## Tetra-neutron system studied by (8He,8Be) reaction

- Motivation
  - Boundary of stability in nuclei
  - NN and NNN interaction/correlation and information on neutron matter → Neutron star
- Idea for populating 4n system at rest
  - Exothermic double-charge exchange (8He,8Be)
- Experimental result
- Analysis
  - Continuum spectrum with correlation
    - A simple picture of the reaction

S. Shimoura
CNS, University of Tokyo



## Tetra-neutron

- Multi-neutron System
  - Neutron cluster (?) in fragmentation of <sup>14</sup>Be PRC65, 044006 (2002)
  - NN, NNN, NNNN interactions
    - T=3/2 NNN force
      - -> 3-body force in neutron matter
    - · Ab initio type calculations
  - Multi-body resonances
  - Correlations in multi-fermion scattering states



## Historical Review

~ search for a bound state of 4n~

2000s

1960s

### fission of Uranium

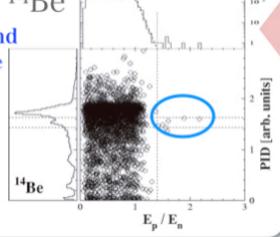
 No evidence for particle stable state of tetra-neutron

J. P. Shiffer Phys. Lett. 5, 4, 292 (1963)

1980s

### $^{-4}$ He( $\pi^{-}$ , $\pi^{+}$ ) reaction

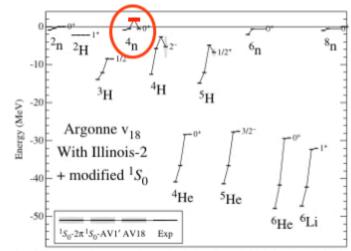
Only upper limit of cross section was decided.
 J. E. Unger, et al., Phys. Lett. B 144, 333 (1984)


Bound state: No clear evidence.

2000s

→ Breakup of <sup>14</sup>Be

 Candidates of bound tetra-neutron were observed.


F. M. Marques, et al, Phys. Rev. C 65, 044006 (2002)

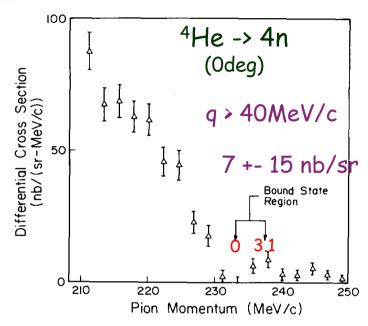


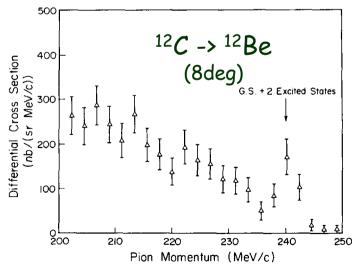
E.=11-18 MeV/nucleon

### Theoretical work

 ab-initio calculation NN, NNN interaction




S. C. Piper, Phys. Rev. Lett. 90, 252501 (2003)


- · Bound 4n cannot exist
- Possible resonance stete ~2 MeV

Resonance state: Possibility of the state is still an open and fascinating question.



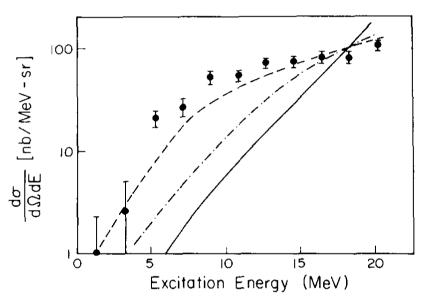
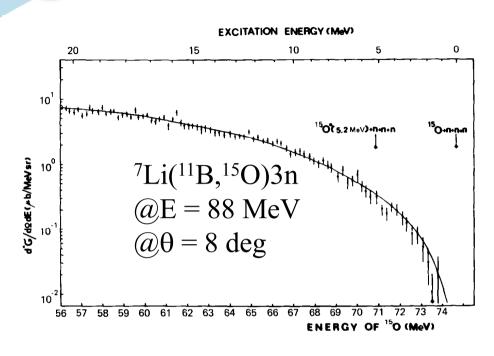
## $(\pi^-,\pi^+)$ reaction @ 165 MeV; $\theta_{\pi^+}$ = 0 degree

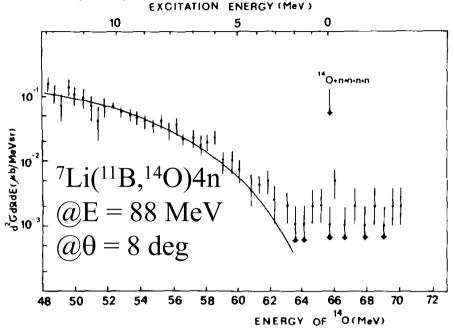


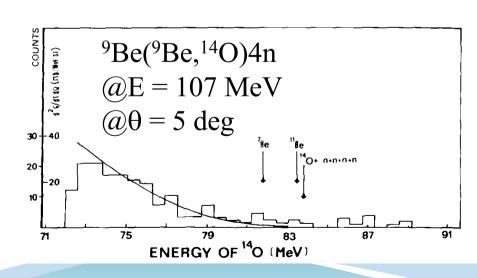


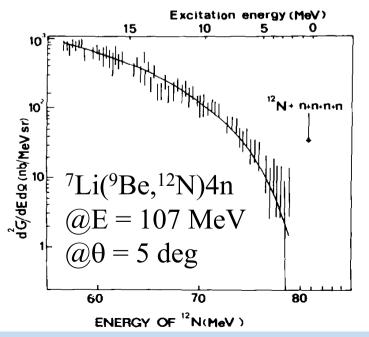
The peak is due primarily to the transition to the <sup>12</sup>Be ground state, with some contribution from the first two excited states as well.

We have measured the momentum spectrum of  $\pi^+$  produced at 0° by 165 MeV  $\pi^-$  on <sup>4</sup>He. A  $\Delta P/P =$  1% beam of 10<sup>6</sup>  $\pi^-$  per second was provided by the P<sup>3</sup> line of the Los Alamos Meson Physics Facility, and a cell of 910 mg/cm<sup>2</sup> liquid <sup>4</sup>He with windows of 18 mg/cm<sup>2</sup> Kapton served as the target [15]. An

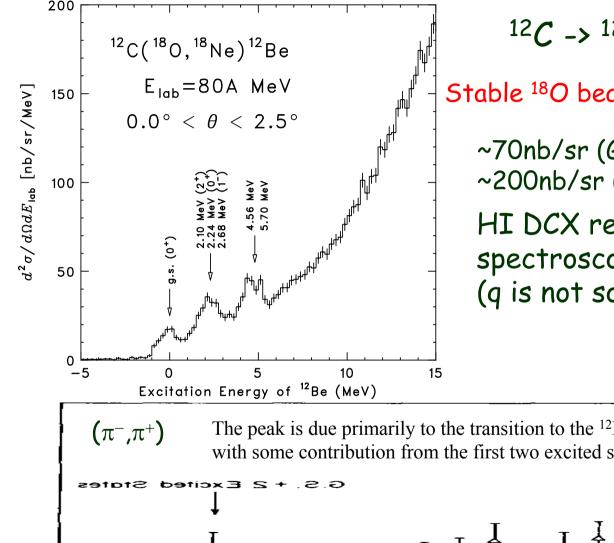


Fig. 3. The experimental results are plotted against the excitation of the final four-neutron state. The solid curve corresponds to the pure four-neutron phase space, while the dot—dashed and dashed curves are the four-neutron phase space curves with singlet state interactions in, respectively, one and both of the final state neutron pairs.


J.E. Ungar et al., PLB 144 (1987) 333


# M Historical review (2)



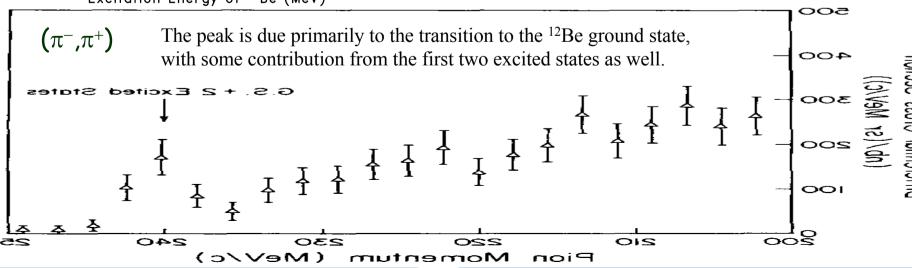




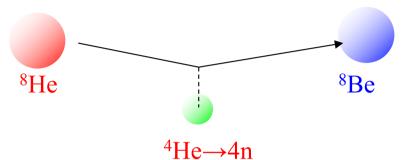




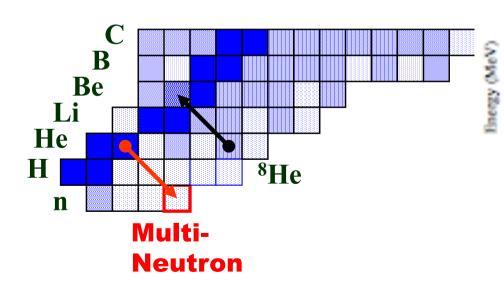




## Double charge exchange (DCX) reaction of HI

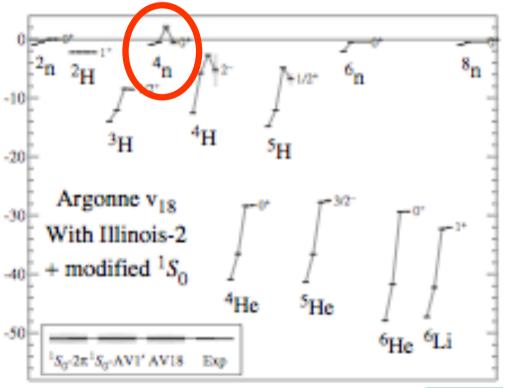



Stable <sup>18</sup>O beam (80A MeV) (Takaki et al.)

~70nb/sr (Gnd) ~200nb/sr (~2MeV)


HI DCX reaction can be used for spectroscopy for exotic nuclei (q is not so small >80 MeV/c)

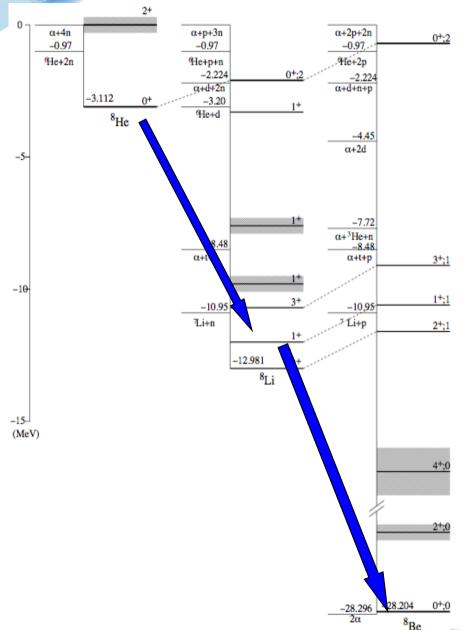


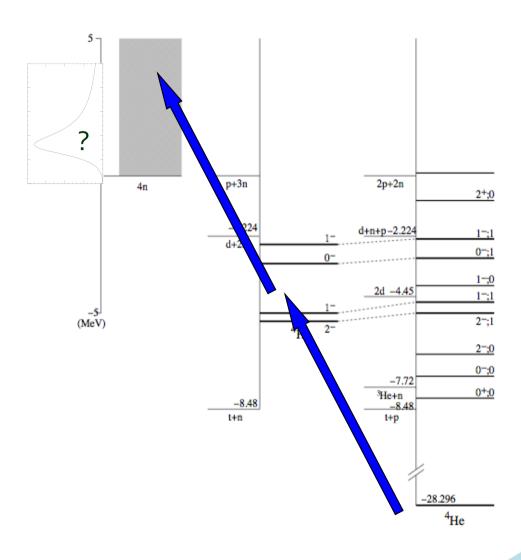

# Tetra-neutron system produced by exothermic double-charge exchange reaction



Recoil-less 4n system via DCX using internal energy of <sup>8</sup>He




Almost recoil-less condition with <sup>4</sup>He(<sup>8</sup>He, <sup>8</sup>Be)4n reaction at 200 A MeV

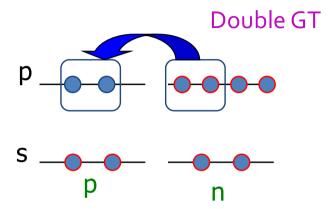



S.C. Pieper et al., PRL 90, 252501 (2003)

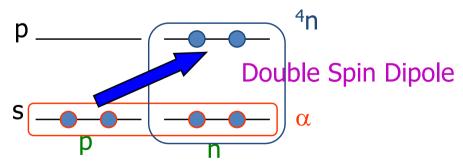


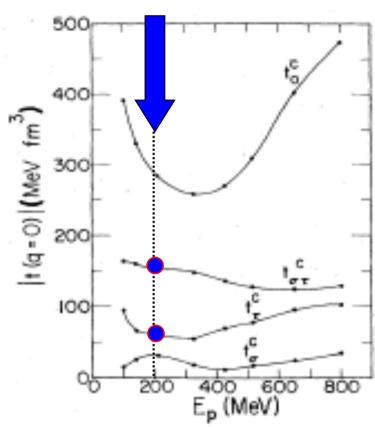
# Level diagrams





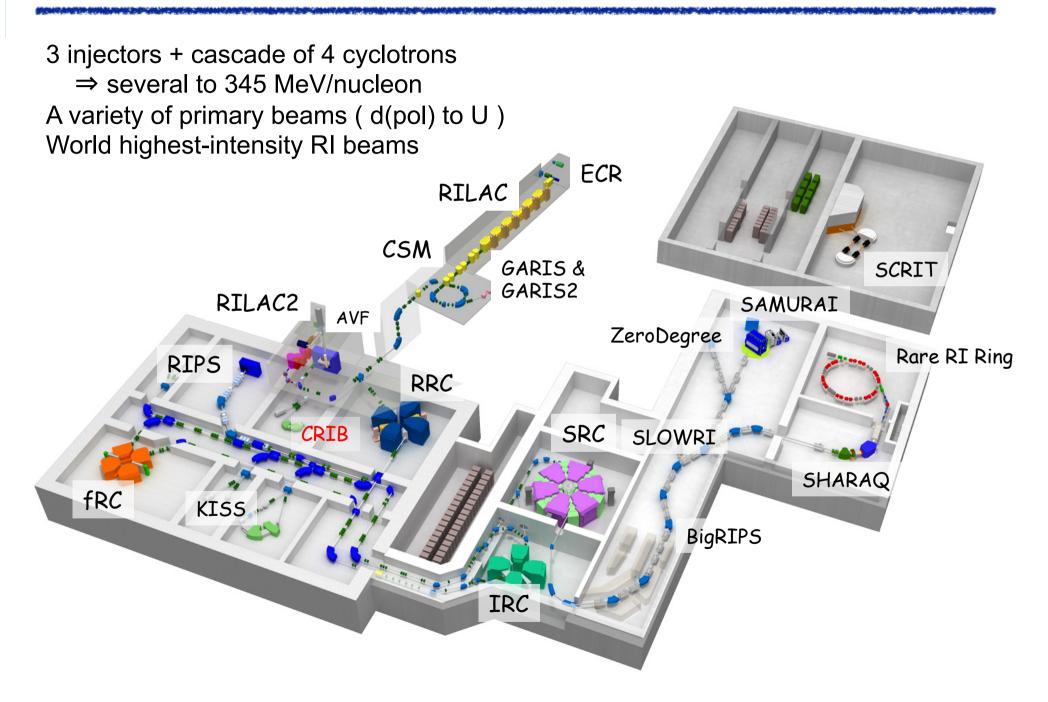

 $q_{min} \sim 10 MeV/c$ 





## Reaction Mechanism

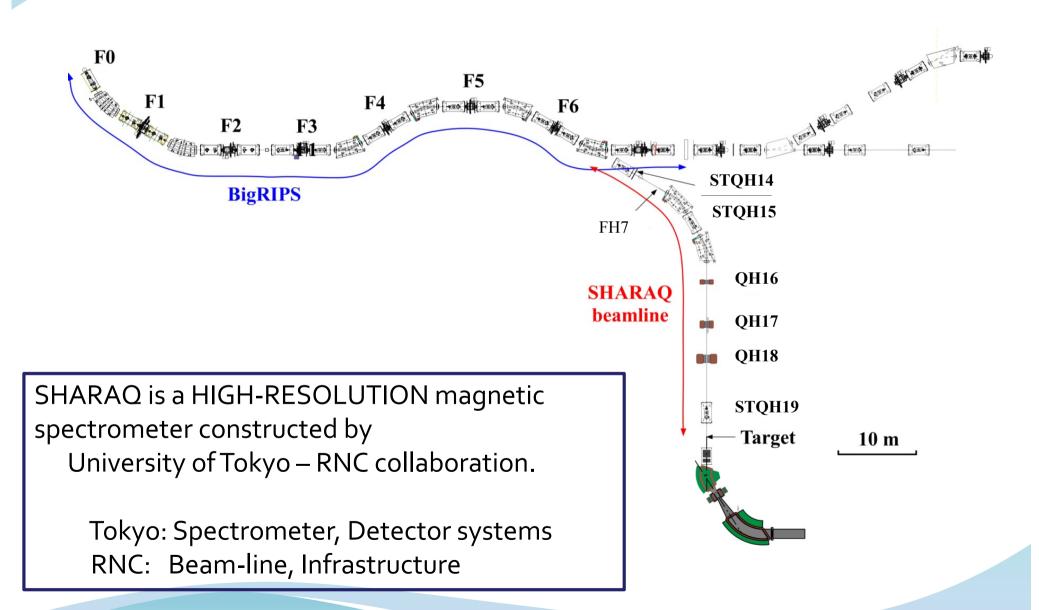
### <sup>8</sup>He → <sup>8</sup>Be




$$^{4}\text{He} \rightarrow 4\text{n}$$



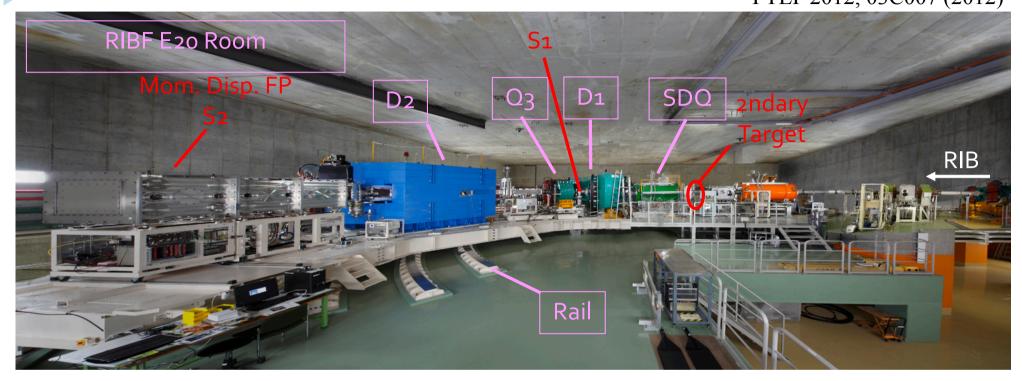



$$\left[ \left( \vec{\boldsymbol{\tau}}_{\mathrm{p}} \cdot \vec{\boldsymbol{\tau}}_{\mathrm{t}} \right) \left( \vec{\boldsymbol{\sigma}}_{\mathrm{p}} \cdot \vec{\boldsymbol{\sigma}}_{\mathrm{t}} \right) r_{\mathrm{t}} Y_{1} \left( \hat{r}_{\mathrm{t}} \right) \right]^{2}$$

## RI Beam Factory at RIKEN






## SHARAQ @ RI beam factory





## SHARAQ spectrometer

T. Uesaka et al., NIMB B **266** (2008) 4218. PTEP 2012, 03C007 (2012)



**Maximum rigidity** 

**Momentum resolution** 

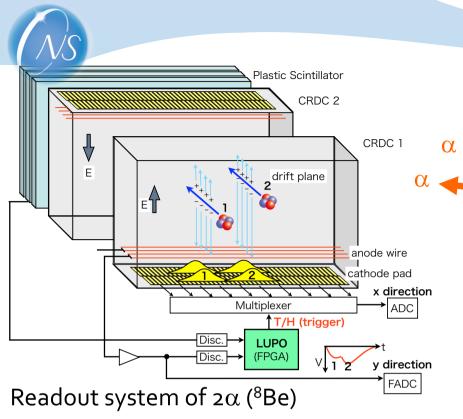
**Angular resolution** 

Momentum acceptance

Angular acceptance

**6.8** Tm

dp/p = 1/14700


~1 mrad

 $\pm 1\%$ 

~ 5 msr







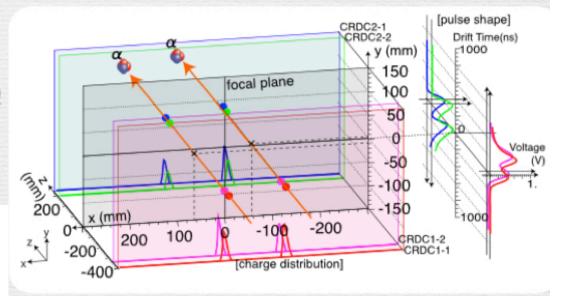


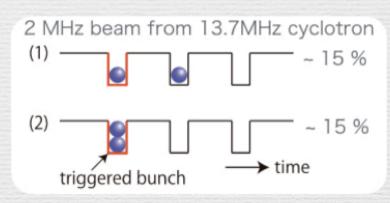




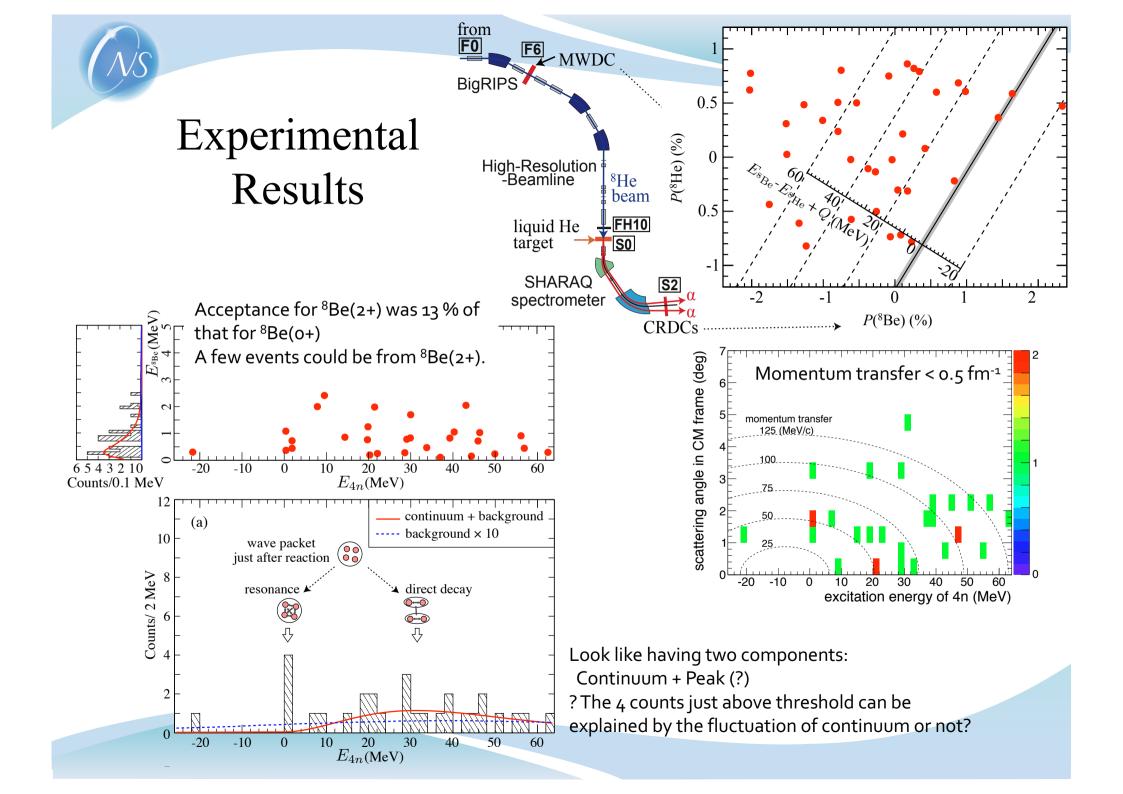
## Analysis

### Selection of 4n Events


- + Extracting  $2\alpha$  events @SHARAQ
- Multi-particle in high-intensity beam

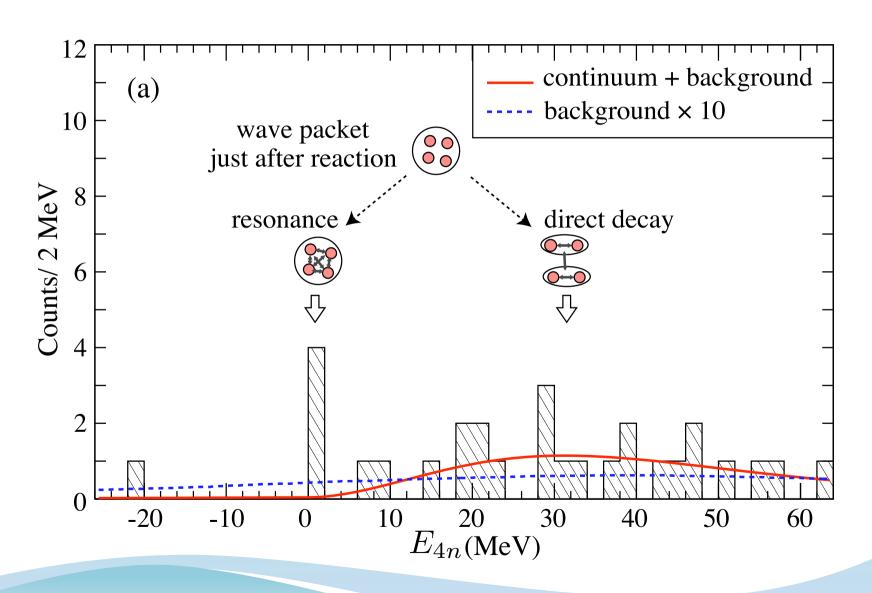

### Background process:

Breakup of two <sup>8</sup>He in the same beam bunch to two alpha particle Identified by multi-hit in F6-MWDC

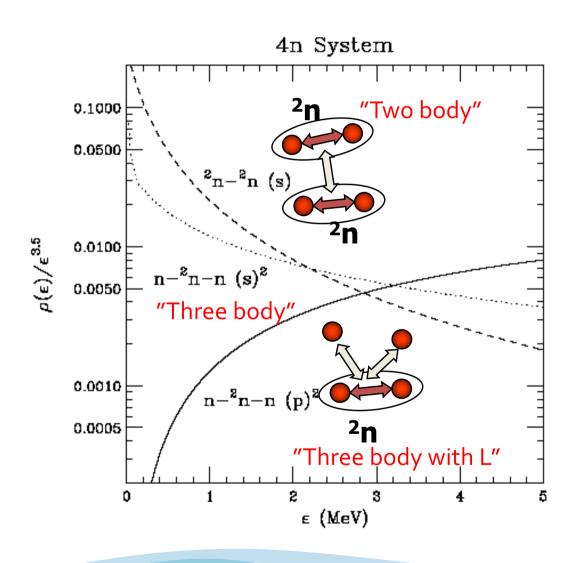

### Background Estimation

- Shape in spectrum: random  $2\alpha$
- \* Number of events:
  - failure of the multi-particle rejection at MWDC
  - multi-particle in one cell of MWDC






Backgrounds after analysis: Finite efficiency of multi-hit events at F6-MWDC






## **Experimental Results**



## Phase space in multi-body continuum



Phase Space 
$$\rho(E) \propto E^{1/2}$$
 (2 body)  $\propto E^2$  (3 body)  $\propto E^{7/2}$  (4 body)

 Deviation from four-body phase space informs us the final state interaction(s) of subsystem

## Transition Probabilities



if distortion is insensitive to  $\omega$ 

Cross Section  $\propto |M_{if}|^2$ ; Lifetime  $\propto 1/|M_{if}|^2$ 

 $O(lsj\tau;\xi)$ : Propety of Reaction / Aciton / Decay Processes

sum of one-body operator

$$O(lsj\tau; \vec{r}) = \sum f(r_i) T(\tau_i) [S(\sigma_i) \otimes Y_l(\hat{r}_i)]_j$$

 $|E_i J_i \pi_i T_i; \xi_i\rangle$  and/or  $|E_f J_f \pi_f T_f; \xi_f\rangle^i$  energy eigen functions

$$O(lsj\tau;\xi)|E_{i}J_{i}\pi_{i}T_{i};\xi_{i}\rangle = \sum_{f} M_{if}(E_{f})|E_{f}J_{f}\pi_{f}T_{f};\xi_{f}\rangle \text{ Response}$$

$$\left|M_{if}(E_{f})\right|^{2} : \text{Energy Spectrum}$$

coherent sum of wave packets made by one-body action "Collective wave packet" (not always energy eigen state), e.g. coherent sum of 1p-1h for inelastic-type excitation

# Reaction time & excitation energy for intermediate-energy "inelastic-type scattering"

$$\omega \ll \mu c^2 (\gamma - 1) \simeq \frac{1}{2} \mu c^2 \beta^2$$

β

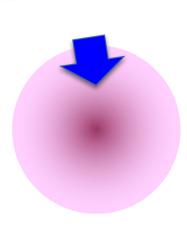


$$\Delta E \cdot \Delta t \sim 2\pi\hbar$$

$$\omega_{\rm max} \sim \frac{2\pi\hbar \cdot \beta c}{2R} \simeq 100\beta \ {\rm MeV}$$

 $\leftarrow$  2R  $\rightarrow$ 

Off energy shell


$$E/A \sim 200 \text{ MeV} : \beta \sim 0.6 : \omega_{max} \sim 60 \text{ MeV}$$

$$O(lsj\tau;\xi)|E_{i}J_{i}\pi_{i}T_{i};\xi_{i}\rangle = \int_{J} M_{if}(E_{f})|E_{f}J_{f}\pi_{f}T_{f};\xi_{f}\rangle \text{ Response}$$

$$\left|M_{if}(E_{f})\right|^{2} : \text{Energy Spectrum}$$

# (NS

## "Transition" as time-dependent action



$$i\hbar \frac{\partial}{\partial t} \Psi(t) = (H + V_R(t)) \Psi(t)$$

$$\Psi(t) = \sum_i a_i(t) \psi_i \exp(-iE_i t/\hbar)$$

$$H\psi_i = E_i \psi_i$$

$$a_0(-\infty) = 1 \; ; \; a_i(-\infty) = 0 \; \text{for } i > 0$$

$$|a_i(+\infty)|^2 : \text{Energy spectrum after reaction}$$

$$|a_i(+\infty)|$$
 . Energy spectrum after reaction

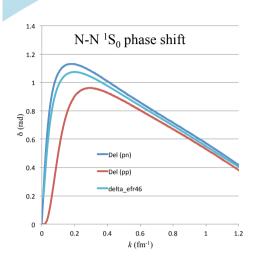
$$\sum_{i} i\hbar \ \dot{a}_{i}(t) \psi_{i} \exp\left(-iE_{i}t/\hbar\right) = \sum_{i} a_{i}(t) V_{R}(t) \psi_{i} \exp\left(-iE_{i}t/\hbar\right)$$

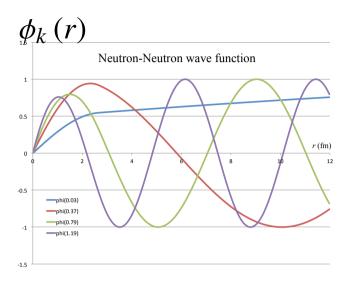
$$i\hbar \ \dot{a}_{k}(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^{2}}{2\Delta T^{2}}\right)$$

$$\times \sum_{i} a_{i}(t) \langle \psi_{k} | \mathcal{O} | \psi_{i} \rangle \exp\left(-\frac{i(E_{i} - E_{k}) t}{\hbar}\right)$$

$$V_{R}(t) = \frac{\mathcal{O}}{\sqrt{2\pi}} \exp\left(-\frac{t^{2}}{2\Delta T^{2}}\right)$$

#### Perturbation


$$a_{i}(-\infty) \ll 1$$
 for  $i > 0$ 


$$a_{0}(+\infty) - a_{0}(-\infty) \simeq -i\frac{\Delta T}{\hbar} \langle \psi_{0} | \mathcal{O} | \psi_{0} \rangle$$

$$a_{k}(+\infty) \simeq -i\frac{\Delta T}{\hbar} \langle \psi_{k} | \mathcal{O} | \psi_{0} \rangle \exp\left(-\frac{(E_{i0}\Delta T)^{2}}{2\hbar^{2}}\right)$$

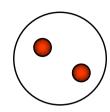


### NN case with FSI





### **Density of State**


$$D(E_{\rm nn}) = \frac{|A(k)|^2}{k} ; E_{\rm nn} = \frac{\hbar^2 k^2}{m_{\rm N}}$$
$$A(k) = \int dr r \Psi(r) \phi_k(r)$$

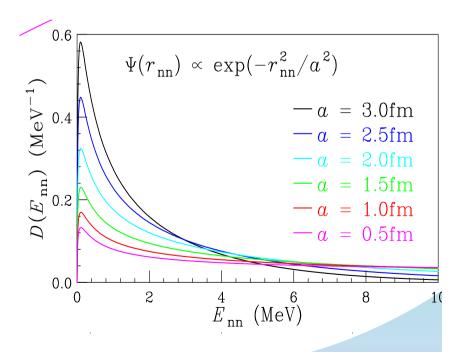
Expand  $\Psi_0$  with correlated n-n scattering wave  $\phi_k(r)$  A(k)'s are used instead of Fourier component

### Effective Range Theory:

$$\phi_k(r) \sim \sin \delta(k) \times f(r)$$
 for small  $r$ 

$$D \sim (\sin \delta)^2/k \text{ (Watson-Migdal approx.)}$$



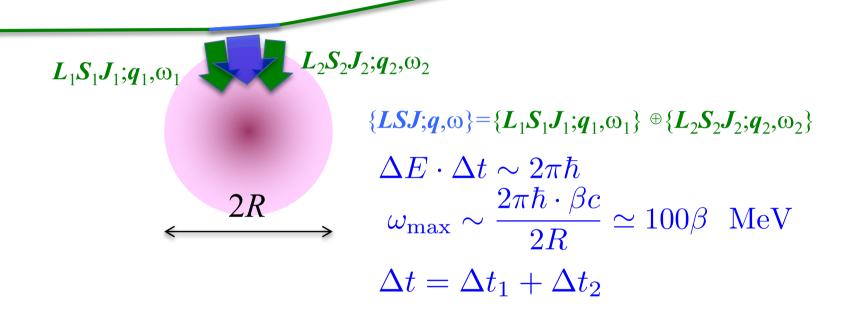

2n wave packet just after a certain reaction  $\phi_0$ ~ Gaussian



<sup>2</sup>n



Scattering state of correlated neutron pair





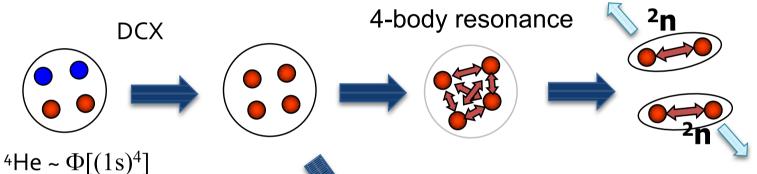

## Two step

$$\omega \ll \mu c^2 (\gamma - 1) \simeq \frac{1}{2} \mu c^2 \beta^2$$

β



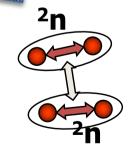
"Intermediate state": Not energy eigen state


~ wave packet consists of "eigen states" over 200β MeV

~ closure approximation ~ almost one-step



## Picture of <sup>4</sup>He DCX reaction @ 200 A MeV


4n wave packet just after DCX (double spin dipole)  $\sim \mathcal{A}[\mathbf{r}_1 \cdot \mathbf{r}_2 \Phi[(0s)^4]]$ 



Decay by emitting Two correlated neutron pairs

"Resonance" peak

Direct decay



Two correlated neutron pairs with weakly correlated

Direct



### Direct Part

$$\Phi_0 \propto \mathcal{A} \left[ \left( r_{\alpha}^2 - r_{12}^2 \right) \exp \left( -\frac{r_{\alpha}^2}{a^2} - \frac{r_{12}^2}{2a^2} - \frac{r_{34}^2}{2a^2} \right) \chi \left( 1, 2 \right) \chi \left( 3, 4 \right) \right]$$

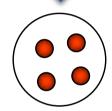
$$\propto \left( \frac{4r_{\alpha}^2}{a^2} - \frac{r_{12}^2}{a^2} - \frac{r_{34}^2}{a^2} \right) \exp \left[ -\frac{r_{\alpha}^2}{a^2} - \frac{r_{12}^2}{2a^2} - \frac{r_{34}^2}{2a^2} \right] \chi \left( 1, 2 \right) \chi \left( 3, 4 \right)$$

$$+ \frac{4\vec{r}_{12} \cdot \vec{r}_{34}}{a^2} \exp \left[ -\frac{r_{\alpha}^2}{a^2} - \frac{r_{12}^2}{2a^2} - \frac{r_{34}^2}{2a^2} \right] \vec{X} \left( 1, 2 \right) \cdot \vec{X} \left( 3, 4 \right)$$

$$+ \frac{4\vec{r}_{12} \cdot \vec{r}_{34}}{a^2} \exp \left[ -\frac{r_{\alpha}^2}{a^2} - \frac{r_{12}^2}{2a^2} - \frac{r_{34}^2}{2a^2} \right] \vec{X} \left( 1, 2 \right) \cdot \vec{X} \left( 3, 4 \right)$$

$$\vec{r}_{\alpha} = \frac{\vec{r}_{1} + \vec{r}_{2}}{2} - \frac{\vec{r}_{3} + \vec{r}_{4}}{2} \qquad \chi(i, j) = \frac{1}{\sqrt{2}} \left(\uparrow(i) \downarrow (j) - \downarrow(i) \uparrow(j)\right)$$

$$\vec{X}(i, j) = \begin{pmatrix} \frac{1}{\sqrt{2}} \left(\uparrow(i) \downarrow (j) + \downarrow(i) \uparrow(j)\right) \\ \frac{1}{\sqrt{2}} \left(\uparrow(i) \downarrow (j) + \downarrow(i) \uparrow(j)\right) \\ \downarrow(i) \downarrow(j) \end{pmatrix}$$



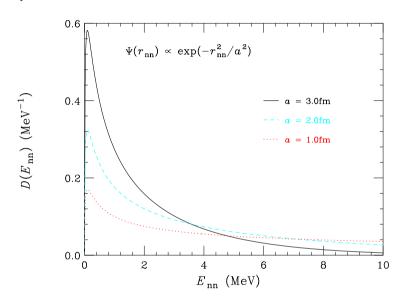

Fourier Transform:  $(\mathbf{r}_{12}, \mathbf{r}_{34}, \mathbf{r}_{\alpha}) \rightarrow (\mathbf{k}_{12}, \mathbf{k}_{34}, \mathbf{k})$ 

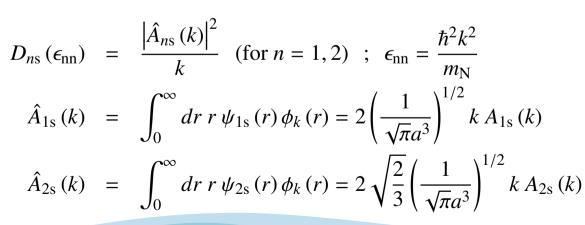
$$\int |\mathcal{A}\tilde{\Phi}_0|^2 d^3k \, d^3k_{12} \, d^3k_{34} \, \delta(E - \epsilon - \epsilon_{12} - \epsilon_{34}) \propto X^{11/2} \exp(-X)$$
Peak at  $X = 11/2$ ;  $E \sim 60 \text{ MeV}$   $X = E/\epsilon_a$   $\epsilon_a = \frac{\hbar^2}{m_N a^2} = 11 \text{MeV}$ .



 $^{4}\text{He} \sim \Phi[(0\text{s})^{4}]$ 




4n wave packet just after DCX  $\Phi_0 \sim r_1 \cdot r_2 \Phi[(0s)^4]$ 


### NN FSI

### c.f. Continuum spectrum with n-n FSI

L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)

### **Density of State**



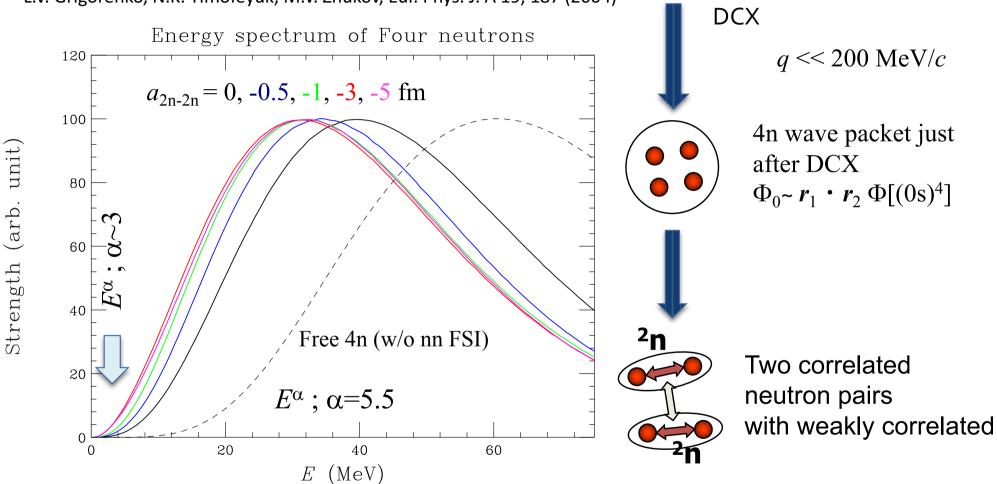




4n wave packet just after DCX  $\Phi_0 \sim r_1 \cdot r_2 \Phi[(0s)^4]$ 



Two correlated neutron pairs with weakly correlated

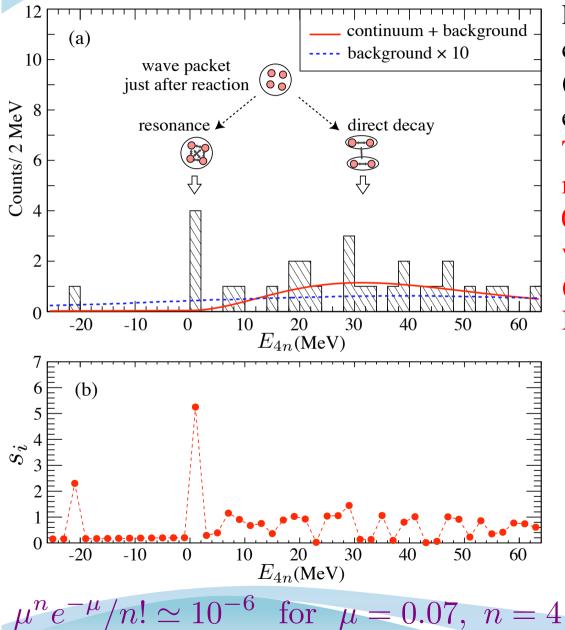

Expand  $\mathcal{A}\Phi_0$  with correlated n-n scattering wave  $\phi_k(r)$  A(k)'s are used instead of Fourier component

### Direct Part

c.f.

### Continuum spectrum with n-n FSI

L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)




 $^{4}\text{He} \sim \Phi[(0\text{s})^{4}]$ 

Correlation is taking into account for 2n-2n relative motion by using scattering length

# NS

# Fit with direct component & BG



Energy spectrum is expressed by the continuum from the direct decay and (small) experimental background except for four events at  $0 < E_{4n} < 2$  MeV The Four events suggest a possible resonance at  $0.83 \pm 0.65$ (stat.)  $\pm 1.25$ (sys.) MeV

with width narrower than 2.6 MeV (FWHM). [4.9 $\sigma$  significance] Integ. cross section  $\theta_{cm}$ < 5.4deg: 3.8 +2.9 \_1 8 nb

- \* likelihood ratio test  $\chi_{\lambda}^2 = -2 \ln \left[ L(\boldsymbol{y}; \boldsymbol{n}) / L(\boldsymbol{n}; \boldsymbol{n}) \right]$ 
  - · Significance:

$$s_i = \sqrt{2[y_i - n_i + n_i \ln{(n_i/y_i)}]}$$
  $n_i$  : num. of events in the  $i$ -th bin  $y_i$  : trial function in the  $i$ -th bin

Look Elsewhere Effect

# NS

# Further experimental approarch

- <sup>29</sup>F (knockout 1p) -> <sup>28</sup>O -> <sup>24</sup>O + 4n
- 8He (knockout a by proton) -> 4n
- <sup>4</sup>He(<sup>8</sup>He, <sup>8</sup>Be)4n again with more statistics

All of three can produce recoil-less condition

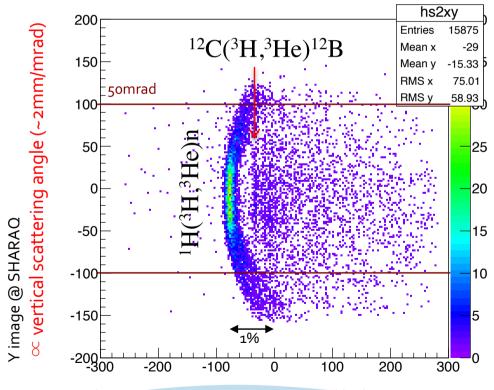
Three approaches produce different initial wave packets of 4n

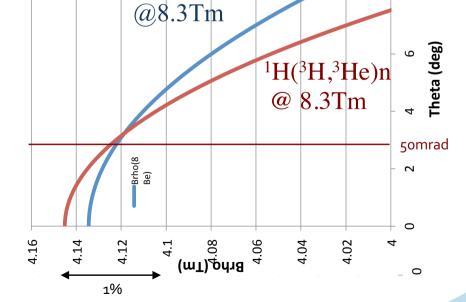
· resonance/continuum will be different



## Experiment for confirmation (2016.6.16-25)

Better statistics and Better accuracy of energy than previous experiment (4He(8He,8Be)4n @ 186 MeV/u) 4 events


 $\rightarrow$  5 times or more


Improve efficiencies (redundancy)

$$E_{4n} = 0.83 \pm 0.65 \text{(stat.)} \pm 1.25 \text{(sys.)} \text{ MeV}$$

 $\rightarrow$  better than 0.3 MeV both for stat. and syst.

Calibration using <sup>1</sup>H(<sup>3</sup>H, <sup>3</sup>He)n with same rigidity <sup>3</sup>H beam (310 MeV/u) as <sup>8</sup>He preliminary achievement : < 100 keV





<sup>4</sup>He(<sup>8</sup>He, <sup>8</sup>Be)4n

On-line X image @ SHARAQ corrected by beam momentum momentum (~60mm/%)

Resolution & Statistics are consistent with expected

# Summary

- <sup>4</sup>He(<sup>8</sup>He,<sup>8</sup>Be)4n has been measured at 190 A MeV at RIBF-SHARAQ
- Missing mass spectrum with very few background
- Although statistics is low (27 evs), spectrum looks two components (continuum + peak)
- Continuum is consistent with direct breakup process from  $(0s)^2(0p)^2$  wave packet
- Four events just above 4n threshold is statistically beyond prediction of continuum + background (4.9  $\sigma$  significance)
  - $\rightarrow$  candidate of 4n resonance at 0.83  $\pm$  0.65(stat.)  $\pm$  1.25(sys.) MeV;  $\Gamma$  < 2.6 MeV
- Constraint to T=3/2 three-body force