

CUORE

Laura Marini, Università degli studi di Genova and INFN on the behalf of the Cuore collaboration

WHAT DO WE WANT TO SEE

Double Beta Decay is a second order weak interaction, only directly observable for few nuclei, for which the standard Beta Decay is suppressed or forbidden (even even nuclei)

WHAT DO WE WANT TO SEE

Why OvBB?

- lepton number violation
- Majorana nature of neutrinos
- constrain the absolute neutrino mass hierarchy and scale

Signature

 peak at the Q-value of ¹³⁰Te BB decay (2527.515 ± 0.013)keV

Never observed to date

 Current OvBB half-life lower limits are in the range 10²² – 10²⁶ y

CHALLENGES

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A \, i \, \varepsilon}{A} \, f(\Delta E) \sqrt{\frac{M \, t}{B \, \Delta E}}$$

big exposure (mass x time)

- 988 TeO₂ crystal with isotopic abundance of 34.167% for a total mass 206 kg of active material
- foreseen 5 years of data taking

Goal: 5 years

high energy resolution

- noise reduction techniques
- temperature stability
- fine tuning of detectors parameters to optimize the signal to noise ratio

low background

- strict radiopurity selection on materials
- low background assembly environment
- passive shields from external and cryostat radioactivity

Goal: 5 keV FWHM

Goal: 0.01 counts/keV/kg/yr

Goal T_{1/2} (90% C.L.) > 9 x 10²⁵ yr Goal <m_{ββ}> 56 - 160 meV

European Physical Journal C 77.532 (2017) arxiv: 1705.10816

CUORE HISTORY

WHERE

LNGS - GRAN SASSO UNDERGROUND LABORATORY (ITALY)

CUORE

CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS

The CUORE detector is hosted in a cryogen-free cryostat:

- Mass to be cooled < 4K: ~15 tons (Pb, Cu and TeO₂)
- Operating temperature 10 mK
- Designed to guarantee extremely low radioactivity and low vibrations environment

988 TeO₂ crystals
(arranged in 19 towers
with 13 floors each,
52 5x5x5 cm³ TeO₂
crystals per tower)

CUORE

O

CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS

HOW

WE MEASURE PARTICLE INTERACTION WITH BOLOMETERS

A particle interaction in the absorber causes an increase in temperature, measured by the thermistor

$$\Delta T = \frac{\Delta E}{C} \sim \frac{100 \mu K}{MeV}$$
$$\tau = \frac{G}{C} \sim 1s$$
$$C(T) \propto T^{3}$$
$$R(T) = R_0 e^{\sqrt{T_0/T}}$$

C: absorber capacity ∆T: temperature variation ∆E: energy deposition G: thermal conductance t: signal decay time

SENSOR GLUING, TOWER ASSEMBLY AND SENSORS BONDING

Tower assembly performed inside a clean room, using glove boxes under N₂ atmosphere

Bonding

Nuclear Instruments and Methods A 768, 130-140 (2014) arxiv:1405.0852 The 19 towers have been stored in dedicates cases under N₂ atmosphere

BACKGROUND BUDGET

Measured in CUORE.0 TeO₂: natural radioactivity NOSV Cu: natural radioactivity NOSV Cu: cosmogenic activation TeO₂: cosmogenic activation OFE Cu: natural radioactivity Motering Modern Pb: natural radioactivity scree Superior 1 Superinsulation: natural radioactivity Stainless steel: natural radioactivity Environmental muons INGS AUX Environmental neutrons Environmental gammas 10-6

European Physical Journal C 77, 543 (2017) arXiv: 1704.08970

CORE COMMISSIONING CRYOGENIC SYSTEM

Commissioning completed in March 2016:

- Stable base temperature @ 6.3mK
- Cooling power: > 3µW @10mK
- Test of the full detector readout chain (electronics, DAQ) and temperature stability with the Mini-tower (8 crystal tower)

Note: the resolution of the minitower was obtain without any detector or electronic optimization

CUORE COMMISSIONING ROMAN LEAD SHIELD

Lateral and bottom shielding with 6cm - thick ²¹⁰Pb - depleted roman lead

The ingots stayed under water for centuries, loosing most of their radioactive component (es. cosmogenic activated lead isotopes)

The ingots have been melted in a clean environment without the using any additive that could have contaminated the lead during the melting process

CALIBRATION SYSTEM

A series of tubes in the cryostat guide 12 strings that can be inserted within the detector towers.

- the strings contain ²³²Th γ-ray sources that produce peaks from 239 keV to 2615 keV
- Usually these strings are kept outside the detector and lowered once a month for calibration
- Outer strings have a higher activity in order to compensate for the two inner cryostat Cu vessels

Nucl. Instrum. Methods A 844 (2017) 32-44 arXiv:1608.01607v2

CUORE COMMISSIONING TOWERS INSTALLATION

towers installation July - August 2016

The 19 towers were installed in a radon free clean room. It took about one month.

CUORE COOL DOWN

The cool down of the cryostat started in December 2016

First phase with dedicated fast cooling system, introduction of He exchange gas prior to the start of pulse tubes, then pulse tubes only.

Last phase after the pause dedicated to electronics optimisation was achieved with the dilution unit, down to base temperature (~7mK).

26.01.2017 Base temperature 7 mK

27.01.2017

As soon as we reached base temperature we observed the first pulse!

DETECTOR OPTIMIZATION

Electronics and DAQ debugging Noise and vibrations optimizations

Temperature scan:

Chose temperature that optimises the signal and at the same time allows to work with the designed thermistor resistance

Working point and Load Curves:

scan to choose the best bias current to feed to each channel thermistor: linear behaviour for small temperature variations maximisation of signal to noise ratio optimization of pulse amplitude

Optimization of trigger thresholds:

Trigger thresholds ranging from 20 to a few hundred keV

Thresholds distribution at 90% of trigger efficiency

DETECTOR OPTIMISATION

The Cryostat is cool down to 3K by 5 Pulse Tubes (4 active - 1 backup) that induce vibrations at 1.4 Hz and harmonics.

Attenuation of Pulse tube induced vibrations:

 (1) Switch to Linear Drives to control PT motor heads -> reduce temperature variations on the Mixing Chamber

(2) PT phase scan to find the phase configuration that actively minimize the PT induced vibrations

DATA TAKING

- Amplitude Evaluation
- Thermal gain stabilization
- Energy calibration
- Select events with multiplicity=1

When more than one bolometer fires in a small time window, the event is likely to be due to radioactive contaminations. We assign multiplicity and total energy to such events and select only the ones that do not have other signals in coincidence.

Pulse shape analysis allow us to identify and then remove pulses with features that deviates from the average signal: noise spikes, pile-up...

We define a distance in the multi-dimensional space of six pulse shape parameters. Accept or discard events which distance from the centroid of the distribution is above the threshold that maximizes the experimental sensitivity.

DETECTOR RESPONSE

We study the detector response of each channel by fitting the 2615 keV ²⁰⁸Tl calibration line.

We perform an UEML simultaneous fit over all the channel-dataset.

The detector response is given by the photopeak component of the fit, modelled by the sum of 3 Gaussians.

Single channel-dataset

ENERGY RESOLUTION

arXiv:1710.07988 (submitted to PRL)

The energy resolution is evaluated for each bolometer-dataset in calibration runs, because of higher statistics on a bolometer-dataset level

A scaling factor is obtained by fitting 6 spectral lines from physics runs and its value is extrapolated at $Q_{\beta\beta}$

The scaling factor is applied to the energy resolution evaluated in calibration runs to obtain the correct energy resolution at $Q_{\beta\beta}$

ROI FIT

RESULTS

To get the half-life limit we integrate the profile likelihood in the physical region (decay rate > 0)

T^{0v}1/2 > 1.3 x 10²⁵ yr (90% CL, syst. included)

Distribution of 90% C.L. half-lives from 10000 Toy MC experiments:

- The limit is evaluated from the same ROI fit used with real data
- There is a 2% probability to get a better limit (more negative decay rate)

arXiv:1710.07988 (submitted to PRL)

RESULTS

IMPROVEMENTS

DATASET 1	DATASET 2
 FWHM in calib data@ 2615: 9.0 keV FWHM in physics data@ Q-value: 8.3 keV Channels used: 876 	 FWHM in calib data@ 2615: 7.4 keV FWHM in physics data@ Q-value: 7.4 keV Channels used: 935
• OVBB Signal Efficiency: (75.69 ± 3.02)%	• OVBB Signal Efficiency: (83.01 ± 2.56)%
• Exposure TeO ₂ : 37.6 kg·yr	• Exposure TeO ₂ : 48.7 kg·yr
• Background: (1.49 ± 0.18)10 ⁻² c/(keV·kg·yr)	• Background: (1.35 ± 0.19) 10 ⁻² c/(keV·kg·yr)
Energy recolution in colil	bration muns at 2615 kaV

31

CONCLUSION

The first result from the CUORE experiment

- On the arXiv: arXiv: 1710.07988 [nucl-ex]
- Submitted to PRL

Scientific:

 The most stringent limit on Ονββ decay half-life of ¹³⁰Te to date

Technical:

- operation of the world's first ton-scale bolometric detector
- construction and operation of the world's largest and most powerful dilution refrigerator

The future:

- 5 years of live time planned
- Further detector performance optimization
- New analyses ($2\nu\beta\beta$, other isotopes, dark matter, axions...)
- CUPID (CUORE Upgrade with Particle Identification)

BACKUP

BACKUP

(calibration is normalised to the background ²⁰⁸Tl line)

BACKUP

	Efficiencies	
	ds3518	ds3021
0vBB containment	(88.345 ± 0.085)%	(88.345 ± 0.085)%
Pulser detection	(99.7663± 0.0034)%	(99.7349 ± 0.0035)%
Pulser energy	(99.1677 ± 0.0064)%	(99.218 ± 0.006)%
Base cuts on pulser	(95.6288 ± 0.0088)%	(96.6907 ± 0.0084)%
Multiplicity	(99.4 ± 0.5)%	(100.0 ± 0.4)%
PSA	(91.1± 3.6)%	(98.2 ± 3.0)%
All cuts except containment	(85.67 ± 3.42)%	(93.96 ± 2.89)%

Systematics

Systematic	Absolute uncertainty [10 ⁻²⁴ yr]	Relative uncertainty
Resolution	0	1.5%
Q-value location	0	0.2%
No subpeaks	0.002	2.4%
Efficiency	0	2.4%
Linear Fit	0.005	0.8%
Fit Bias	0	0.3%