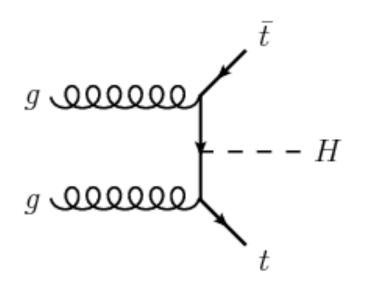
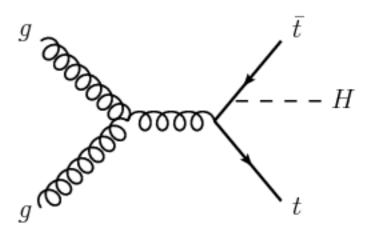
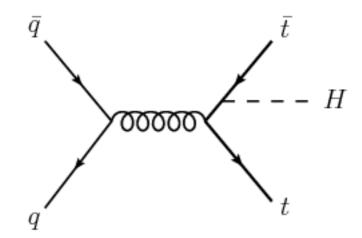

Evidence for $t \bar t H$ production with the ATLAS detector

LIU Kun (LPNHE-Paris)
on behalf of the ATLAS collaboration

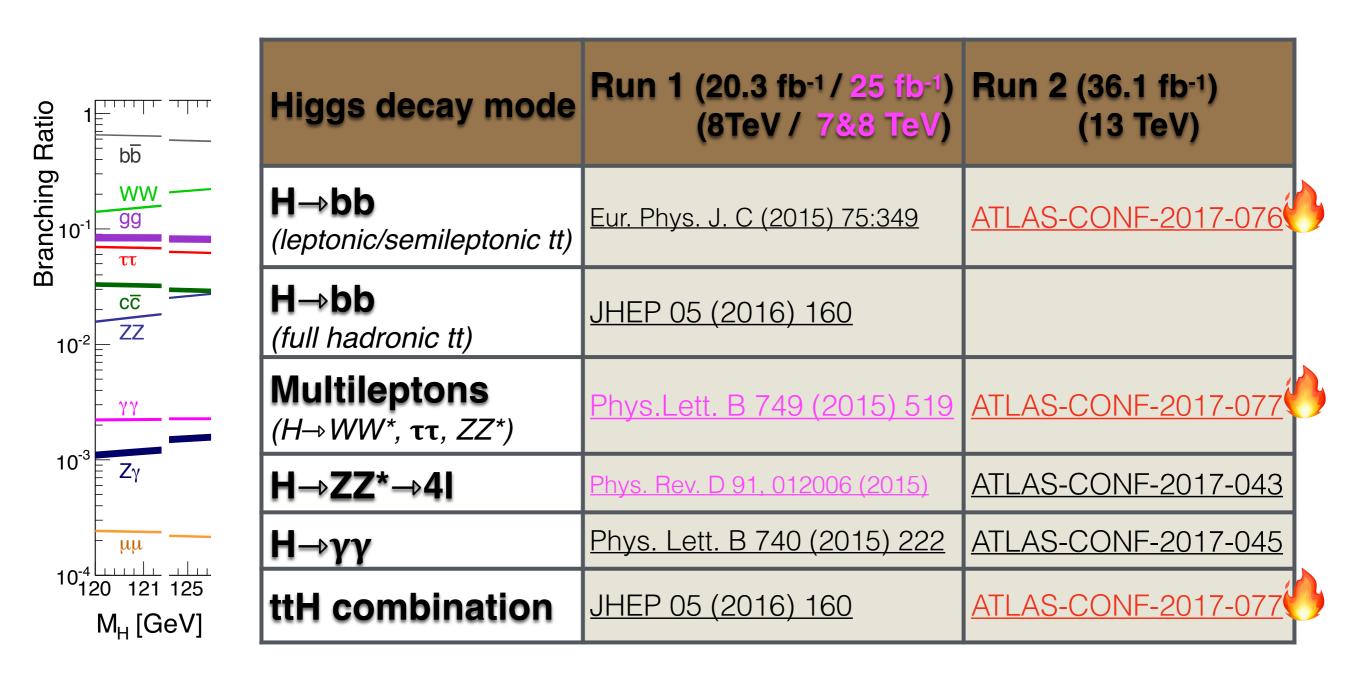
Séminaire à LPNHE-Paris 13/11/2017

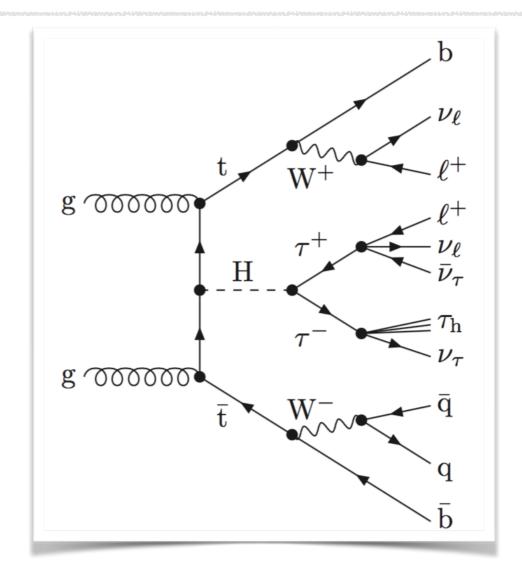

Outline


- ◆ ttH analysis motivation and complexity
- → Search for ttH in four channels
 - * with multilepton final states (H \rightarrow WW*, $\tau\tau$ and partially ZZ*)
 - ***** H → bb
 - $\star H \rightarrow ZZ^* \rightarrow 4I$
 - $\star H \rightarrow \gamma \gamma$
- → ttH searches combination in ATLAS Run 2
- **→** Summary

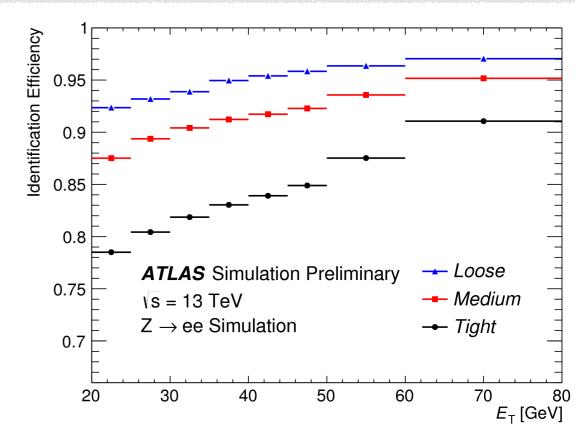

ttH analysis motivation

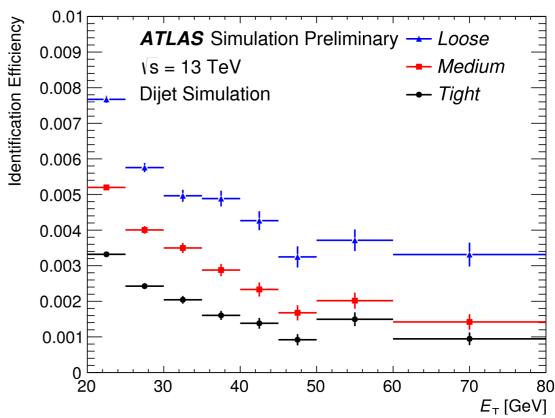
- ttH allows direct measurement of Higgs-top Yukawa coupling at tree level. Any deviation might be hint for New Physics!
- Indirect constraints on Higgs-top Yukawa coupling possible through ggH and H→γγ loop processes.
- ♦ ttH as the fifth main Higgs production channel has no 5σ observation yet → ~ 1% of Higgs production in LHC.
- ◆ Summary of recent ATLAS and CMS ttH public results:


	Signal strength $\mu_{tar{t}H}$	Obs. (exp.) significance
Run1 ATLAS+CMS (~25 fb ⁻¹)	2.3 +0.7/-0.6	$4.4\sigma (2.2\sigma)$
Run2 ATLAS preliminary (13.2 fb ⁻¹)	1.8 ± 0.7	$2.8\sigma~(1.8\sigma)$
Run2 CMS preliminary (35.9 fb ⁻¹)	1.5 ± 0.5	$3.3\sigma~(2.5\sigma)$

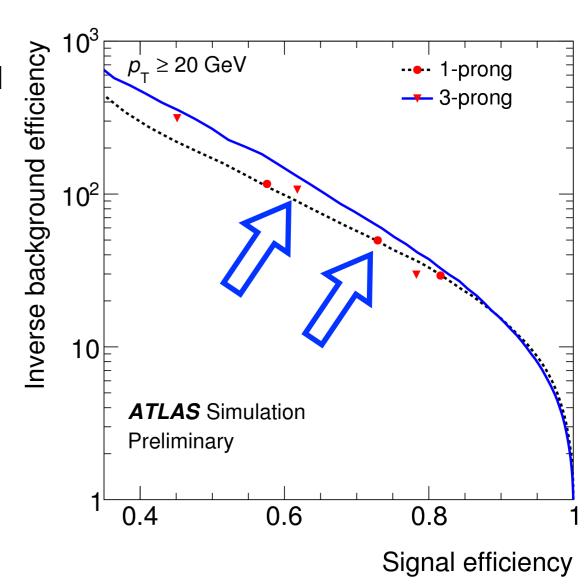


ATLAS ttH publications

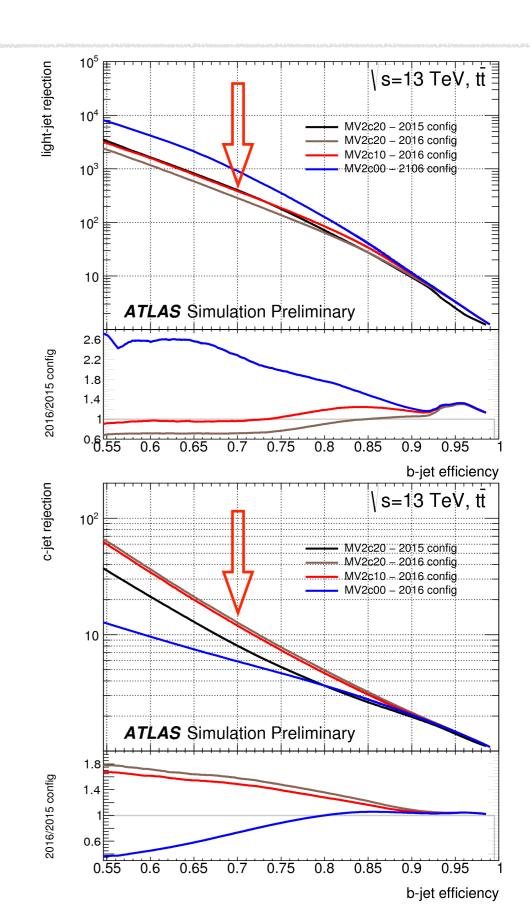



◆ I am going to present those Run 2 analyses on very recent results.

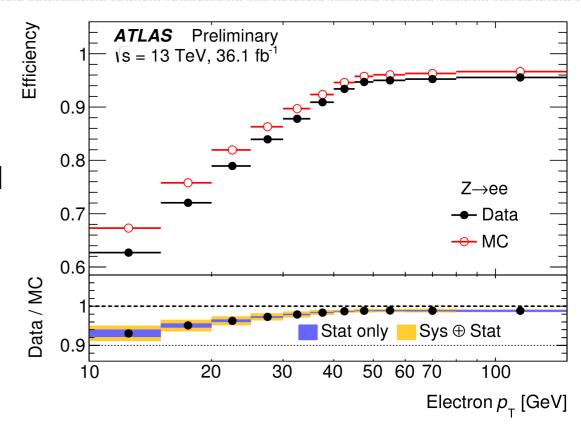
- ◆ The analysis is based on ATLAS reconstructed objects of photon, electron, muon, jet, \(\tau\)-jet (\(\tau\)had) and b-jet.
- ◆ There are massive SM-process productions in ttH favoured phase space.
- ◆ Good performance of the ATLAS detector makes this complicated analysis possible

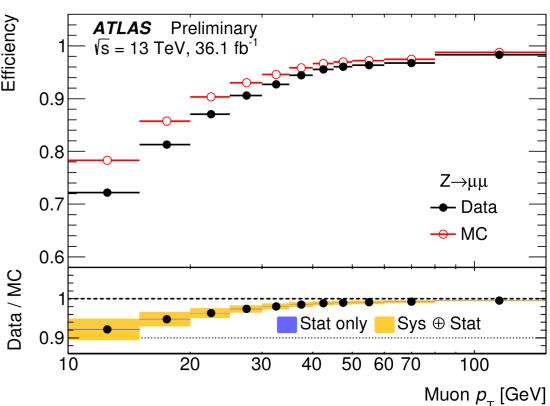


- ◆ The analysis is based on ATLAS reconstructed objects of photon, electron, muon, jet, \(\tau\)-jet (\(\tau\)had) and b-jet.
- ◆ There are massive SM-process productions in ttH favoured phase space.
- ◆ Good performance of the ATLAS detector makes this complicated analysis possible
 - lepton identification vs light-jets rejection

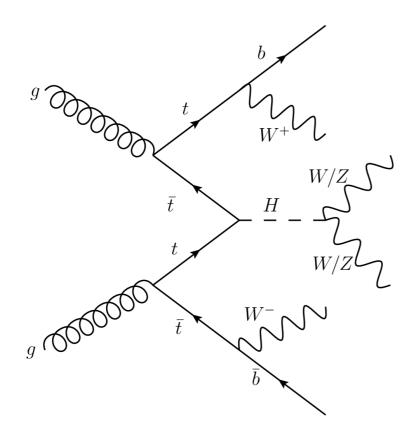


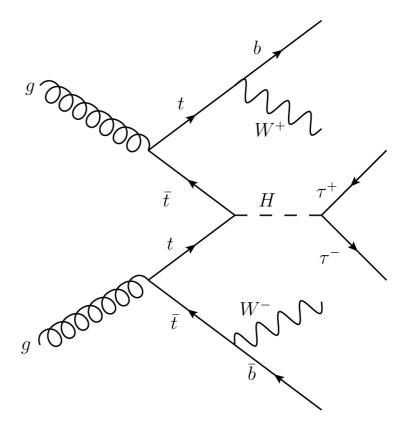
- → The analysis is based on ATLAS reconstructed objects of photon, electron, muon, jet, \(\tau\)-jet (\(\tau\)had) and b-jet.
- ◆ There are massive SM-process productions in ttH favoured phase space.
- Good performance of the ATLAS detector makes this complicated analysis possible
 - lepton identification vs light-jets rejection
 - ❖ rhad identification vs QCD jets rejection

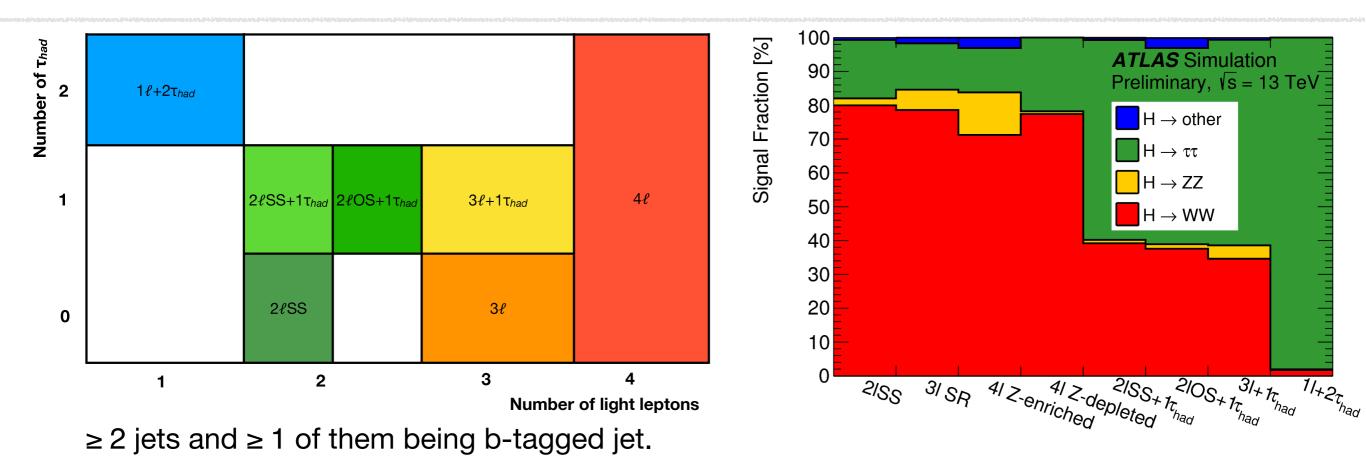



- ◆ The analysis is based on ATLAS reconstructed objects of photon, electron, muon, jet, \(\tau\)-jet (\(\tau\)had) and b-jet.
- → There are massive SM-process productions in ttH favoured phase space.
- ◆ Good performance of the ATLAS detector makes this complicated analysis possible
 - lepton identification vs light-jets rejection
 - ❖ τ_{had} identification vs QCD jets rejection
 - b-jet tagging vs c-jet and light-jet rejection

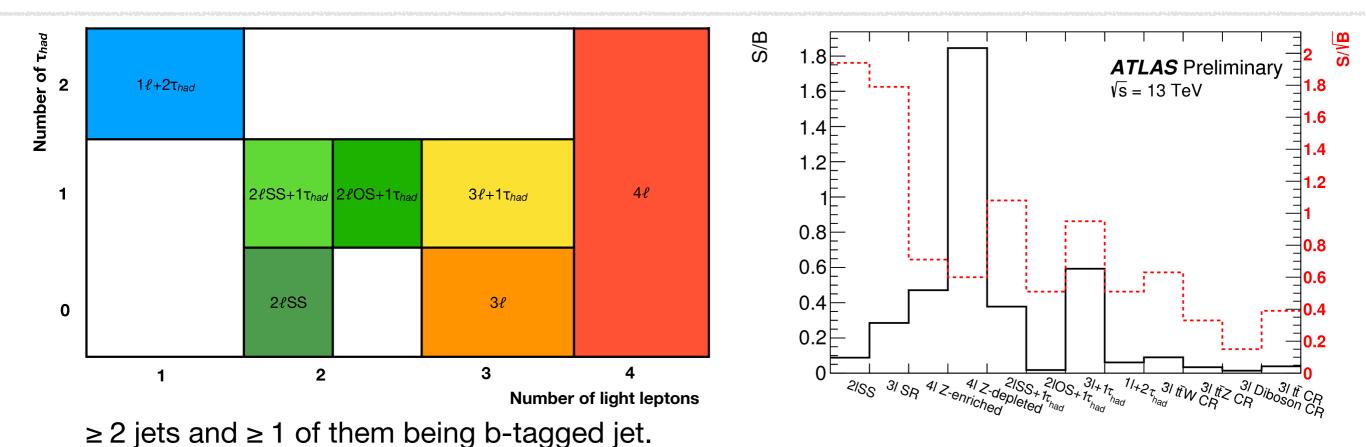
- → The analysis is based on ATLAS reconstructed objects of photon, electron, muon, jet, τ -jet (τ_{had}) and b-jet.
- ◆ There are massive SM-process productions in ttH favoured phase space.
- ◆ Good performance of the ATLAS detector makes this complicated analysis possible
 - lepton identification vs light-jets rejection
 - ❖ τ_{had} identification vs QCD jets rejection


 - * lepton from b-hadron decay (non-prompt lepton) is rejected at O(20) while keeping him efficiency for prompt lepton.



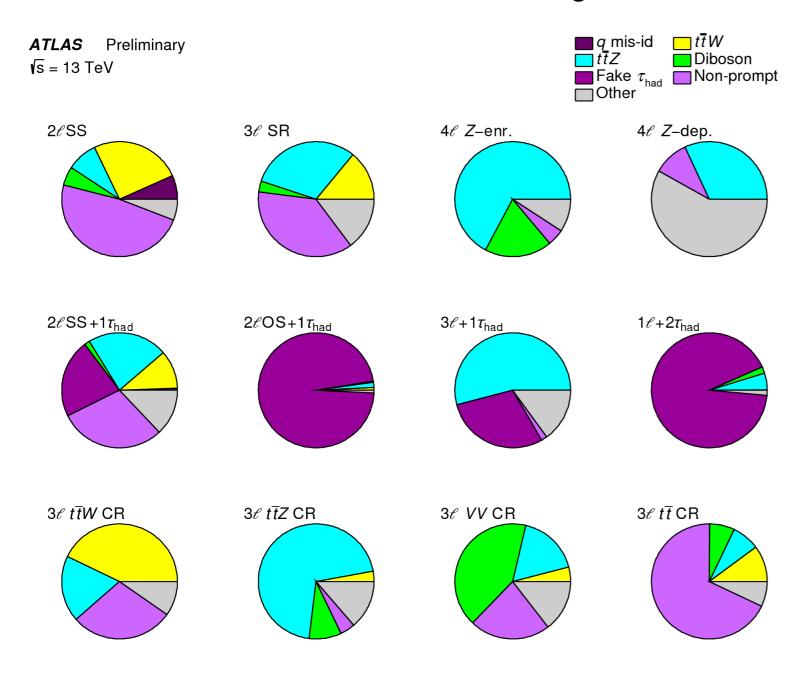

Search for ttH in multilepton final states

Higgs decays to WW*, ττ and partially ZZ* (veto on H→ZZ*→ 4I)



Event selection and classification

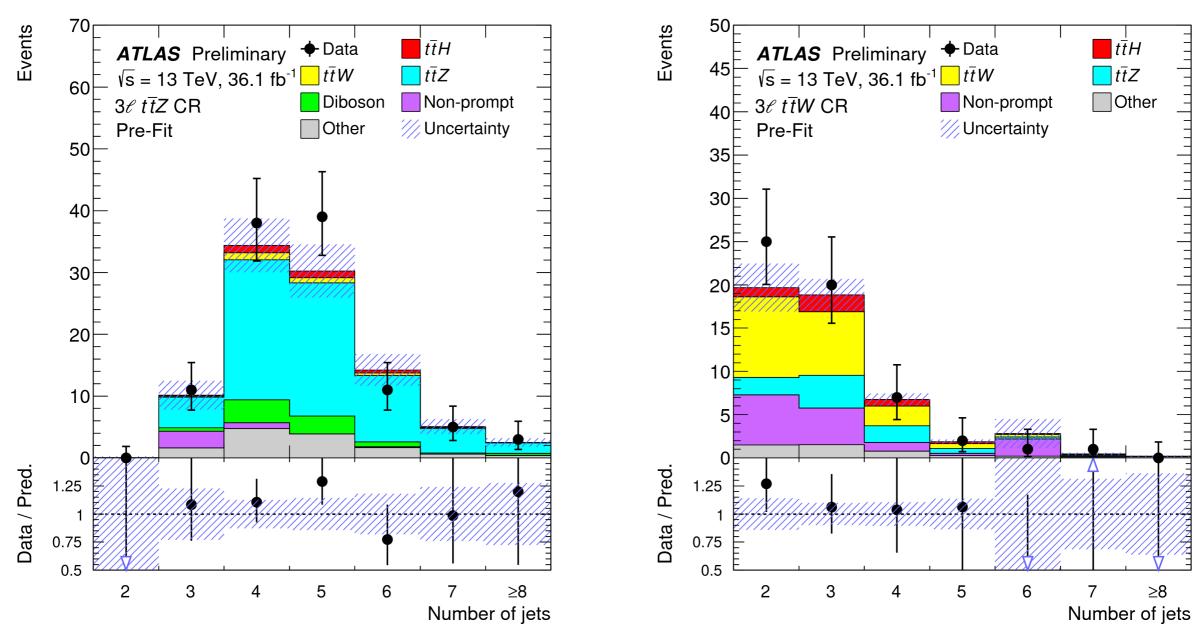
- ♦ 7 orthogonal analysis channels (8 signal regions), according to number and flavour of charged leptons, with and without τ_{had} .
- ◆ 91 expected ttH events after selection → 0.50% of all expected ttH events.
- → ~ 300k background events dominated by
 - * ttV (ttW, ttZ): similar event topologies as ttH signal
 - * tt: "extra" non-prompt lepton mainly from b-hadron decay
- ◆ 4 control regions in 3l are defined for ttW, ttZ, di-boson and tt processes.


Event selection and classification

- * 7 orthogonal analysis channels (8 signal regions), according to number and flavour of charged leptons, with and without τ_{had} .
- ◆ 91 expected ttH events after selection → 0.50% of all expected ttH events.
- → ~ 300k background events dominated by
 - * ttV (ttW, ttZ): similar event topologies as ttH signal
 - * tt: "extra" non-prompt lepton mainly from b-hadron decay
- ◆ 4 control regions in 3l are defined for ttW, ttZ, di-boson and tt processes.

Background compositions

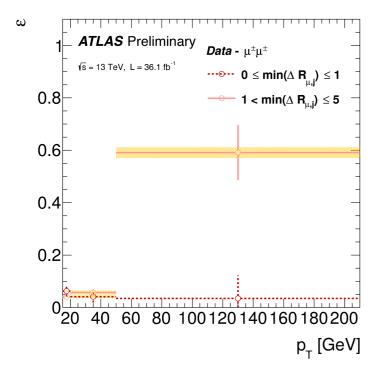
The fractional contributions of each bkg. to the total:

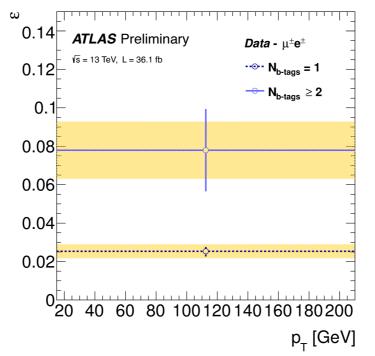


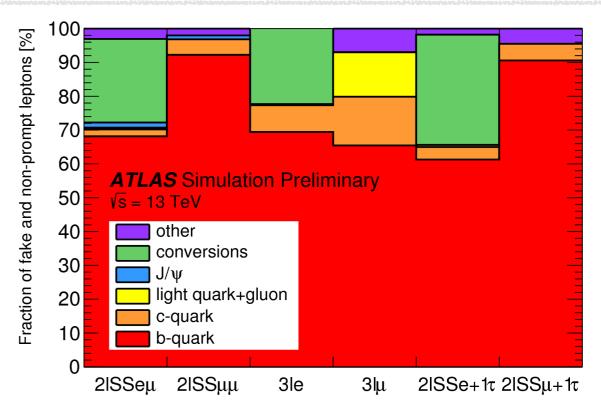
SR → signal region; CR → control region

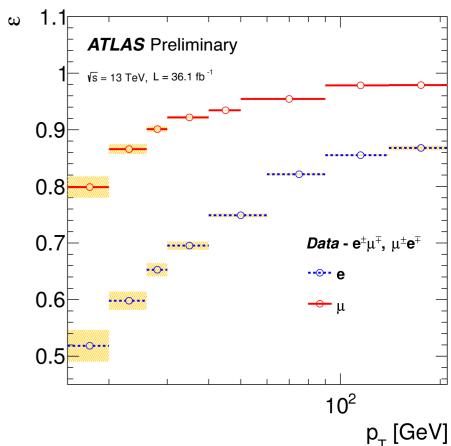
- "Non-prompt" bkg. arises from tt process with non-prompt lepton mainly from b-hadron decay.
- * "q mis-id" bkg. arises from tt and Z+jets with electron charge being mis-assigned → only visible in 2ISS channel.
- ◆ "Fake Thad" includes any other objects mis-tagged as Thad.
- * "Other" includes many rare processes, i.e tZ, tW, tWZ, tH, ttWW, triboson, ttt and tttt.
- → Irruducible bkg. (ttW, ttZ, VV and rare) estimates rely on simulation, whose modelling are validated in data control regions.
- → Non-prompt and fake τ_{had} bkg. are estimated from collision data.

Irreducible background validation in CRs

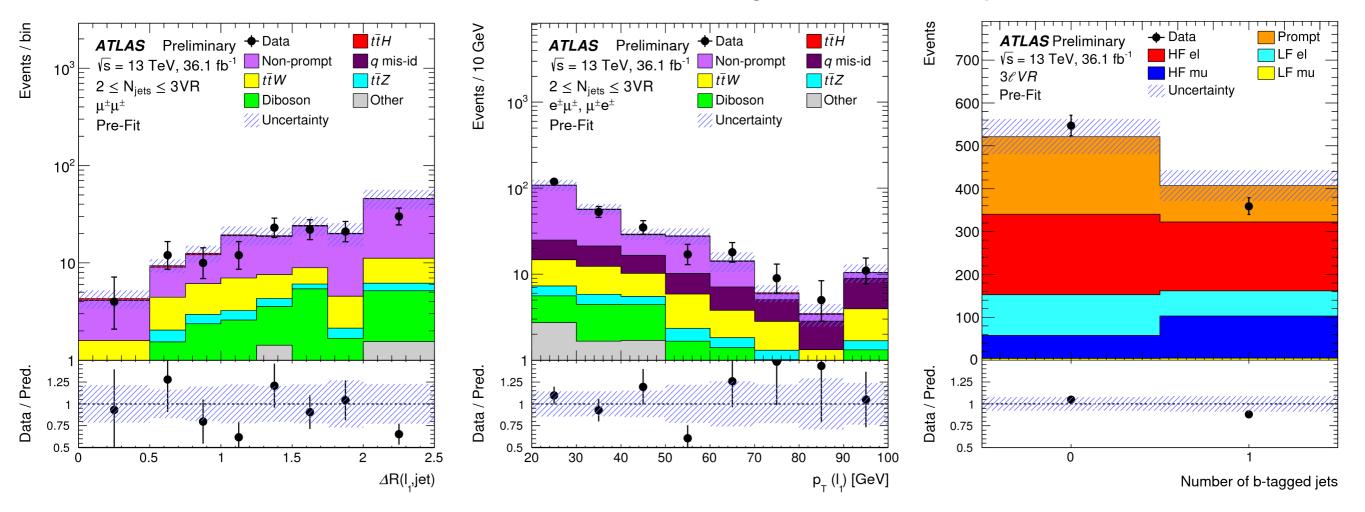

→ Data and predictions are in good agreements for ttZ (left) and for ttW (right).


- ◆ CR definitions are orthogonal and close to signal regions → in backup slide 50.
- ◆ A list of all MC samples is in <u>backup slide 51</u>.

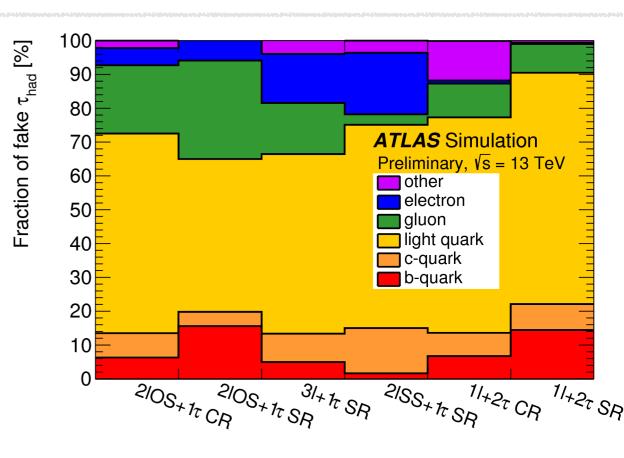

Non-prompt lepton background estimates - I

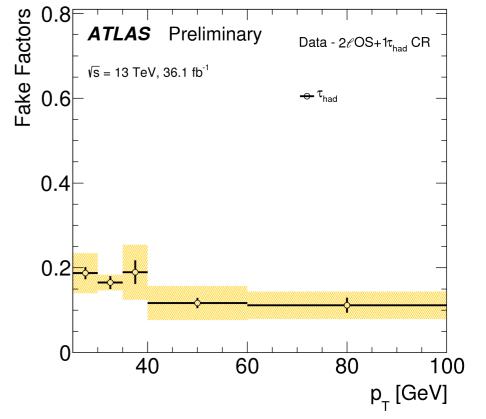

- Arising from tt production with non-prompt leptons mainly from b-hadron decay, and photon to electron conversions.
- ♦ Polluting 2ISS, 3I and 2ISS+ τ_{had} channels.
- → The estimation counts number of events passing loose selection (loosen lepton's identification and isolation requirements), which is weighted by the probabilities for loose prompt and non-prompt leptons passing tighter requirements.
- ◆ The probabilities for non-prompt and prompt leptons:

K. Liu



Non-prompt lepton background estimates - II

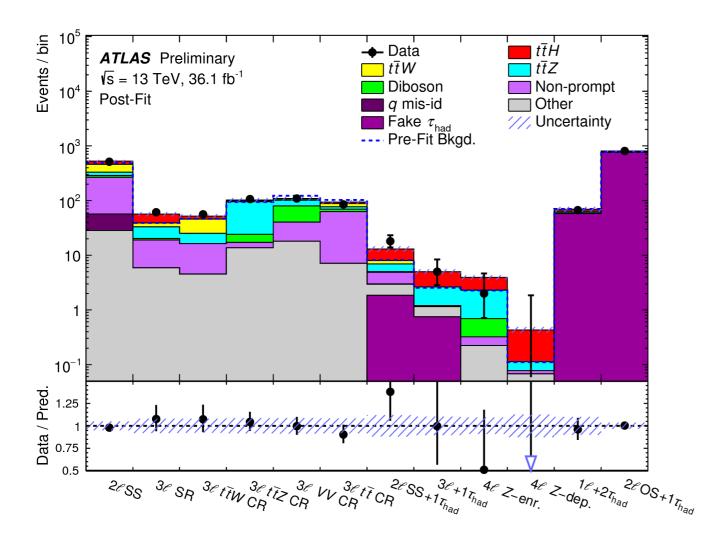

- ◆ Closure test is performed using simulated tt events. Non-closure of (11±8)% for 2ISS and (9±18)% for 3I are taken as systematic uncertainties.
- → The estimates procedure is validated in data regions enriched by non-prompt leptons:

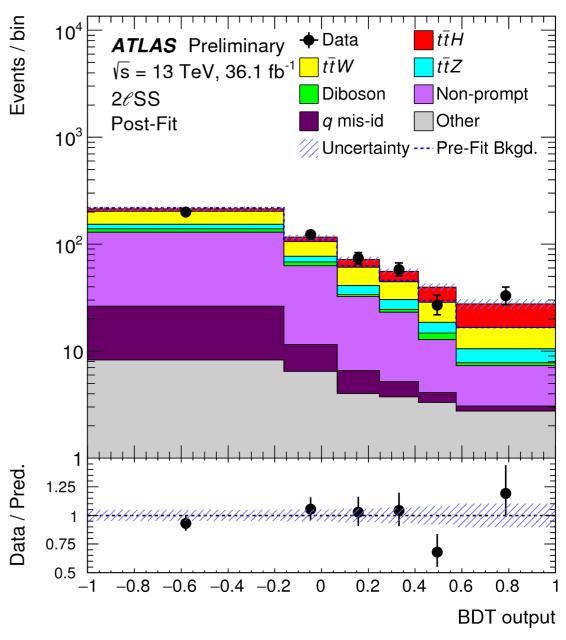


→ The total uncertainty of non-prompt background estimation varies from 20% to 30% in 2ISS and 3I channels, and about 55% in 2ISS+1 τ_{had} channel.

Fake τ_{had} background estimates in τ_{had} channels

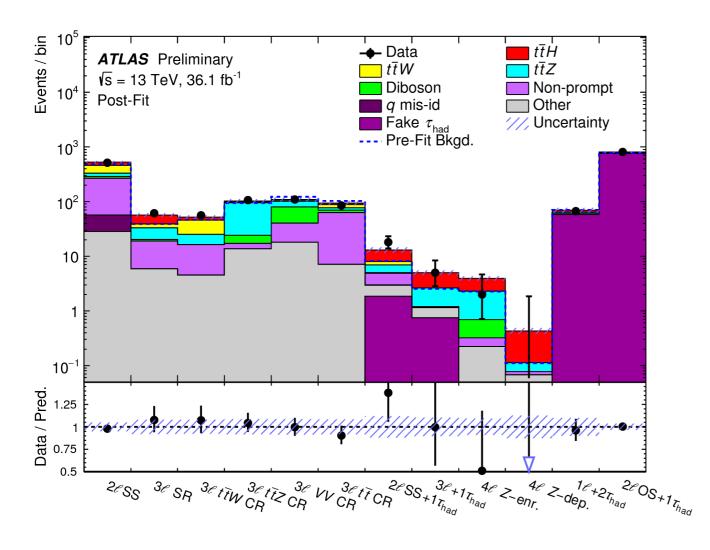
- ◆ Arising from tt and ttV production with misreconstructed \(\tau_{\text{had}}\) candidate.
- * Fake τ_{had} factor (ratio of fake τ_{had} passing tight to those passing loose but failing tight) are measured in CR (close to 2IOS+ τ_{had} SR).
- ♦ In $2lOS+\tau_{had}$ channel, systematic uncertainty of fake τ_{had} background is 11%.
- ♦ In 3I+Thad 2ISS+Thad channels, a scale factor 1.36±0.16 is used to correct MC prediction for fake Thad component.
- In 1I+2τ_{had} channel, fake τ_{had} background is estimated in control region identical to the signal region but with same charge τ_{had} pair. In total, 30% systematic uncertainty mainly comes from method non-closure.

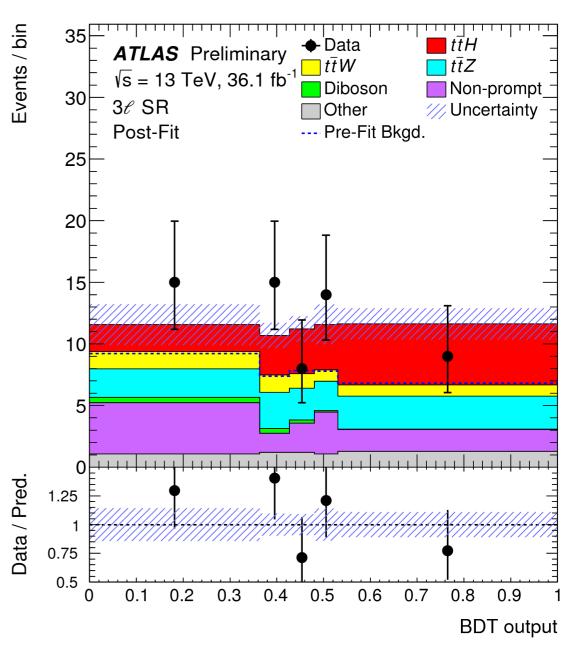




Comparison between data and estimates - I

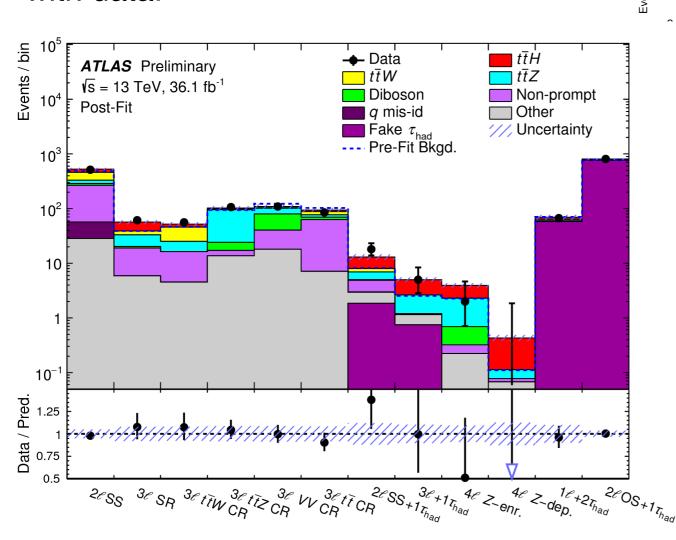
* A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.

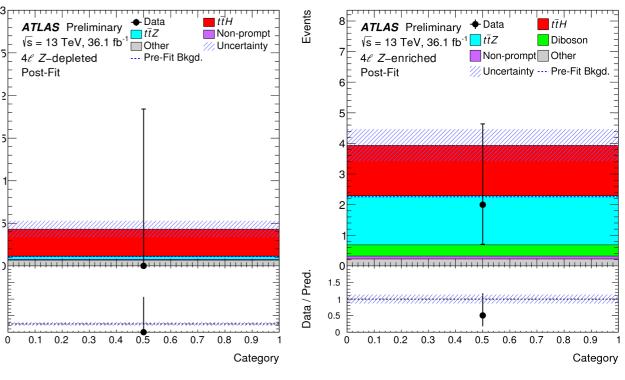

→ Post-fit predictions are in good agreement with data.



Comparison between data and estimates - II

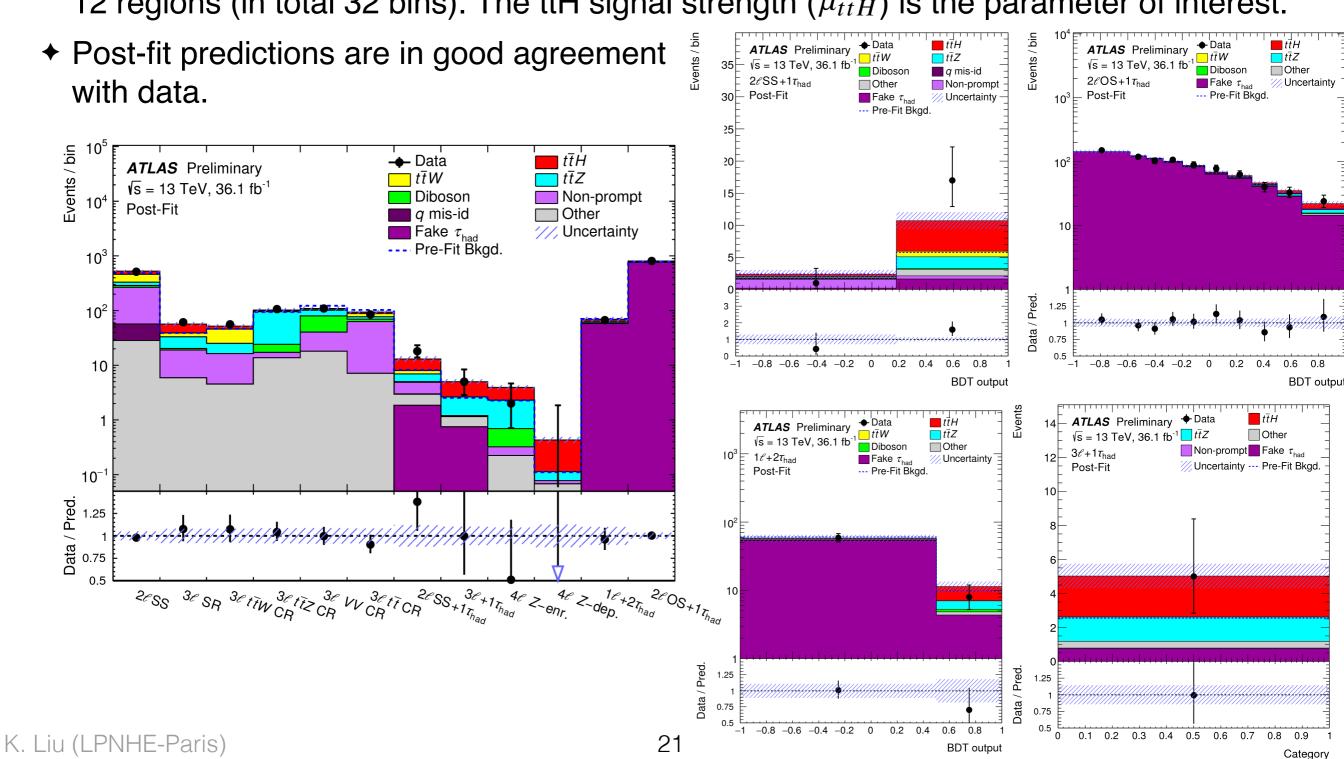
- * A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.
- ◆ Post-fit predictions are in good agreement with data.

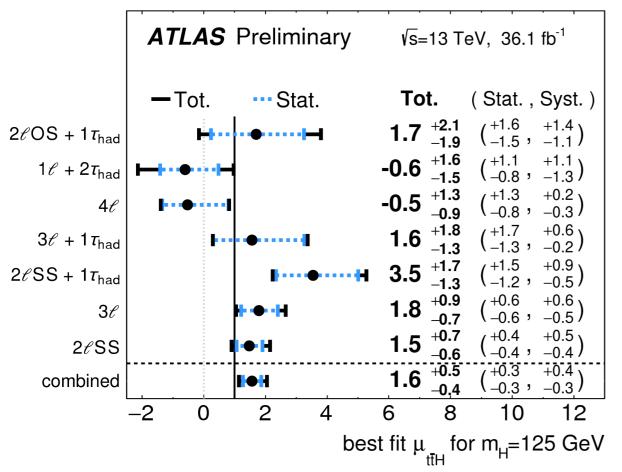




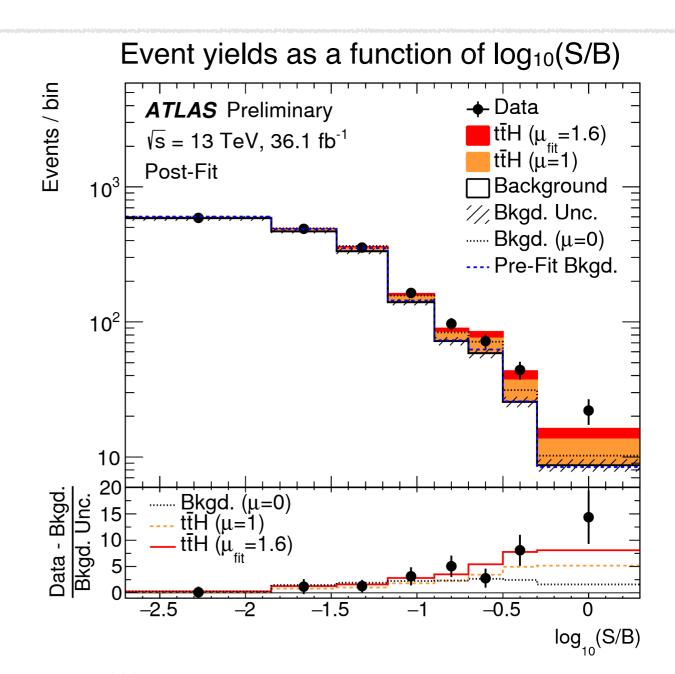
Comparison between data and estimates - III

♦ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.


◆ Post-fit predictions are in good agreement with data.


Comparison between data and estimates - IV

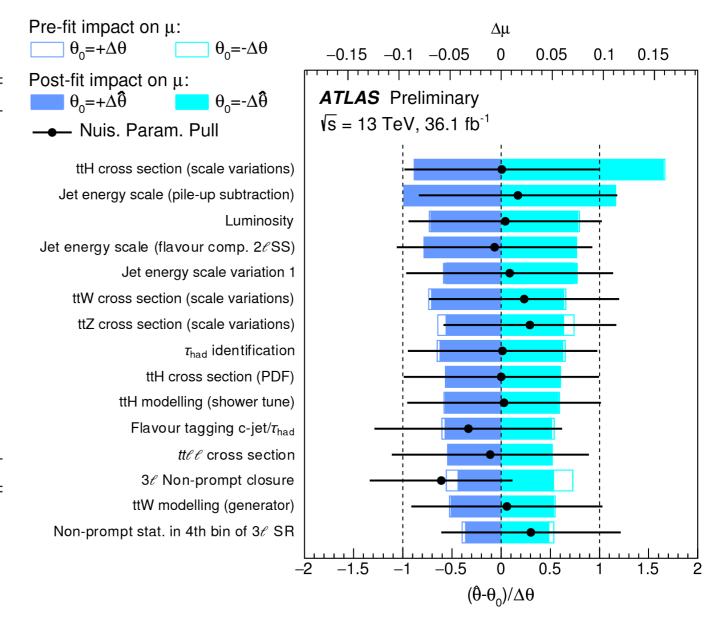
♦ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.



Results in ttH-multileptons analysis

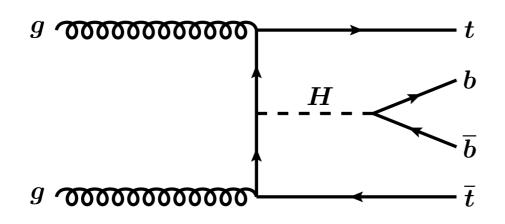
The best-fit values of the ttH signal strength

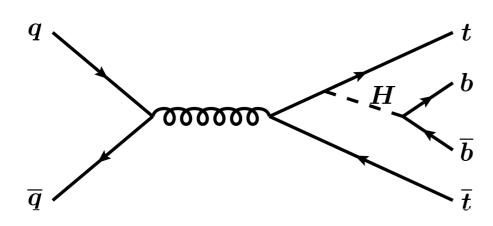
→ The combined signal strength is 1.6 ^{+0.5}_{-0.4}, which corresponds to 4.1σ (2.8σ) observed (expected) significance.

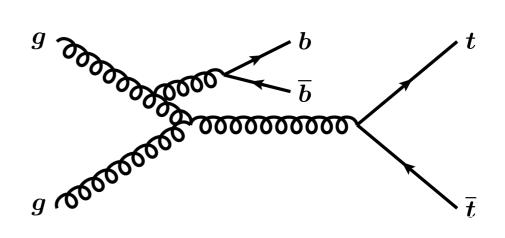


- → The measured ttH cross section is $\sigma(t\bar{t}H) = 790^{+230}_{-210}$ fb (the SM prediction 507^{+35}_{-50} fb).
- ♦ Cutting&count analyses in 2ISS, 3I and 2ISS+1 τ_{had} observe compatible results.
- ◆ Sensitive to cross section modifier for ttW 0.92±0.32 and for ttZ 1.17±0.25.

Summary of systematic uncertainties

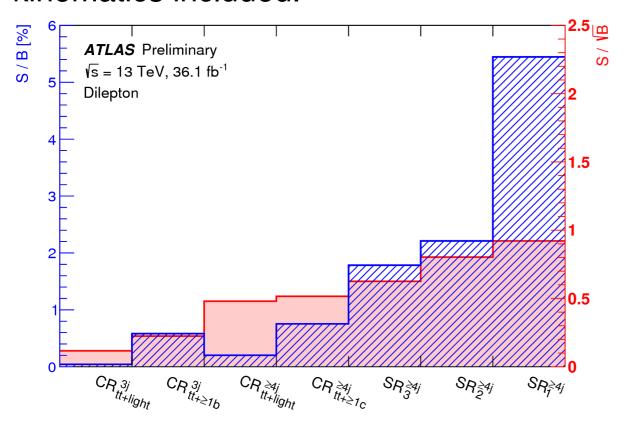

- ◆ Left: summary of the effects of the most important groups of systematic uncertainties.
- → Right: the impact of systematic uncertainties in the fitted signal strength.

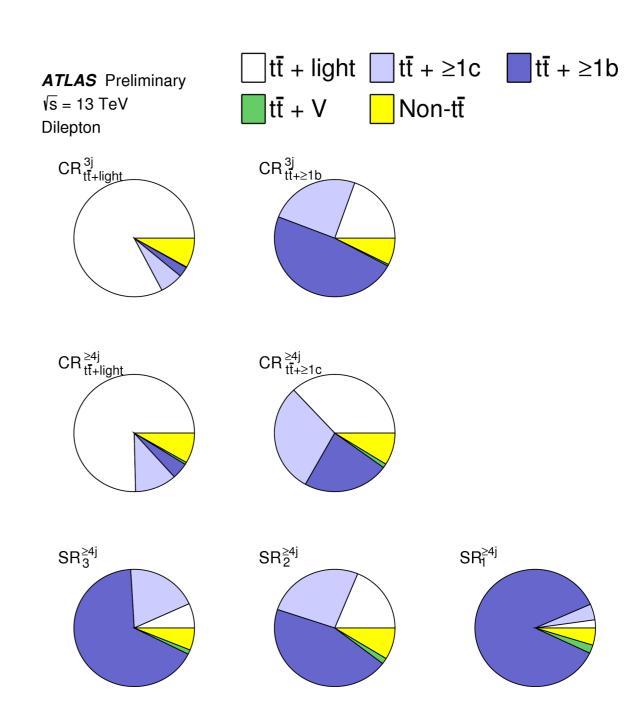

Uncertainty Source	$\Delta \mu$	
$t\bar{t}H$ modelling (cross section)	+0.20	-0.09
Jet energy scale and resolution	+0.18	-0.15
Non-prompt light-lepton estimates	+0.15	-0.13
Jet flavour tagging and $\tau_{\rm had}$ identification	+0.11	-0.09
$t \bar{t} W$ modelling	+0.10	-0.09
$t ar{t} Z ext{ modelling}$	+0.08	-0.07
Other background modelling	+0.08	-0.07
Luminosity	+0.08	-0.06
$t\bar{t}H$ modelling (acceptance)	+0.08	-0.04
Fake $\tau_{\rm had}$ estimates	+0.07	-0.07
Other experimental uncertainties	+0.05	-0.04
Simulation statistics	+0.04	-0.04
Charge misassignment	+0.01	-0.01
Total systematic uncertainty	+0.39	-0.30



Search for ttH, Higgs decays to bb

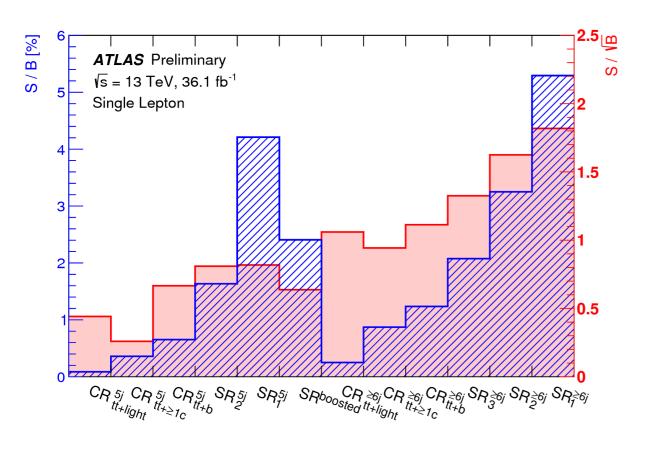
the W bosons from one or both top quarks decay leptonically

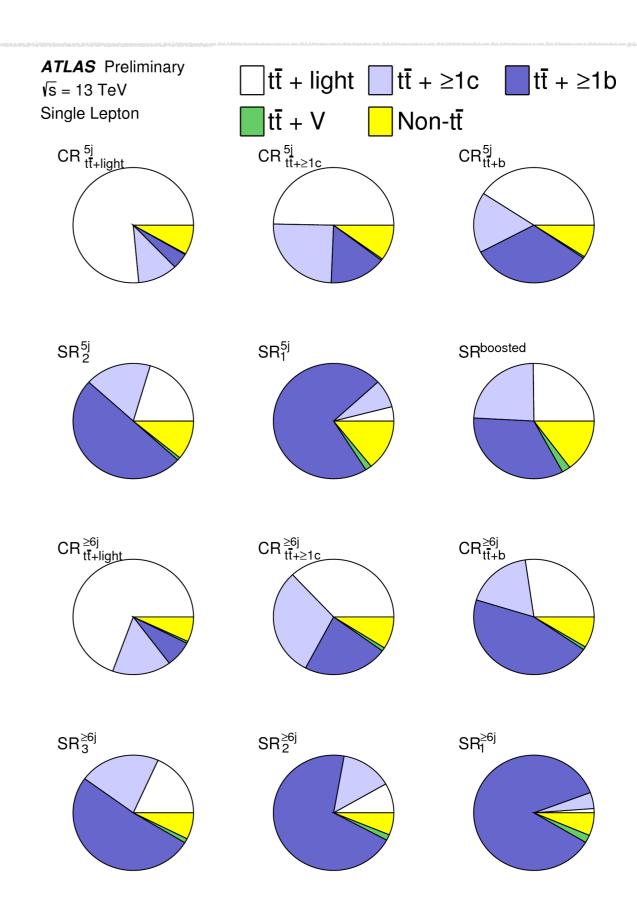

Event selection and classification - I


◆ Di-lepton channel (tt leptonic decay, categorisation on jets and b-jets multiplicity)

·at least 4 jets : 3 SRs + 2 CRs

exactly 3 jets: 2 CRs

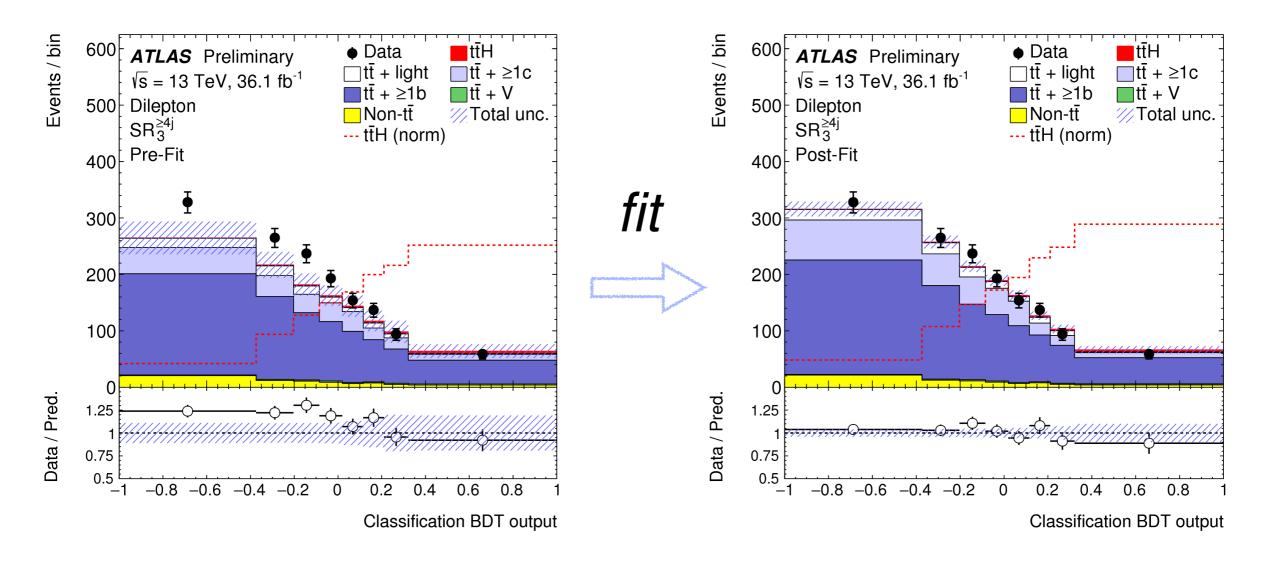

◆ Event reconstruction employs multivariate techniques (BDT, LHD, MEM), achieving 49% (32%) of titH signal being correctly reconstructed with (without) Higgs boson kinematics included.



Event selection and classification - II

- Single lepton channel
 - exactly 5 jets : 2 SRs + 3 CRs
 - ·at least 6 jets : 3 SRs + 3 CRs
 - boosted SR: large-R jet with p_T > 200 GeV
- ◆ Event reconstruction achieves 48% (32%) of ttH signal being correctly reconstructed with (without) Higgs boson kinematics included.

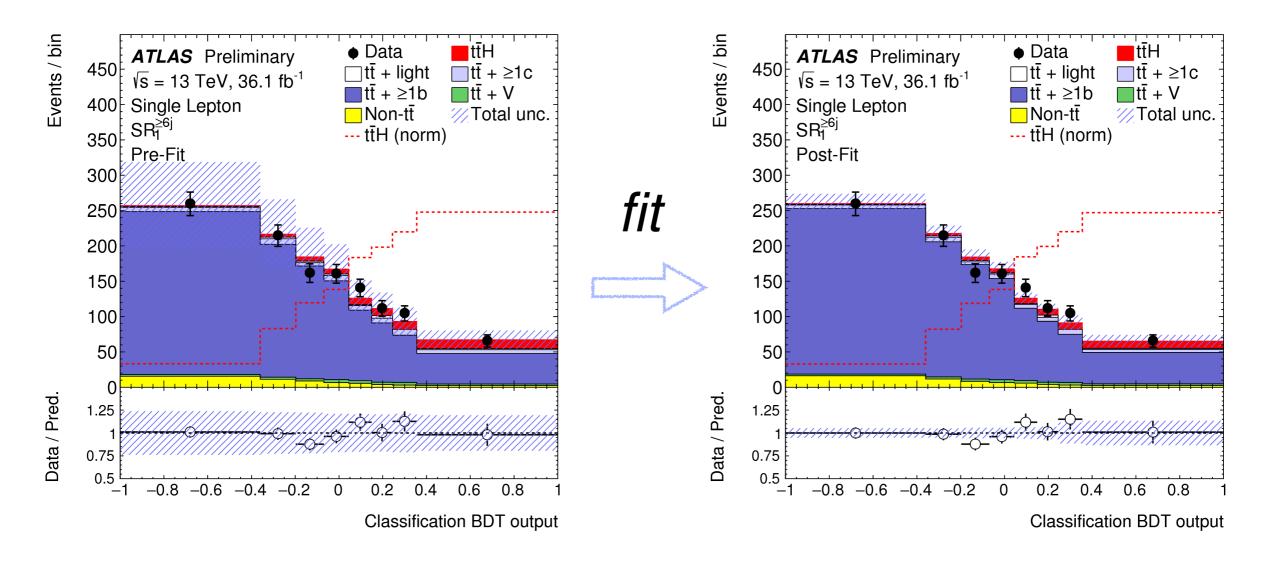
tt+jets background modelling


- ◆ tt+heavy-flavour jets modelling relies on Powheg+Pythia8 simulation. The cross section is normalised to NNLO+NNLL prediction 832⁺⁴⁶₋₅₁ pb.
- ◆ A set of systematic uncertainties are evaluated, account for various variations.

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t}+\geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalisation	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+Herwig++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg-Box+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF (MSTW)}$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF (NNPDF)}$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tunable parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalisation	Up or down by 50%	$t\bar{t} + \geq 1b$

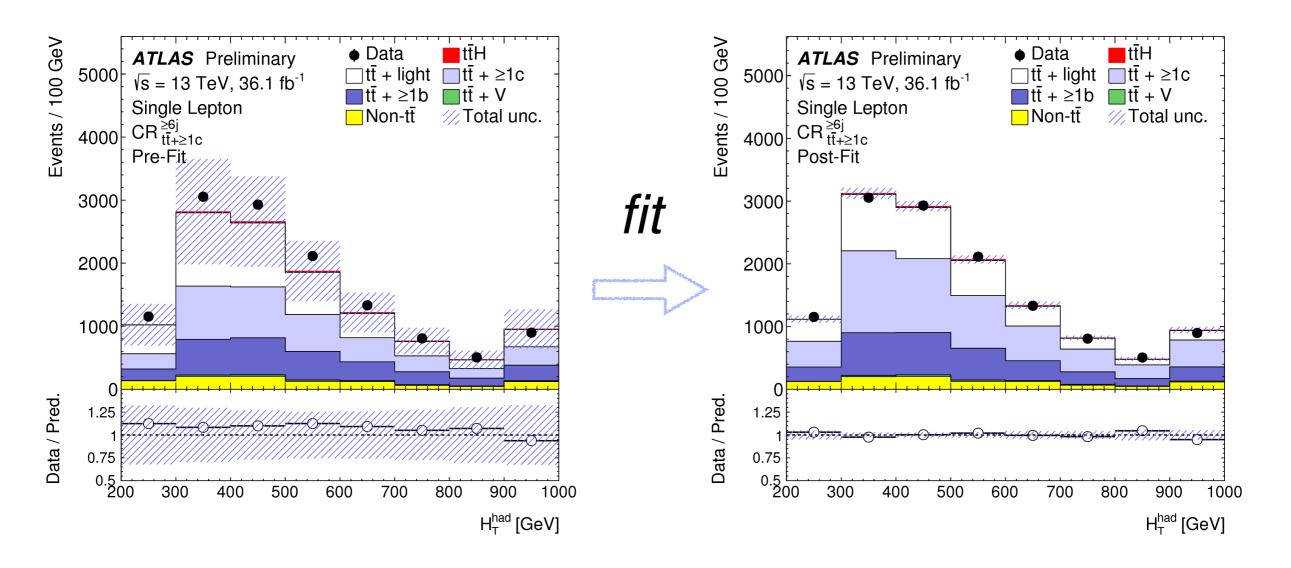
† tt+ ≥1b, tt+ ≥1c normalisations are determined in data from the fit.

Discriminants in signal regions

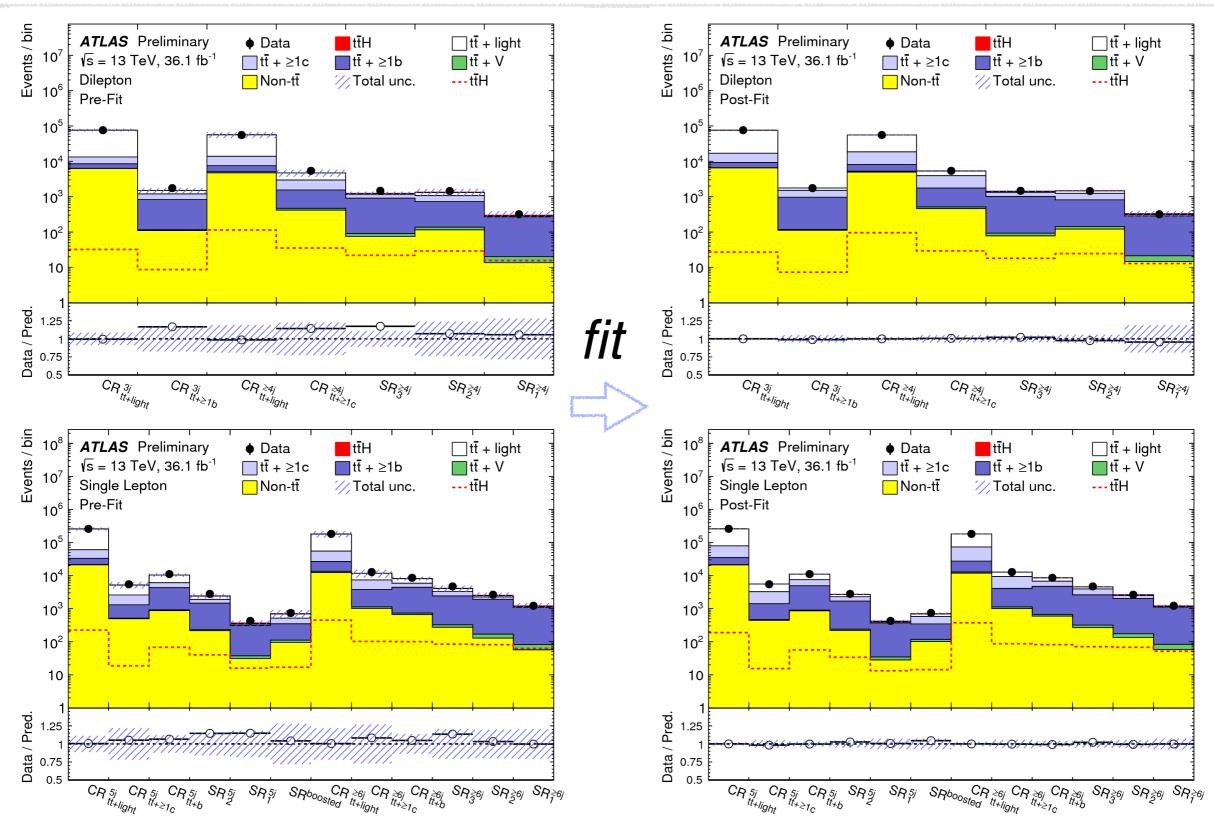

◆ Classification BDT is built by combining event reconstruction outputs with kinematic variables and b-tagging discriminants.

→ The fit is done simultaneously in all SRs+CRs in single- and di-lepton channels.

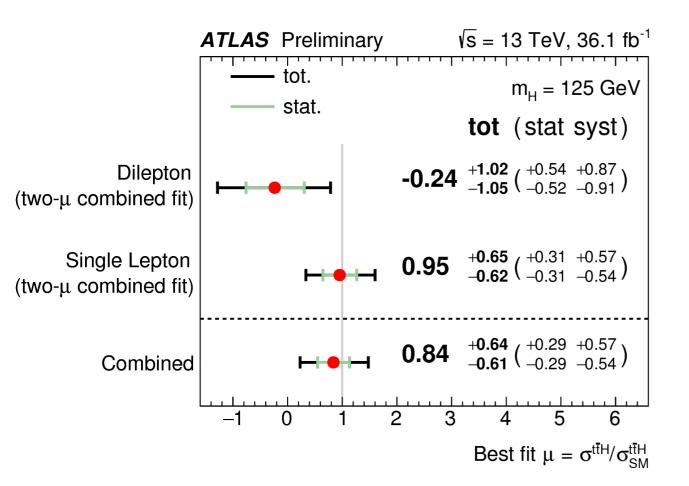
Discriminants in signal regions


◆ Classification BDT is built by combining event reconstruction outputs with kinematic variables and b-tagging discriminants.

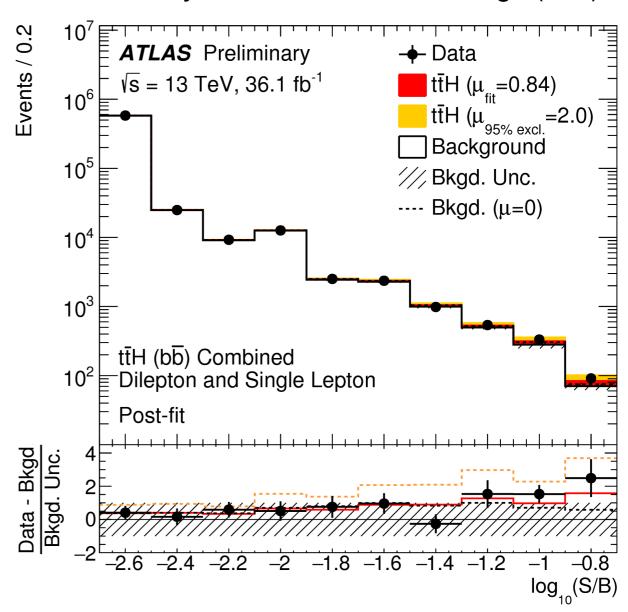
→ The fit is done simultaneously in all SRs+CRs in single- and di-lepton channels.


Discriminant in tt+ ≥1c control region

→ The scalar sum of the p_T of all jets (H_T^{had}) is used as discriminant in $tt+ \ge 1c$ control region.


◆ The fit is done simultaneously in all SRs+CRs in single- and di-lepton channels.

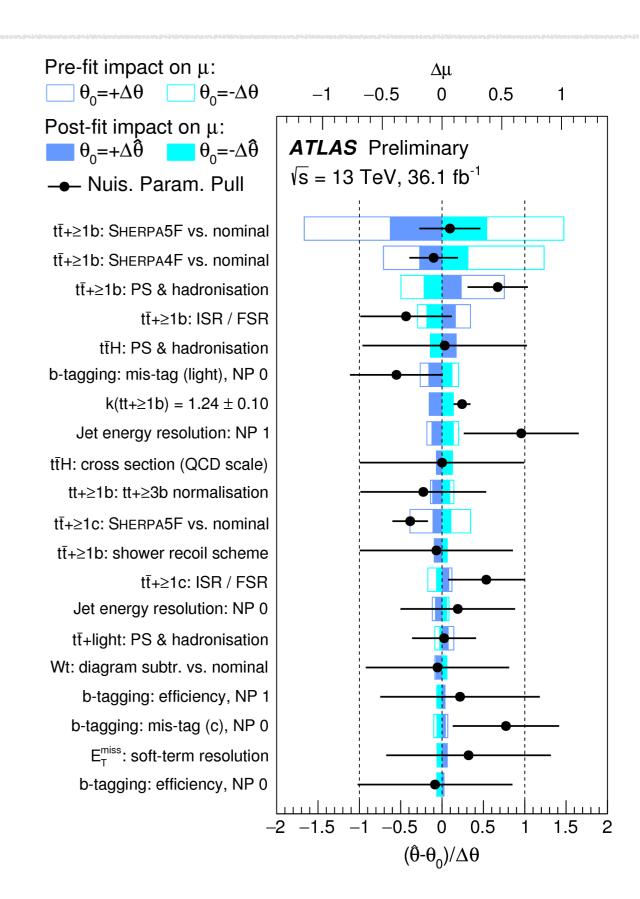
All other regions are taken as bins in the fit


Results in ttH-bb analysis

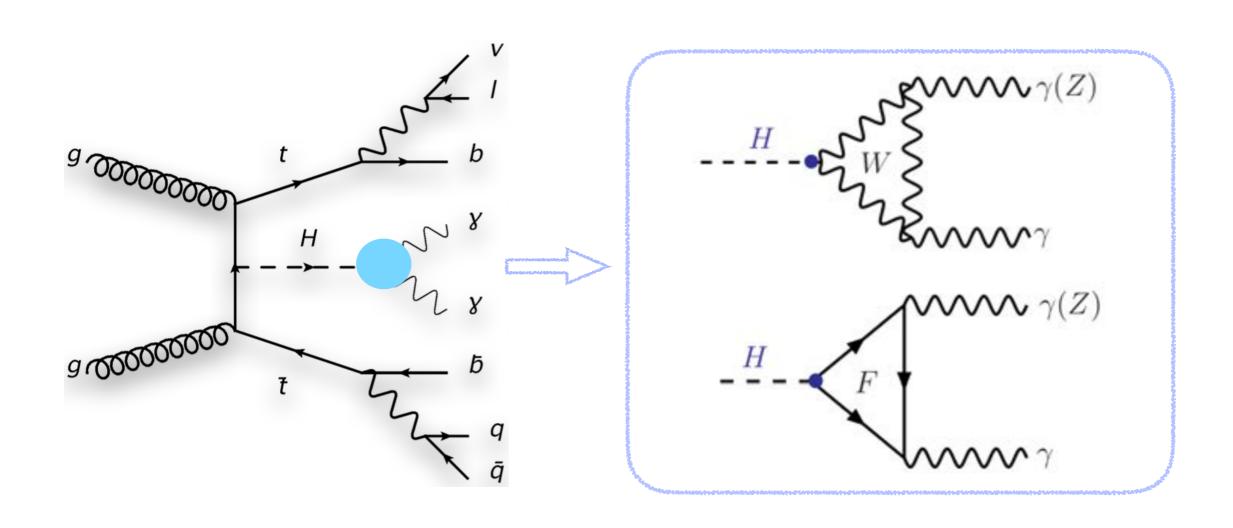
The best-fit values of the ttH signal strength

♦ The combined signal strength is $0.84^{+0.64}_{-0.61}$, which corresponds to 1.4σ (1.6σ) observed (expected) significance.

Event yields as a function of $log_{10}(S/B)$

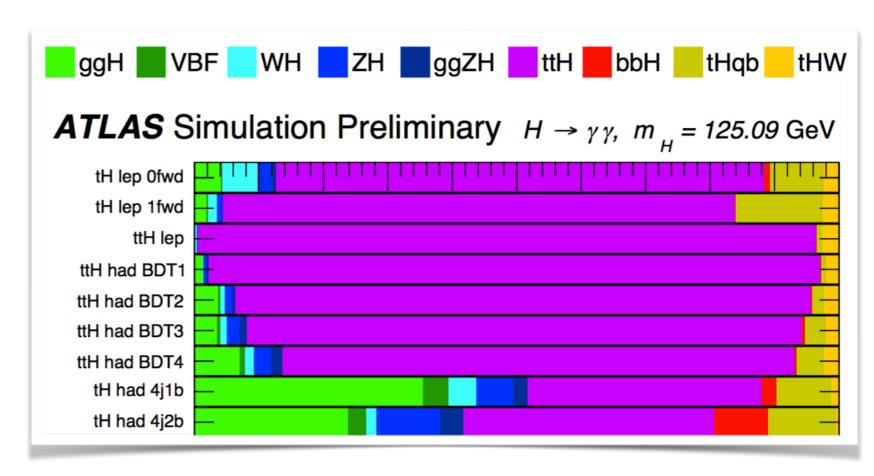


→ The best-fit values of tt+ ≥1b, tt+ ≥1c normalisation factors are 1.24±0.10 and 1.63±0.23.

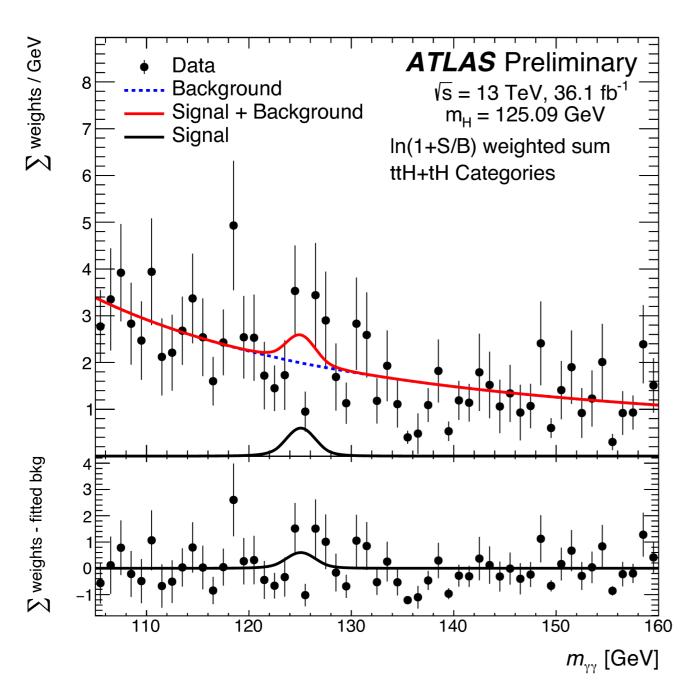

Summary of systematic uncertainties

- ◆ Left: summary of the effects of the most important groups of systematic uncertainties.
- ◆ Right: the impact of systematic uncertainties in the fitted signal strength.

Uncertainty source	$\Delta \mu$	
$t\bar{t} + \geq 1b \text{ modelling}$	+0.46	-0.46
Background model statistics	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t \bar{t} H ext{ modelling}$	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modelling}$	+0.09	-0.11
JVT, pileup modelling	+0.03	-0.05
Other background modelling	+0.08	-0.08
$t\bar{t} + ext{light modelling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalisation	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalisation	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61



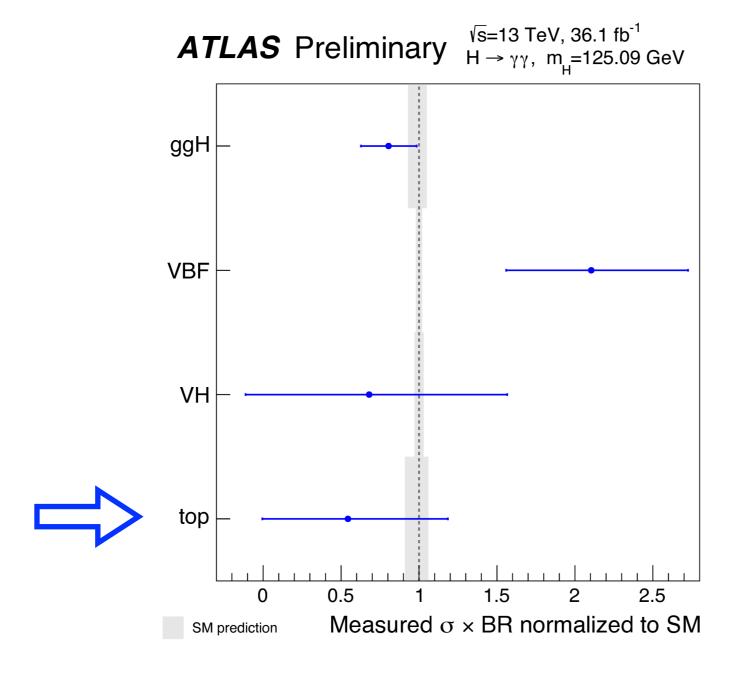
Search for ttH, Higgs decays to photon pair


Event selection and classification

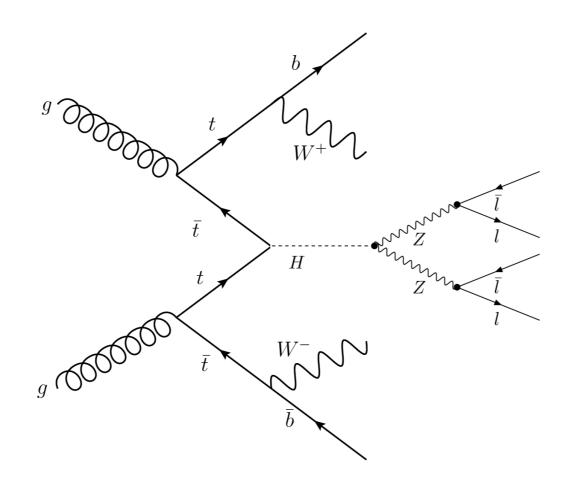
- Searching for a resonance on failing down background spectrum on m_{γγ}.
- 14 ttH events and 95 backgrounds are expected after selection, under $m_{\gamma\gamma}$ peak.
- → ttH and tH are classified in leptonic and hadronic categories according to tt (t) decay:
 - * leptonic channel (≥ 1 lepton, ≥ 1 b-jet)
 - * tH categories (==1 lepton): ≤ 3 jets, no forward jet; ≤ 4 jets + ≥ 1 forward jet
 - * ttH category: ≥ 2 central jets, veto on Z boson mass window.
 - hadronic channel (≥ 3 jets,≥ 1 b-jet)
 - ttH category employs BDT: ttH vs ggH and multijets
 - tH category requires exactly 4 jets with exactly 1 or 2 b-jets

Background estimation

* Background ($\gamma\gamma$ +X, γ +jet+X, di-jet+X) distribution is modelled by exponential function, whose parameter is determined by fitting on $m_{\gamma\gamma}$ in data side-band region.

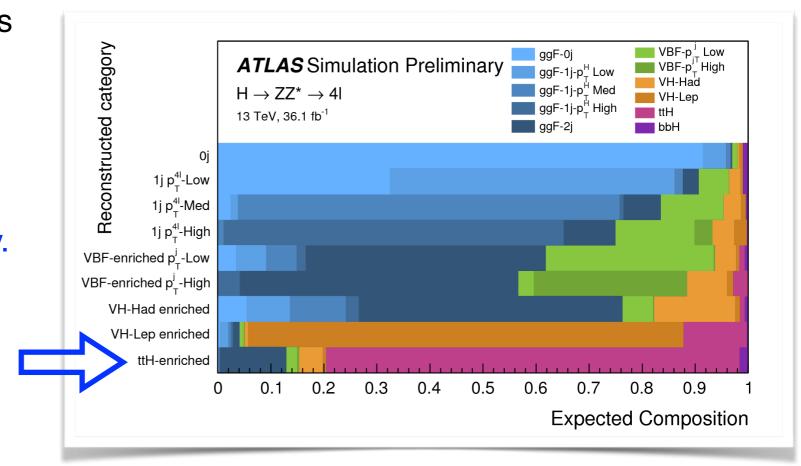


Expected yields of backgrounds and the SM signal in $m_{\gamma\gamma}$ region covering 90% of signal :


Category	B_{90}	S_{90}	f_{90}	Z_{90}
$tHhad_4j2b$	6.8	0.56	0.08	0.2
$tHhad_4j1b$	48	2.3	0.05	0.3
$ttHhad_BDT4$	14	2.3	0.14	0.6
$ttHhad_BDT3$	2.3	0.55	0.19	0.4
$ttHhad_BDT2$	3.9	1.6	0.29	0.8
$ttHhad_BDT1$	2.0	1.3	0.40	0.9
ttHlep	2.7	2.2	0.44	1.2
$tHlep_1fwd$	1.9	1.0	0.35	0.7
$tHlep_0fwd$	3.6	0.92	0.20	0.5

Results in ttH- $\gamma\gamma$ analysis

♦ The measured ttH signal strength is $\mu_{top} = 0.5^{+0.6}_{-0.6} = 0.5^{+0.6}_{-0.5} (stat.)^{+0.1}_{-0.1} (exp.)^{+0.1}_{-0.0} (theory)$. which corresponds to 1.0 σ (1.8 σ) observed (expected) significance.



Search for ttH, Higgs decays to ZZ*→4I

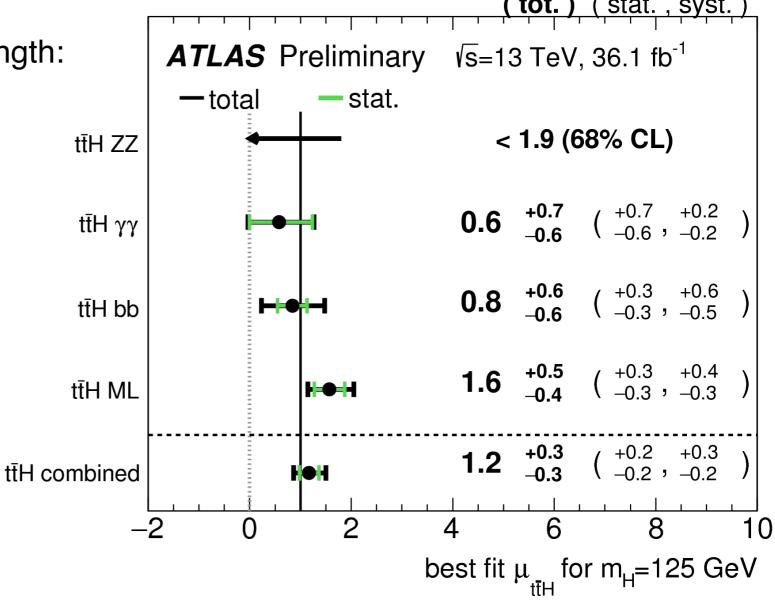
Rare decay channel, but very clean

- + Higgs candidate within m₄₁ mass window [118,129] GeV, and ≥ 1
 b-jet + ≥ 4 jets (or 1I + ≥ 2 jets).
- ◆ There are 0.39 ttH (0.08 bkg.) events expected in ttH category.
- ◆ No event is observed in data.
- ◆ Upper limit on the ttH signal strength is 1.9 at 68% C.L.

Reconstructed	ted Signal ZZ^*		Other	Total	Observed	
category			backgrounds	expected		
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0	

ttH searches combination

combining analyses using 36.1 fb⁻¹ collision data collected in ATLAS Run 2


ttH analyses combination in ATLAS Run 2

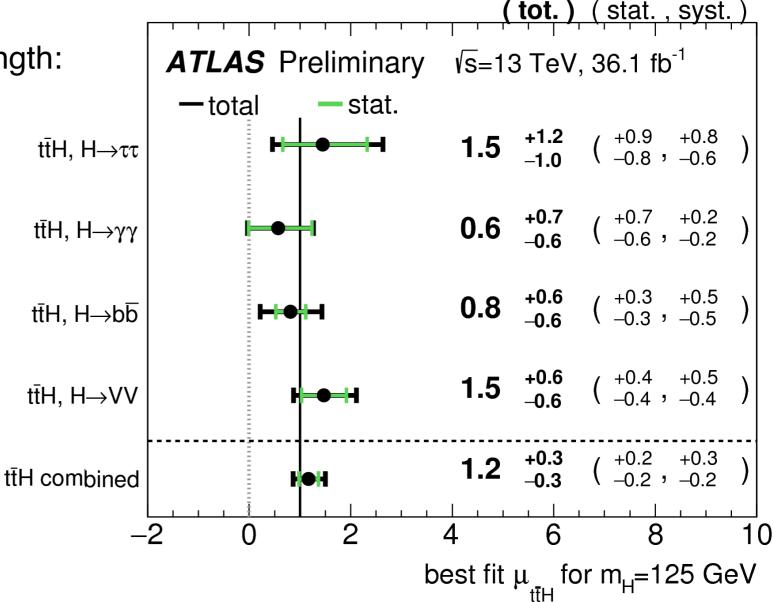
- ♦ Combination of the four ATLAS Run 2 analyses: multileptons, bb, $\gamma\gamma$ and ZZ→4I
 - * all results are based on 36.1 fb⁻¹ data collected at $\sqrt{s} = 13 \text{ TeV}$
 - * ttH signal strength is the only parameter of interest (tH as background)
- ◆ Combination on the ttH signal strength:

$$\mu = 1.17 \pm 0.19 \text{ (stat)} ^{+0.27}_{-0.23} \text{ (syst)}$$

The background-only hypothesis is excluded at 4.2σ, with an expectation of 3.8σ in the case of a SM signal!

↑ The measured ttH cross section is 590 ⁺¹⁶⁰₋₁₅₀ fb, in good agreement with the SM prediction 507 ⁺³⁵₋₅₀ fb.

ttH analyses combination in ATLAS Run 2

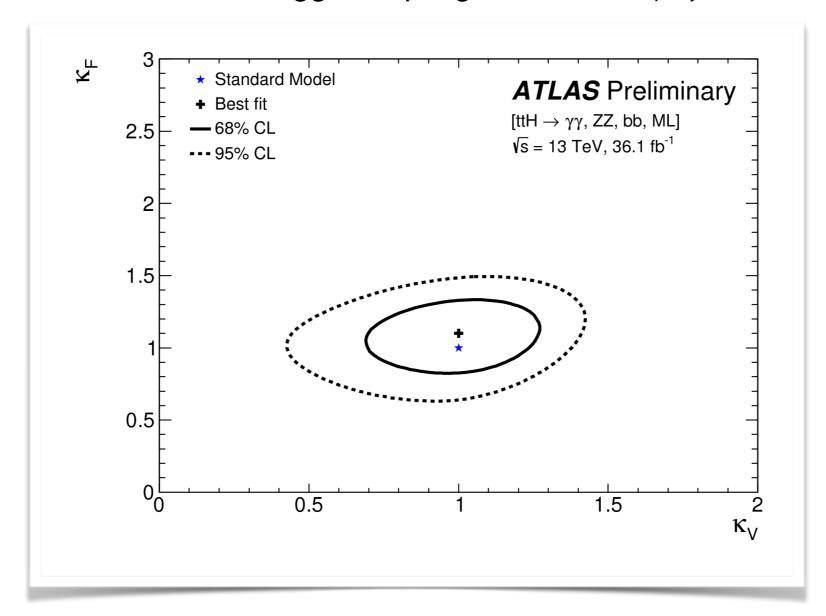

- ♦ Combination of the four ATLAS Run 2 analyses: multileptons, bb, $\gamma\gamma$ and ZZ→4I
 - * all results are based on 36.1 fb⁻¹ data collected at $\sqrt{s} = 13 \text{ TeV}$
 - * ttH signal strength is the only parameter of interest (tH as background)

→ Combination on the ttH signal strength:

$$\mu = 1.17 \pm 0.19 \text{ (stat)} ^{+0.27}_{-0.23} \text{ (syst)}$$

The background-only hypothesis is excluded at 4.2σ, with an expectation of 3.8σ in the case of a SM signal!

↑ The measured ttH cross section is 590 ⁺¹⁶⁰₋₁₅₀ fb, in good agreement with the SM prediction 507 ⁺³⁵₋₅₀ fb.


ttH combination uncertainties

→ The impact of systematic uncertainties in the fitted signal strength.

Uncertainty Source	Δ	$\overline{\mu}$
$t\bar{t}$ modelling in $H \to b\bar{b}$ analysis	+0.15	-0.14
$t\bar{t}H$ modelling (cross section)	+0.13	-0.06
Non-prompt light-lepton and fake $\tau_{\rm had}$ estimates	+0.09	-0.09
Simulation statistics	+0.08	-0.08
Jet energy scale and resolution	+0.08	-0.07
$t \bar{t} V$ modelling	+0.07	-0.07
$t\bar{t}H$ modelling (acceptance)	+0.07	-0.04
Other non-Higgs boson backgrounds	+0.06	-0.05
Other experimental uncertainties	+0.05	-0.05
Luminosity	+0.05	-0.04
Jet flavour tagging	+0.03	-0.02
Modelling of other Higgs boson production modes	+0.01	-0.01
Total systematic uncertainty	+0.27	-0.23
Statistical uncertainty	+0.19	-0.19
Total uncertainty	+0.34	-0.30

Result interpretation in **k**-parametrisation

- ★ is a linear scale factor to Higgs coupling parameter.
- * ttH analyses are sensitive to Higgs coupling to fermions (κ_F) and to bosons (κ_V).

◆ The measurement is in good agreement with the SM prediction.

Summary

- ♦ Search for ttH production has been performed in ATLAS using 36.1 fb⁻¹ dataset at \sqrt{s} = 13 TeV, in final states of multilpetons, bb, $\gamma\gamma$ and ZZ*→4I.
- ♦ The background-only hypothesis is excluded at 4.2σ , with an expectation of 3.8σ in the case of a SM signal. This constitutes evidence for ttH production!
- → For a Higgs boson at 125 GeV, the measured signal strength is

$$\mu = 1.17 \pm 0.19 \text{ (stat)} ^{+0.27}_{-0.23} \text{ (syst)}$$

 \star The measured cross section is 590 $^{+160}_{-150}$ fb, which is in good agreement with the SM prediction.

Backup

Selection criteria in multilepton signal regions - I

Channel	Selection criteria					
Common	$N_{\rm jets} \ge 2 \text{ and } N_{b-\rm jets} \ge 1$					
$2\ell SS$	Two very tight light leptons with $p_{\rm T} > 20~{\rm GeV}$					
	Same charge light leptons					
	Zero medium $\tau_{\rm had}$ candidates					
	$N_{\rm jets} \ge 4; N_{b-\rm jets} < 3$					
-3ℓ	Three light leptons with $p_T > 10$ GeV; sum of light lepton charges ± 1					
	Two same-charge leptons must be very tight and have $p_{\rm T} > 15~{\rm GeV}$					
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT					
	Zero medium $\tau_{\rm had}$ candidates					
	$m(\ell^+\ell^-) > 12 \text{ GeV} \text{ and } m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV for all SFOC pairs}$					
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$					
4ℓ	Four light leptons; sum of light lepton charges 0					
	Third and fourth leading leptons must be tight					
	$m(\ell^+\ell^-) > 12 \text{ GeV} \text{ and } m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV for all SFOC pairs}$					
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$					
	Split 2 categories: Z -depleted (0 SFOC pairs) and Z -enriched (2 or 4 SFOC pairs)					

Selection criteria in multilepton signal regions - II

$1\ell + 2\tau_{\mathrm{had}}$	One tight light lepton, with $p_{\rm T} > 27~{\rm GeV}$						
	Two medium $\tau_{\rm had}$ candidates of opposite charge, at least one being tight						
	$N_{ m jets} \geq 3$						
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_{\rm T} > 15~{\rm GeV}$						
	Same charge light leptons						
	One medium $\tau_{\rm had}$ candidate, of opposite charge to that of the light leptons						
	$N_{ m jets} \ge 4$						
	m(ee) - 91.2 GeV > 10 GeV for ee events						
$2\ell OS + 1\tau_{had}$	Two loose and isolated light leptons, with $p_{\rm T} > 25, 15 \; {\rm GeV}$						
	One medium $\tau_{\rm had}$ candidate						
	Opposite charge light leptons						
	One medium $\tau_{\rm had}$ candidate						
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs						
	$N_{ m jets} \geq 3$						
$3\ell+1\tau_{\rm had}$	3ℓ selection, except:						
	One medium $\tau_{\rm had}$ candidate, of opposite charge to the total charge of the light leptons						
	The two same-charge leptons must be tight and have $p_{\rm T} > 10~{\rm GeV}$						
	The opposite-charge lepton must be loose and isolated						

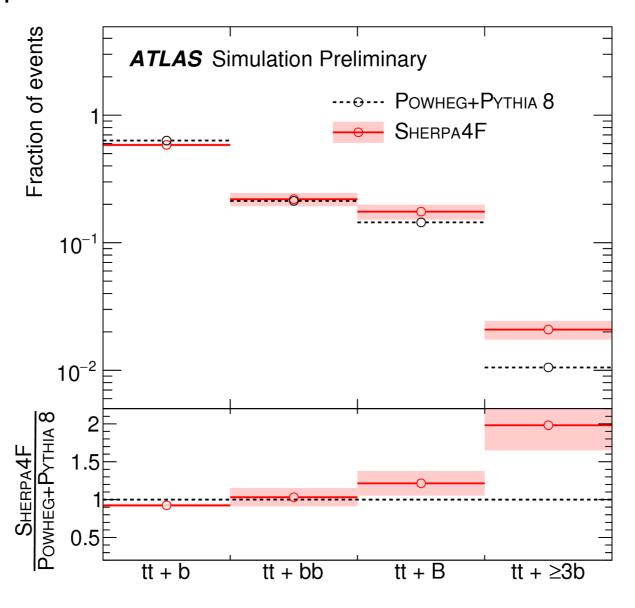
Selection criteria in multilepton control regions

Channel	Region	Selection criteria
$-2\ell { m SS}$		$2 \le N_{\rm jets} \le 3 \text{ and } N_{b-\rm jets} \ge 1$
(3ℓ)		One very tight, one loose light lepton with $p_{\rm T} > 20~(15)~{\rm GeV}$
, ,		Zero $\tau_{\rm had}$ candidates
	$\epsilon_{ m real}$	Opposite charge; opposite flavour
	$\epsilon_{ m fake}$	Same charge; opposite flavour or $\mu\mu$
4ℓ		$1 \le N_{\rm jets} \le 2$
		Three loose light leptons; sum of light lepton charges ± 1
		Subleading same-charge lepton must be tight
		Veto on 3ℓ selection
	Either	One SFOC pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$E_{\rm T}^{\rm miss} < 50 \; {\rm GeV}, \; m_T < 50 \; {\rm GeV}$
	or	No SFOC pair
		Subleading jet $p_{\rm T} > 30~{\rm GeV}$
$2\ell SS + 1\tau_{had}$		$2 \le N_{\rm jets} \le 3 \text{ and } N_{b-\rm jets} \ge 1$
		One very tight, one loose light lepton with $p_{\rm T} > 15~{\rm GeV}$
		A SFSC pair
		m(ee) - 91.2 GeV > 10 GeV
		Zero or one medium $\tau_{\rm had}$ candidate, of opposite charge to the light leptons
$1\ell + 2\tau_{\rm had}$		$N_{\rm jets} \ge 3 \text{ and } N_{b-\rm jets} \ge 1$
		One tight light lepton, with $p_{\rm T} > 27~{\rm GeV}$
		Two $\tau_{\rm had}$ candidates of same charge
		At least one $\tau_{\rm had}$ candidate has to pass tight identification criteria
$2\ell OS + 1\tau_{had}$		Two loose and isolated light leptons, with $p_{\rm T} > 25, 15 \; {\rm GeV}$
		$ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV} \text{ and } m(\ell^+\ell^-) > 12 \text{ GeV}$
		$N_{\rm jets} \ge 3$ and $N_{b-\rm jets} = 0$

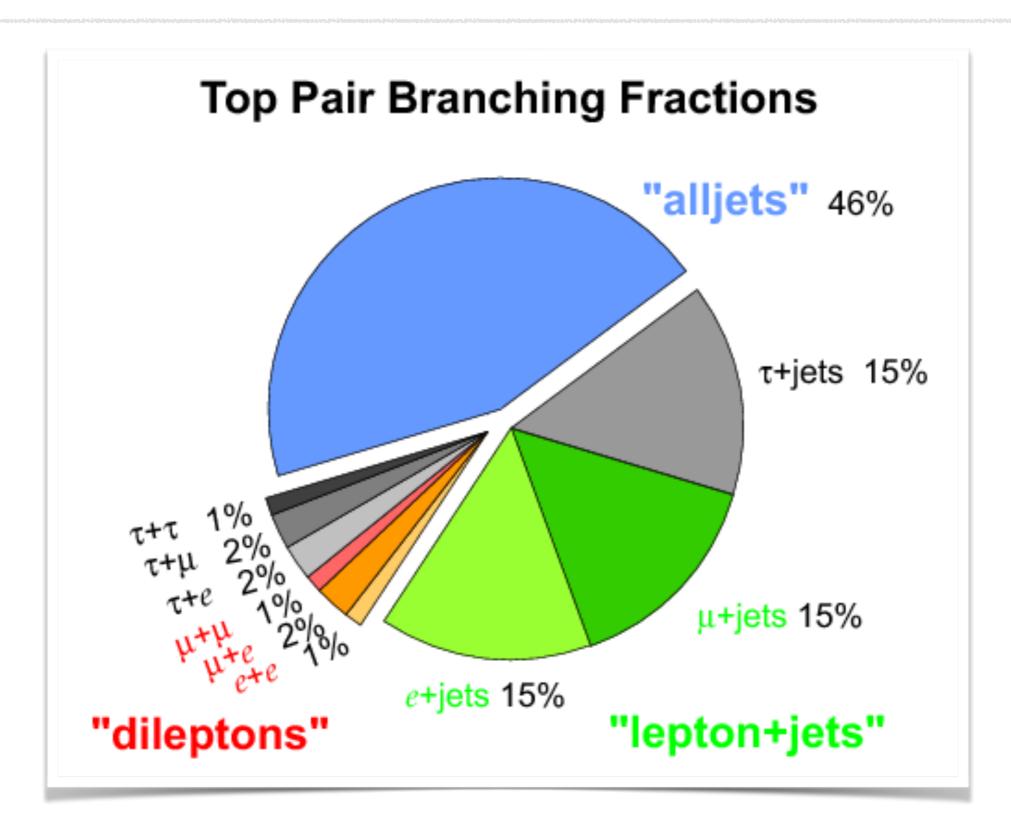
The MC configurations in multileptons analysis

Process	Generator	ME order	Parton Shower	PDF	Tune
$\overline{tar{t}H}$	$MG5_AMC$	NLO	Рутніа 8	NNPDF 3.0 NLO [71]	A14
	$(MG5_AMC)$	(NLO)	(HERWIG++)	(CT10 [72])	(UE-EE-5)
tHqb	$MG5_AMC$	LO	Рутніа 8	CT10	A14
tHW	$ m MG5_AMC$	NLO	HERWIG++	CT10	UE-EE-5
$t ar{t} W$	$ m MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(SHERPA 2.1.1)	(LO multileg)	(SHERPA)	(NNPDF 3.0 NLO)	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to \ell\ell)$	$ m MG5_AMC$	NLO	Рутніа 8	NNPDF 3.0 NLO	A14
	(SHERPA 2.1.1)	(LO multileg)	(SHERPA)	(NNPDF 3.0 NLO)	(Sherpa default)
tZ	$ m MG5_AMC$	LO	Рутніа 6	CTEQ6L1	Perugia2012
tWZ	${ m MG5_AMC}$	NLO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}t,\ tar{t}tar{t}$	$ m MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t \bar{t} W^+ W^-$	${ m MG5_AMC}$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t ar{t}$	POWHEG-BOX v2 [73]	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	$ m MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t -channel,	POWHEG-BOX v1 [74,75]	NLO	Pythia 6	CT10	Perugia2012
Wt single top					
$VV(\to \ell\ell XX),$	Sherpa $2.1.1$	MEPS NLO	SHERPA	CT10	Sherpa default
qqVV,VVV					
$Z \to \ell^+ \ell^-$	Sherpa 2.2	MEPS NLO	Sherpa	NNPDF 3.0 NLO	Sherpa default

The cross sections used in MC samples


Process	Cross section [pb]	QCD scale [%]	$PDF + \alpha_S \ [\%]$	Order
$\overline{t \overline{t} H}$	0.51	$+5.8 \\ -9.2$	± 3.6	NLO QCD+EWK
tHqb	0.074	$+6.5 \\ -14.7$	± 3.7	NLO QCD
tHW	0.015	$^{+4.9}_{-6.7}$	± 6.3	NLO QCD
$t ar{t} W$	0.60	$+12.9 \\ -11.5$	± 3.4	NLO QCD+EWK
$t\bar{t}(Z/\gamma^* \to \ell\ell)$	0.12	$+9.6 \\ -11.3$	± 4.0	NLO QCD+EWK
$tar{t}tar{t}$	0.0092	$+30.8 \\ -25.6$	$+5.5 \\ -5.9$	NLO QCD
$t ar{t} W^+ W^-$	0.0099	+10.9	± 2.1	NLO QCD
$t ar{t}$	832	$-11.8 \\ +2.4 \\ -3.5$	± 4.2	NNLO QCD + NNLL
$tar{t}\gamma$	5.7	±5	50	NLO QCD
tZ	0.61	土5	50	LO QCD
tWZ	0.16	±5	50	NLO QCD
s-, t -channel,	10,217	土	4	NLO QCD
Wt single top	72	±	5	NLO QCD + NNLL
$VV(o \ell\ell XX)$	37	±5	50	NLO QCD
$Z \rightarrow \ell^+\ell^-$	2070	土	5	NNLO QCD

Background, signal and observed yields in the 12 multileptons analysis channels

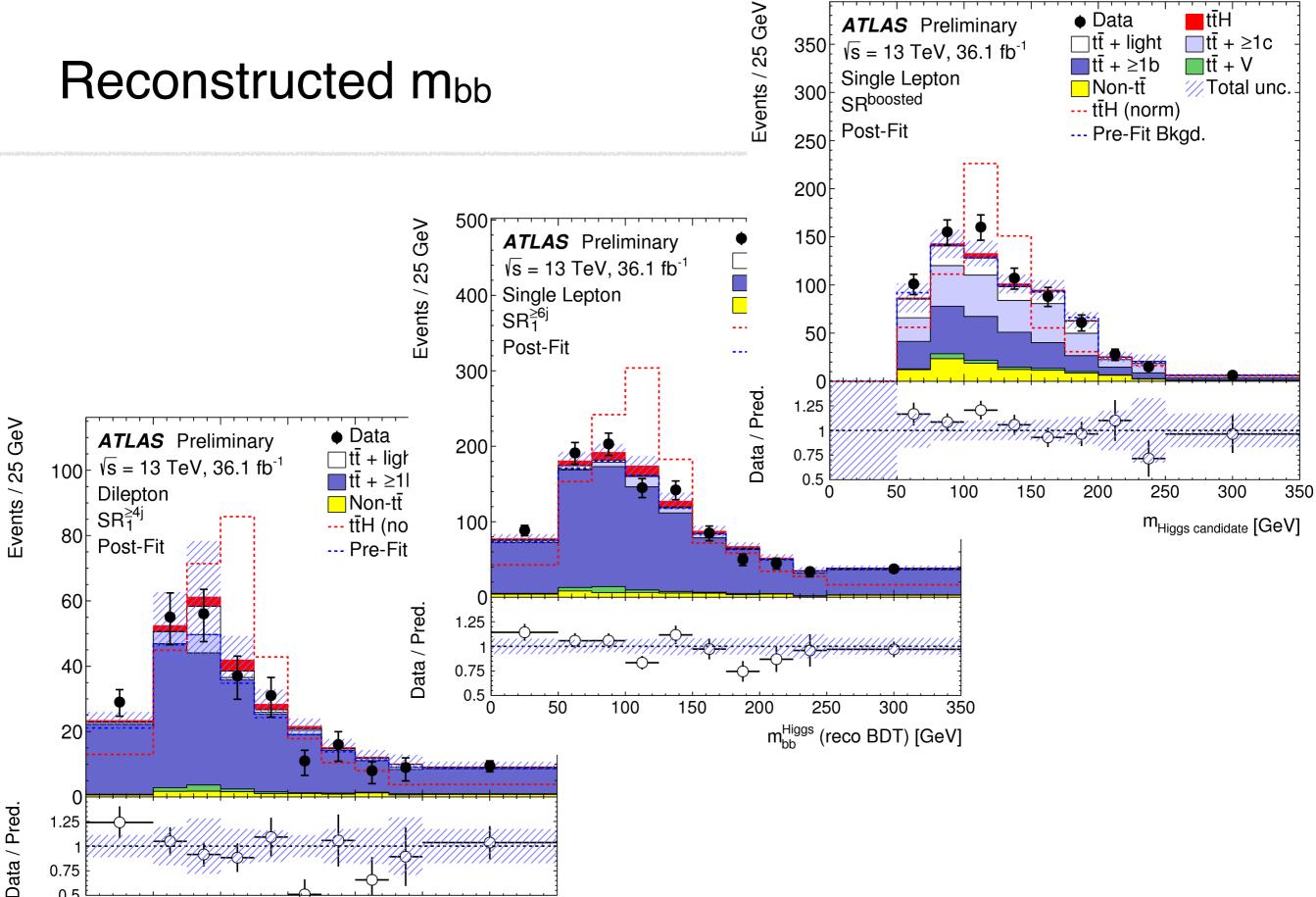

Category	Non-prompt	Fake τ _{had}	q mis-id	t t W	t ī Z	Diboson	Other	Total Bkgd.	tīΗ	Observed
Pre-fit yields										
2ℓSS	233 ± 39	_	33 ± 11	123 ± 18	41.4 ± 5.6	25 ± 15	28.4 ± 5.9	484 ± 38	42.6 ± 4.2	514
3ℓ SR	14.5 ± 4.3	_	_	5.5 ± 1.2	12.0 ± 1.8	1.2 ± 1.2	5.8 ± 1.4	39.1 ± 5.2	11.2 ± 1.6	61
3ℓ tŧW CR	13.3 ± 4.3	_	_	19.9 ± 3.1	8.7 ± 1.1	< 0.2	4.53 ± 0.92	46.5 ± 5.4	4.18 ± 0.46	56
$3\ell t\bar{t}Z$ CR	3.9 ± 2.5	_	_	2.71 ± 0.56	66 ± 11	8.4 ± 5.3	12.9 ± 4.2	93 ± 13	3.17 ± 0.41	107
3ℓ VV CR	27.7 ± 8.7	_	_	4.9 ± 1.0	21.3 ± 3.4	51 ± 30	17.9 ± 6.1	123 ± 32	1.67 ± 0.25	109
$3\ell t\bar{t} CR$	70 ± 17	_	_	10.5 ± 1.5	7.9 ± 1.1	7.2 ± 4.8	7.3 ± 1.9	103 ± 17	4.00 ± 0.49	85
4ℓ Z-enr.	0.11 ± 0.07	_	_	< 0.01	1.52 ± 0.23	0.43 ± 0.23	0.21 ± 0.09	2.26 ± 0.34	1.06 ± 0.14	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.06 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	0
$1\ell+2\tau_{had}$	_	65 ± 21	_	0.09 ± 0.09	3.3 ± 1.0	1.3 ± 1.0	0.98 ± 0.35	71 ± 21	4.3 ± 1.0	67
$2\ell SS+1\tau_{had}$	2.4 ± 1.4	1.80 ± 0.30	0.05 ± 0.02	0.88 ± 0.24	1.83 ± 0.37	0.12 ± 0.18	1.06 ± 0.24	8.2 ± 1.6	3.09 ± 0.46	18
$2\ell OS+1\tau_{had}$	_	756 ± 80	_	6.5 ± 1.3	11.4 ± 1.9	2.0 ± 1.3	5.8 ± 1.5	782 ± 81	14.2 ± 2.0	807
$3\ell+1\tau_{had}$	_	0.75 ± 0.15	_	0.04 ± 0.04	1.38 ± 0.24	0.002 ± 0.002	0.38 ± 0.10	2.55 ± 0.32	1.51 ± 0.23	5
					Post-fit yields	1				
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	_	_	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
3ℓ tŧW CR	11.7 ± 3.0	_	_	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
3ℓ tīZ CR	3.5 ± 2.1	_	_	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	_	_	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
$3\ell t\bar{t} CR$	56.0 ± 8.1	_	_	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	_	_	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	2.29 ± 0.28	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
$1\ell + 2\tau_{had}$	_	58.0 ± 6.8	_	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
$2\ell SS+1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
$2\ell OS+1\tau_{had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
$3\ell+1\tau_{had}$	_	0.75 ± 0.14	-	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	2.61 ± 0.30	2.41 ± 0.68	5

tt+ ≥1b backgrounds sub-categories re-weight

The relevant contributions of sub-categories, tt+≥3b, tt+bb, tt+B and tt+b, in Powheg+Pythia8 are scaled to match the predictions of an NLO tt + bb sample including Parton shower and hadronisation, generated with Sherpa+OpenLoops. The sample is produced with Sherpa version 2.1 and the CT10 four-flavour scheme PDF set.

Top pair decay branching fractions

150


200

250

300

 m_{bb}^{Higgs} (reco BDT) [GeV]

350

■tŧH

__tt̄ + ≥1c

Data

□tt̄ + light

ATLAS Preliminary

 \sqrt{s} = 13 TeV, 36.1 fb⁻¹

50

100

0.75

0.5