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LArTPC for a future LBL ν experiment : DUNE
DUNE CDR Vol 2 [1512.06148]

‧1300 km baseline 
‧40 kt liquid argon TPC detector 
‧3D imaging with high granularity for 
precise tracking 

‧Low energy threshold (~10s MeV) 

‧Important R&D efforts ongoing : 
- Scalability  
- Engineering 

‧First neutrino event in the FD for 2026 

- Purity 
- Physics performance
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Liquid Argon TPC

‧Liquid Argon [T = 87 K] is inert, dense [ρ=1.4 g/mL] and naturally abundant. 

‧Strong electric field applied across the TPC [E ~ 500 V/cm] to collect electrons  
[vdrift ~ 1.6 mm/µs] produced by energy loss [Wi = 23.6 eV/pair]. Electron attachment is low  
[τe ≃ 300/ρ(O2 in ppb)] which allow long drifts. 

‧Scintillation light [λ = 128 nm] produced [Ws = 19.5 eV/γ] with a fast [τf = 6 ns] and a slow  
[τs = 1.6 µs] time constants. Can be used as a trigger and a complementary calorimetry 
measurement.

Neutrino interaction in the ICARUS detector

http://icarus.lngs.infn.it/gallery.php
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Two technologies for LArTPCs
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Advantages of the dual phase design :  
- Longer drift allowed thanks to the amplification 
- Fewer readout channels with better resolution 
- Accessible cold front end electronics, digitization at warm
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Dual Phase LArTPC
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The WA105 collaboration

Sebastien Murphy ETHZ                                                                                                                                    LBNO collaboration meeting May 20141
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Goals of the 3x1x1 demonstrator
‧Establishment of routine procedure for mass production 
‧Quality assurance and control tests 
‧Calibration of LEMs 
‧Cryogenic installation, feedthrough 
‧Validation of production schedule for the 6x6x6 m3 

3 m
1 m

Charge Readout Plane Frame

Anode/LEM

Extraction Grid
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Charge extraction, amplification and collection

50 cm

50
 c

m

CRP LEM active area seen from below

LEM and anode sandwich

8 LAr level meters 
installed along the CRP

‧ Fully active 3x1 m2 amplification and 
readout adjustable to LAr level. 

‧ Mechanical tolerances tested at warm 
and in open cold bath test

extraction 
grid 
made of 
100 µm 
SS wires

LEM modules of 0.5x0.5 m2

0.5x0.5 m2 Anode modules

C. Cantini et al., JINST 9 (2014) P03017
C. Cantini et al., JINST 10 (2015) no.03, P03017
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Light signal 

5 PMTs installed inside the 3x1x1 detector
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‧Charge and light signal are anti-correlated through 
the recombination process → light can be used as a 
complementary calorimetry measurement 

‧The recombination factor depends on the drift field 
and energy loss 

‧TPB is used as the wavelength shifter
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The set-up WA105 @ CERN

● 4 scintillating modules

● 2 orthogonal modules at each 
short side of the cryostat

● Muon tracking

● Providing trigger for crossing 
muons
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Cosmic Ray Taggers
JU

RA

ALP
S

‧2 CRTs installed on short sides of the detector 
→ Each made of scintillators bars in x-y to provide 2D 
coordinates 

‧Provide trigger for selecting crossing tracks along the 
detector, and inputs for μ tracking 

‧Trigger rate at ~ 0.3 Hz 
‧Can see the effect of Jura mountain shape on the cosmic 

ray flux ! 
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Detector Commissioning

‧Out of 1280 channels, 17 found problematic or dead (1.3%)  
‧Noise at room temperature stable at around 1600 e- 

‧Noise at cryogenic temperature stable at around 1550 e- 

‧Calibration runs with pulsed injected charge runs have shown ~ 4% of crosstalk
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Since last GDR : June 15th

At 200 V/cm:
 vdrift ~ 0.88 mm/µs
tdrift of 1 m ~ 1.14 mspreliminary

PM
T 

ra
w

 si
gn

al

muon crossing the entire drift volume

electroluminescence continuum [S2]

First light signal ! 
Evidence of electron extraction

Long PMT runs (~10 ktriggers/run) are being analyzed. 

From this event acquired on the scope : 
‣ Evidence electron extraction and amplification in the LEM 
‣ Evidence of good liquid argon purity through ms drift observed

prompt signal [S1]

Time : 0.2 ms/div

HV configuration : 
Drift Field = 200 V/cm 
Extraction Field = 1.6 kV/cm 
LEM Field = 10 kV/cm
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Since last GDR : June 21st

First track !

preliminary

‧First through going cosmic track observed 
‧Detector was in a un-optimized configuration 
‧Raw event display, only pedestals are removed  

HV configuration : 
Drift Field = 320 V/cm 
Extraction Field = 0.6 kV/cm 
LEM Field = 29 kV/cm 
Induction Field = 1. kV/cm
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Data collected
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[1] : Gushchin et al, Sov. Phys. JETP 55 (1982) 860-862 
[2] : LBNO TDR
[3] : Simulations
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Nominal Voltages :

LAr

GAr

Grid

Anode

LEM

Cathode

-56 kV

-6.5 kV

-4 kV
-1 kV
0 kV

C
R
T

C
R
T

Drift Field, nominal at 0.5 kV/cm  
↳ Achieved [0.3 ~ 0.7] kV/cm 

Extraction Field, nominal at 2 kV/cm in LAr 
↳ Achieved with a maximum voltage applied of -5 kV 

Amplification Field, nominal at 30 kV/cm 
↳ Limited by the grid 

Induction Field, nominal at 5 kV/cm 
↳ Limited by the grid 

2 triggers : CRT and PMT
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Data collected
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About 500 000 triggers taken in more than 50 HV configurations
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Event Gallery

HV configuration : 
Drift Field = 500 V/cm 
Extraction Field = 1.85 kV/cm 
LEM Field = 28 kV/cm 
Induction Field = 1.5 kV/cm

Raw data 
1 time bin is 0.4 μs 
1 channel is 0.3125 cm

view 1

tim
e

vi
ew

0
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Event Gallery

HV configuration : 
Drift Field = 500 V/cm 
Extraction Field = 1.85 kV/cm 
LEM Field = 28 kV/cm 
Induction Field = 1.5 kV/cm

Raw data 
1 time bin is 0.4 μs 
1 channel is 0.3125 cm

view 1

tim
e

vi
ew

0
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Event Gallery

HV configuration : 
Drift Field = 500 V/cm 
Extraction Field = 1.85 kV/cm 
LEM Field = 28 kV/cm 
Induction Field = 1.5 kV/cm

Raw data 
1 time bin is 0.4 μs 
1 channel is 0.3125 cm

view 1

tim
e

vi
ew

0
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Reconstruction of charge data, noise filtering

Coherent 
noise among 
neighboring 
channels

Moving 
pedestal

Noise Filtering



• Hits not attached to tracks 
• Hits attached to a 2D track 
— 2D track
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Reconstruction of charge data, noise filtering
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Many reconstruction code used for our data, but all follow 
a similar approach : 
‧Hits are found by thresholds above the pedestal. The 

total charge is computed either by summing the ADC 
counts or fitting the waveforms  

‧2D tracks are found following Kalman filtering 

‧3D tracks are constructed from time and charge 
matching of 2D tracks in both views 

‧Some development on neural network-based 
reconstruction are on-going

3D track



All good 3D tracks reconstructed view from above :

m
ea

n

All through going tracks view from the long side :
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First look at the charge data
HV configuration : 
Drift Field = 500 V/cm 
Extraction Field ≥ 1.85 kV/cm 
Induction Field = 1.5 kV/cm

1 2 5 6 9 10

3 4 7 8 11 12

corner LEMs at 24 kV/cm
central LEMs at 28 kV/cm 

— From our longest and best HV condition run —

WA105 
PRELIMINARY

m
ea

n
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First look at the charge data : effective gain
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WA105 PRELIMINARY

: Central LEMs ~ 0.9 x 6 x 0.4 = 2.2
: Corner LEMs ~ 0.95 x 2.3 x 0.4 = 0.9
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First look at the charge data : purity

View 0 View 1

From reconstructed through going 
tracks, the charge collected as a 
function of drift distance (in slices 
of 5 cm) are fitted with a landau 
convoluted with a gaussian. 

The evolution of the collected 
charge with the drift indicates a 
good LAr purity with an electron 
lifetime of ~5ms
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View 0 - drift [0.00-5.00] cm (purity)
dqds_slice_purity_0_v0
Entries  1844
Mean    16.51
RMS     12.82

 / ndf 2χ  71.54 / 96
Width     0.096± 1.799 
MP        0.112± 9.836 
Area      22.0±   862 
GSigma    0.312± 1.208 

View 0 - drift [0.00-5.00] cm (purity)
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View 1 - drift [0.00-5.00] cm (purity)
dqds_slice_purity_0_v1
Entries  4034
Mean    16.32
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 / ndf 2χ  126.5 / 100
Width     0.05±  1.55 
MP        0.06± 10.03 
Area      31.9±  1937 
GSigma    0.155± 0.994 

View 1 - drift [0.00-5.00] cm (purity)

WA105 PRELIMINARY



24 L.	ZAMBELLI	-	GDR	NEUTRINO	-	STATUS	OF	WA105

Field distortions 

View 0
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ProtoDUNE-DP 
simulation

Local drift field distorsions can appear in the chamber : 
- At the edges of the field cage 
- By space charge effect : Field screening due to clouds of Ar+ drifting towards the cathode

↳In dual phase configuration, the SCE may be higher due to Ar+ coming from the amplification 
region backflowing across the whole chamber

Drift field non-uniformities : 

←Affect the arrival time and 
position on the readout 

Affect the charge deposition →
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ProtoDUNE-DP simulation
Mean Drift Field along drift direction

Some hints of field distortions 
have been observed in the  
3x1x1 data, analysis is ongoing →
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First look at the light data : S1 signal
Scintillation Slow 

Component vs. drift field
Observed a decreasing scintillation time with increasing drift field

Average Waveform no field Event-by-event τ3 fit
8

PMT

∿∿∿∿→

∿∿∿∿→
∿∿∿∿→
∿∿∿∿→ ∿∿∿∿→

LAr

GAr

S1

S2

Fitting the raw 
waveforms to retrieve the 
slow time constant, we 
have observed a 
dependance with respect 
to the cathode voltage.

Decrease of integrated light charge with drift 
field follow the expected attenuation of 
scintillation light due to the recombination.

mean waveform Event-by-event τslow fit

No drift field
WA105 PRELIMINARY

WA105 PRELIMINARY



Inés Gil Botella - ProtoDUNE-DP Light Detection System

Simulation of PMT response
• Qscan gives an average number of PEs per time sample 

• For each time sample, we calculate the corresponding charge at the PMT using data

23

Zoom on S1 peak
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First look at the light data : S2 signal 

PMT

∿∿∿∿→

∿∿∿∿→
∿∿∿∿→
∿∿∿∿→ ∿∿∿∿→

LAr

GAr

S1

S2

The amount of S2 light is :  
‧ Constant with the extraction field 
‧  Proportional to the LEM field

WA105 
PRELIMINARY

Inés Gil Botella - ProtoDUNE-DP Light Detection System

Scintillation light simulation
22

Simulation of 3x1x1 geometry

2-4 GeV muons generated between the two CRT planes Integrated PE distributions

Generation of light maps including light propagation

Detailed light 
simulations in both 
detector have been 
computed and data/
MC comparisons are 
ongoing

WA105 
SIMULATION
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First look at the charge & light data correlation

Inés Gil Botella - ProtoDUNE-DP Light Detection System

Correlation between light and charge
24

time matching between events was applied

WA105 PRELIMINARY



• Status of detector construction and schedule

ProtoDUNE-DP status and schedule

1

D. Duchesneau / S. Murphy

17/11/2017 D. Duchesneau / S. Murphy
CERN meeting 17/11/2017
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Goals of the ProtoDUNE-DP
A bigger prototype of 6x6x6 m3 will be constructed to assess : 

‧Large vessel and field cage structure 
‧Large surface of charge readout 
‧Very high voltage generation 
‧Exposure to a charged 
 particle beam 

‧Long drift 
‧Design validation  
towards DUNE

Charge Readout Plane

Drift cage

Feedthroughs

Cathode

ground grid

photomultipliers

11 m
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ProtoDUNEs

Single phase LArTPC 
[NP04]Dual phase LArTPC 

[WA105 - NP02]

EHN1 hall extended

L.	ZAMBELLI	-	GDR	NEUTRINO	-	STATUS	OF	WA105

19/11/2017 - NP04

19/11/2017 - NP02

19/11/2017

NP04 ➔

NP02 ➔

Both prototype will be exposed to hadronic beam in 2018
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protoDUNE-DP construction & integration

1. install internal piping & 
temporary floor

2. install the 4 CRP 
frames

3. install the first drift cage 
modules

4. all drift cage modules 
installed

5. remove temporary floor and 
install photomultipliers 6. seal TCO
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protoDUNE membrane & cryostat

17/11/2017 D. Duchesneau / S. Murphy 6

Latest milestones from NP:
- Membrane completed: Sept 21 2017
- CRB finished: Oct 2017
- Leak test performed Nov 2017
- Temporary floor: installed
⇒ Cryostat finished with CRB installed

Status of EHN1 infrastructure:

17/11/2017 D. Duchesneau / S. Murphy 6

Latest milestones from NP:
- Membrane completed: Sept 21 2017
- CRB finished: Oct 2017
- Leak test performed Nov 2017
- Temporary floor: installed
⇒ Cryostat finished with CRB installed

Status of EHN1 infrastructure:
- Membrane completed on sept. 21st 
- Temporary floor installed 
- Clean room buffer finished 
- Leak test performed in november

Leak Test 
inside the 
cryostat

←Temporary 
floor

TCO

CRB
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Status of CRP Assembly

LAPP, 17/11/2017 Status of CRP #1 assembly for protoDUNE 4

Invar Frame production

• First process mock-up of invar frame was completed in September.

• Modifications proposed (welding points, cleaning procedure ...) and validated for final production.

• Final frames production started in priority at SDMS, at the beginning of November.

• First frame delivery is expected in December.

Decoupling systems received

Invar frame 
of first CRP

LAPP, 17/11/2017 Status of CRP #1 assembly for protoDUNE 17

Extraction grid production tooling

Then the pulleys are unlocked, insuring the calibrated tension in the wires, due to
calibrated weight of the pulley and wire friction control

The position of the wires in the grooves of the PCBs is also carefully checked

Quality control
Visual inspection with 

adapted light

Quality control
Pulley sliding

Extraction Grid tooling 
procedures established 

Modified LEM Design

17/11/2017 WA105 Review Meeting 4

Current Modified

10 + 5 mm
clearance

2 + 2 mm
clearance

central
hole

Improved design of LEM based 
on the 3x1x1 experience
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Conclusions & Prospects

Important milestones achieved since the last GDR meeting !
• Evidence of electron extraction with light & charge signal
• Tracks recorded with many HV configurations
• Many improvements regarding noise filtering and the reconstruction
• Analysis are ongoing (purity, gain, space charge effect, …)
• Large experience gained for protoDUNE-DP

• The protoDUNE design has been finalized in November
• Membrane and cryostat construction finished
• Test installation of the Field Cage and assembly of the CRP about to start
• Detector ready to take data foreseen in a year from now !

→Stay tuned ! 
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3x1x1 construction in 2016

Nov : control racks, DAQ and cryogenics 
installed, cabled and tested

June : Detector assembly finished

Aug : FE electronics + 
cables installed inside 

feedthroughs

April : CRP 
cryogenic bath test

Feb : Top Cap 
delivered

March : CRP installed 
under top cap

JINST 12 P03021 arXiv:1611.02085

Sept : Test & insertion of 300 kV 
HV feedthrough

July : Top Cap lifted inside the 
cryostat
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LEM design

Modules of 0.5x0.5 m2

C. Cantini et al., JINST 10 (2015) no.03, P03017
• Design from extensive R&D on small 

DP-LArTPC
• Easy to manufacture on large scale
• Standard PCB with O(150) holes/cm2

• 1 mm thick, 500 µm diameter holes, 
40 µm dielectric rim

• Thickness uniformity measured on 
LEM samples with a few micron 
precision

LEM thickness measurement for the 3x1x1
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LEM Amplification factor
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where :

Maximum amplification field is always less 
than the naïve ΔV/d computation. The 
reduction factor, κ, is computed by 
COMSOL simulation.
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Anode & charge readout design

0.5x0.5 m2 Anode modules

C. Cantini et al., JINST 9 (2014) P03017
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• Anode design from extensive R&D on small DP-LArTPC
• Easy to manufacture on large scale
• 3.125 mm pitch, 160 channels on each views per module.
• Equal sharing of the charges among the 2 views
• Low capacitance to allow long strips while keeping the noise to 

minimum [dC/dl ~ 120 pF/m]
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analog 
boards

CRP

signal feedthrough

cold flange

warm flange

digital 
boards

• Accessible cold FE 
electronics in isolated 
chimneys

• Dynamic range of 40 mips 
(double slope gain)

• power consumption of  
18 mW/channel

Φ
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View 0 charge deposition as a function of track Φ angle
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Electron extraction at the liquid-gas interface
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Gushchin et al, Sov. Phys. JETP 55 (1982) 860-862 
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Recombination factor
11 

 

  Recombination [31, 32, 43] 

 

Solid lines are the recombination factor for charge (charge collected at finite field divided 
by charge collected at infinite field) [31, 32].  Dashed lines are the light recombination 
factor (light collected at field divided by light collected at zero field) [43].  The numbers 
labeling the curves are the specific energy loss (dE/dx) in units of mip. 
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