisible decay modes  

• n —> ν ν ν  

• p —> ν ν ν 

• Leaves unstable nuclei 

• 16O —> 15O* —> ~ 6 MeV ɣ 

•                15N* —> ~6 MeV ɣ 

• Sensitivity after 3 months of data taking: 

• τn < 1.2x1030 years (current limit 
[KamLAND] : 5.8x1029) 

• τp < 1.4x1030 years (current limit 
[SNO] : 2.1x1029)
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Reactor and geo-neutrinos
• Detection through inverse beta decay

• Delayed coincidence e+ annihilation and n capture 

• Geo

• U, Th and K in Earth's crust and mantle 

• Investigate origin of the heat produced within Earth  

• Reactor

• 3 nearby reactors dominate flux 

• Precision probe of neutrino oscillations
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Sudbury
Gran Sasso Kamioka
Mantle geoneutrino flux (238U + 232Th)

No oscillation

All reactors oscillated
No Bruce
All over 700km distance

Geoneutrinos

Bruce
(240 km) Pickering

+Darlington
(350 km)



Current Status
• A very active year: 

• Repaired leaks in cavity 

• Replaced repaired PMTs 

• Commissioned of internal 
calibration systems (LED/laser) 

• Commissioned electronics 
upgrades with high event rates 

• Commissioned of DAQ system
30



Current Status

• Detector filled with water 

• Taking low threshold data 

• Laser and 16N source calibrations 
ongoing (literally now!) 

• Reached exposure goal for 
nucleon decay 

• Blind data taking since May
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Detector filled with water



Current Status

• Scintillator purification plant installed 
and being commissioned 

• LAB shipments going underground 

• TeA stored underground to cool off 

• Currently undergoing  construction 
of Te purification plant
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Scintillator purification plant underground



First water data
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Atmospheric neutrino candidate  event, upward going, no OWLs, large number of hits 
(Feb 2017)



First water data
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Downward going atmospheric  neutrino candidate  event, no OWLs, large 
number of hits



Conclusion
• SNO was instrumental to solve the solar neutrino problem 

• Now pursuing several non 8B analyses with its dataset 

• Motivating sensitivity for HeP neutrino detection 

• SNO+ reuses SNO detector with liquid scintillator detector  

• Broad physics program  

• 0νββ is the primary goal 

• The detector is currently filled with water and taking data 

• Nucleon decay search primary physics objective 

• Scintillator purification system is being commissioned 

• Tellurium systems under construction 

• Neutrinoless double beta decay phase will begin in late 2018 

• Water-phase results coming soon
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backup



What if we see a bump?
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backgrounds
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Isotropy
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Electron     Neutron 
(salt)

θij 

CC 
NC 

Nhit Range 50-60  

( )cosl l ij i j
Pβ θ

≠
≈

Pl = lth order Legendre polynomial 
best separation found with β14 = β1+4β4 

<θij> average  
over all PMT pairs electrons

single  
gamma

multiple 
gammas



Solar Neutrinos
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SNO

SNO+

Nature, 512,  pp. 383 (2014)

• Solar neutrinos probe astrophysics and elementary 
particle physics models: 

• Solar metallicity (CNO) 

• Neutrino oscillations (pep) 

• SNO+ solar neutrino goal: pep/CNO solar neutrino 
measurement 

• Low 
11

C background thanks to depth (100 times 
lower than Borexino) 

• Low energy threshold thanks to LAB

Nature, 512,  pp. 383 (2014)



Neutrino decay lifetime
• Look for distortion of oscillation spectrum at higher solar ν energies 

• Benefits from analysis being performed in ν energy space
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