

Neutrino Oscillation at JUNO

...where calorimetry meets interferometry

Marco Grassi APC Laboratory - IN2P3

A Circular Presentation

Jiangmen Underground Neutrino Observatory

Largest photocathode density ever built (~75% coverage) Largest light level ever detected ~1200 pe/MeV (Daya Bay 160 pe/MeV - Borexino 500 pe/MeV - KamLAND 250 pe/MeV) Highest precision calorimetry ever built

JUNO within the Global Neutrino Landscape

Antineutrinos from Reactor

Nuclear Power Plants

Energy by breaking heavy nuclei Fission fragments are unstable Decaying through a cascade of beta decays $(n \triangleright p + e^- + \overline{\nu}_e)$ 3 GW_{th} reactor : ~10²⁰ $\overline{\nu}_e$ / s

Why JUNO

Neutrino Mixing

Three neutrino flavors > 6 free parameters (3 angles, 1 phase, 2 mass splittings)

Credits: W.Winter

State of the Art

Neutrino oscillation firmly established

Great variety of sources, energies, baselines and experimental techniques

Current precision

Δm^2_{SOL}	2.3%
Δm ² ATM	1.6%
sin²(θ ₁₂)	5.8%
sin²(θ ₁₃)	4%
sin²(θ ₂₃)	~9%

[PRD 95, 096014 (2017)]

Neutrino Oscillation at JUNO

Experiments so far optimized to observe only one oscillation at a time

JUNO will see interference pattern resulting from both oscillations

Powerful test of the 3-neutrino mixing model

Interference : proxy for determining neutrino mass ordering (Petcov&Piai 2002)

Neutrino Mass Ordering

Two orders of magnitude between solar and atmospheric mass splittings No experiment sensitive to sign(Δm²ATM) so far Ordering of mass eigenstates not constrained by theory Need to be determined experimentally

Importance of Mass Ordering Determination

- * Fundamental parameter that we did not manage to predict (so far)
- Help to understand what is the true nature of neutrinos (Dirac vs Majorana)
 - Define next generation of neutrino-less double beta decay experiments
- ✤ Help to use appearance data (neutrino beam) to constrain CP-violation
- Help to use cosmological measurements to constrain sum of neutrino masses

How does JUNO work

Oscillation at 53 km Baseline

 $P \bar{\nu}_{e} \rightarrow \bar{\nu}_{\bar{e}} = 1 - \sin^{2} 2 \Theta_{13} \sin^{2} (\cos^{2} \Theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \Theta_{12} \sin^{2} \Delta_{32})$ $-\sin^{2} 2 \Theta_{12} \cos^{4} \Theta_{13} \sin^{2} \Delta_{21}$

Antineutrino Energy Spectrum at Detector

$$P \overline{\nu}_{e} \rightarrow \overline{\nu}_{e} = 1 - \sin^{2} 2 \Theta_{13} \sin^{2} \left(\cos^{2} \Theta_{12} \sin^{2} \Delta_{31} + \sin^{2} \Theta_{12} \sin^{2} \Delta_{32} \right)$$
$$- \sin^{2} 2 \Theta_{12} \cos^{4} \Theta_{13} \sin^{2} \Delta_{21} \qquad \qquad \Delta_{ij} = \Delta_{m}^{2} \sum_{ij} L$$

Signal Events (Antineutrino Detection)

Inverse Beta Decay (IBD) :

$$\frac{1}{16} + p \rightarrow e^{+} + m$$
Frompt
60 IBD/day
Prompt
D + χ (2.2 KeV)
Delayed

Signal Events (Antineutrino Detection)

Inverse Beta Decay (IBD) :

Signal Events (Antineutrino Detection)

Inverse Beta Decay (IBD) :

$$\overline{V_e} + p \longrightarrow e^+ + m$$
Frompt
60 IBD/day
$$F(\overline{v_e}) = k(e^+) + k(n) - (m(n) - m(p)) + m(e^+) - k(e^+) + 1.8 \text{ HeV}$$
Visible Energy

JUNO Capabilities

Physics Programme

Reactor Neutrinos

- First combined observation of solar and atmospheric oscillation
- Mass ordering via solar-atmospheric interference
- Vacuum oscillation > Not relying on matter enhancement (and related uncertainties)
- No θ_{23} octant or δ_{cp} ambiguities > Complementary to NOvA, Pingu, DUNE
- Most precise measurement of solar parameters (θ₁₂, Δm²₁₂)

Supernova Neutrinos

- Supernova burst likely to happen in the next 10 years
- Unique opportunity for Particle Physics and Astrophysics

Geoneutrinos

JUNO alone might detect more geo-v than all the other world exps together

Solar Neutrinos

Open issues in Solar physics (MSW turn on, Metallicity) could be addressed

Much More

* Take a look at our Yellow Book: J.Phys. G43 (2016) no.3, 030401

What Makes Mass Ordering Determination Possible

Mass Ordering Determination

Mass Hierarchy Sensitivity

100k signal events (20kt x 36GW x 6 years)

 $\Delta \chi^2$: Fitting wrong model - Fitting correct one

- ----- Unconstrained (JUNO only) $\Delta \chi^2 \sim 10$
 - Using external $\Delta m_{\mu\mu}$ (1.5% precision) from long baseline exps: $\Delta \chi^2 \sim 14$

What's Special About MO at JUNO

Many competing experiments ?? Many complementary experiments !!! Similar time scales but

- different experimental techniques
- different systematic uncertainties

JUNO: only experiment exploiting **in-vacuum oscillation**

No dependence from θ_{23} octant & CP phase

(Very) Little dependence from matter effects

arXiv: 1605.00900

JUNO sensitivity w/o matter effects
JUNO sensitivity with matter effects

Oscillation Parameters

Access to four oscillation parameters: θ_{13} , θ_{12} , Δm^2_{21} , $|\Delta m^2_{ee}|$ Measurement of sin²(2 θ_{12}), Δm^2_{21} , $|\Delta m^2_{ee}|$ with better than 1% precision

$$P_{\overline{\nu}_{e}} \rightarrow \overline{\nu}_{e} = 1 - \sin^{2} 2 \vartheta_{13} \cdot \sin^{2} \left(\cos^{2} \vartheta_{12} \cdot \sin^{2} \Delta_{31} + \sin^{2} \vartheta_{12} \cdot \sin^{2} \Delta_{32} \right) \quad \text{Fast} \quad \Delta m_{\text{ATH}}^{2}$$
$$- \sin^{2} 2 \vartheta_{12} \cdot \cos^{4} \vartheta_{13} \cdot \sin^{2} \Delta_{21} \quad \text{Slow} \quad \Delta m_{\text{sol}}^{2}$$

Mass Splittings

Mixing Angles

Access to four oscillation parameters: θ_{13} , θ_{12} , Δm^2_{21} , $|\Delta m^2_{ee}|$ Measurement of sin²(2 θ_{12}), Δm^2_{21} , $|\Delta m^2_{ee}|$ with better than 1% precision

$$P_{\overline{\nu}_{e}} \rightarrow \overline{\nu}_{e} = 1 - \sin^{2} 2 \Theta_{13} \cdot \sin^{2} \left(\cos^{2} \Theta_{12} \cdot \sin^{2} \Delta_{31} + \sin^{2} \Theta_{12} \cdot \sin^{2} \Delta_{32} \right)$$
 Fast Δm_{ATH}^{2}
$$- \sin^{2} 2 \Theta_{12} \cdot \cos^{4} \Theta_{13} \cdot \sin^{2} \Delta_{21}$$
 Slow Δm_{SOL}^{2}

Sensitivity To Oscillation Parameters (Direct Constraints)

Oscillation Parameter Uncertainties

- * Δm^2_{ee} precision due to **multiple oscillation cycles**, each giving independent measurement
- * Energy Resolution affects only Δm^2_{ee} (fast oscillation)
- High precision calorimetry needed only for atmospheric sector (amplitude & sign of mass splitting)

Considering background and systematics:

Sensitivity To Oscillation Parameters (Indirect Constraints)

JUNO precision comparable to Double Chooz nowadays (~15 %)

Might be the only experiment to crosscheck θ_{13} accuracy

Both via Mass Hierarchy determination

Unitarity Test

Neutrino longstanding quest for CKM-like precision

Test unitarity of the PMNS matrix Is the triangle closed?

Need extremely good precision in all mixing parameters

Synergy of many experiments

(eventually assessing CP violation, but that is a different story)

Non-Reactor Neutrino Physics

UNDERSTANDING OUR UNIVERSE: SUPERNOVA BURST NEUTRINOS

UNDERSTANDING OUR PLANET: GEONEUTRINOS

UNDERSTANDING THE SUN: SOLAR NEUTRINOS

Supernova Neutrinos

✤ Huge amount of energy (3×10⁵³erg) emitted in neutrinos (~0.2M_☉) over long time range

✤ 3 phases equally important ▶ 3 experiments teaching us about astro- and particle-physics

Process	Туре	Events $\langle E_v \rangle$ =14MeV				
$\overline{v}_e + p \rightarrow e^+ + n$	CC	5.0×10 ³				
$v+p \rightarrow v+p$	NC	1.2×10 ³				
$v+e \rightarrow v+e$	ES	3.6×10 ²				
$v + {}^{12}C \rightarrow v + {}^{12}C^*$	NC	3.2×10 ²				
$v_e + {}^{12}C \rightarrow e^- + {}^{12}N$	CC	0.9×10 ²				
$\overline{v}_e + {}^{12}C \rightarrow e^+ + {}^{12}B$	CC	1.1×10 ²				
NB Other $\langle E_{v} \rangle$ values need to be considered to get complete picture.						

Expected events in JUNO for a typical SN **distance of 10kpc**

We need to be able to handle Betelgeuse (d~0.2kpc) resulting in ~10MHz trigger rate

J.Phys. G43 (2016) no.3, 030401

Geoneutrinos

J.Phys. G43 (2016) no.3, 030401

Earth's surface heat flow 46±3 TW. What fraction due to **primordial vs radioactive** sources? Understanding of:

composition of the Earth (chondritic meteorites that formed our Planet)

- Chemical layering in the mantle and the nature of mantle convection
- energy needed to drive plate tectonics
- Power source of the geodynamo, which powers the magnetosphere

Detect electron antineutrinos from the ²³⁸U and ²³²Th decay chains

Solar Neutrinos

Fusion reactions in solar core: powerful source of electron neutrinos O(1 MeV)

JUNO: neutrinos from ⁷Be and ⁸B chains

Investigate **MSW effect**: Transition between vacuum and matter dominated regimes

Constrain **Solar Metallicity** Problem: Neutrinos as proxy for Sun composition

¹³Νν

Total

⁷Be ν

pep v

pp v

0.6

0.4

0.8

1

1.2

1.4

1.6

Energy (MeV)

²¹⁰Bi

⁸⁵Kr

40K

¹⁴C

²³⁸U

²³²Th

¹¹C

¹⁰C

0.2

counts / day / kton / MeV

10⁵ •

10⁴

 10^{3}

10²

10

1

10⁻¹

1.8

Final Experimental Remarks

A New Lab in the South of China

Baseline Optimization

Almost 2 kmwe overburden to reduce cosmogenic background

Background Summary After Selection

Event Rate per Day

Selection	IBD efficiency	IBD	Geo- νs	Accidental	⁹ Li/ ⁸ He	Fast n	(lpha,n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%]		1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60			3.8		

Detector Resolution

Central Detector design optimized for Mass Ordering: "Precise & Large"

Detector Resolution:
$$\frac{G(E)}{E} = \sqrt{\frac{G_{\text{stoch}}^2}{E}} + G_{\text{NoN}-\text{stoch}}^2$$

Neutrino GDR, Paris 2017

Detector Resolution

Central Detector design optimised for Mass Hierarchy: "Precise & Large"

Central Detector

Central Detector design optimized for Mass Hierarchy: "Precise & Large")

CONCLUSIONS

- JUNO unprecedented large & high precision-calorimetry liquid scintillator detector
 - Requiring high light level (1200 pe/MeV) to reach 3% energy resolution at 1MeV
- High precision neutrino oscillation with **reactor-V**
 - $: \leq 1\%$ precision in **solar terms *** SOLAR SECTOR
- * ATMOSPHERIC SECTOR : mass ordering through oscillation interference (almost) insensitive to matter effects insensitive to δ (CP) and θ_{23}

Complementary to other experiments

* NON-REACTOR V : leading physics capabilities (Supernova, Geoneutrinos, Solar neutrinos...)

JUNO collaboration established in 2014 & funded > data taking slightly after 2020