Tetra-neutron system studied by $\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)$ reaction

- Motivation
- Boundary of stability in nuclei
- NN and NNN interaction/correlation and information on neutron matter \rightarrow Neutron star
- Idea for populating $4 n$ system at rest
- Exothermic double-charge exchange $\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right)$
- Experimental result
- Analysis
- Continuum spectrum with correlation
- A simple picture of the reaction
S. Shimoura

Tetra-neutron

- Multi-neutron System
- Neutron cluster (?) in fragmentation of ${ }^{14} \mathrm{Be}$ PRC65, 044006 (2002)
- NN, NNN, NNNN interactions
- $T=3 / 2 \mathrm{NNN}$ force
-> 3-body force in neutron matter
- Ab initio type calculations
- Multi-body resonances
- Correlations in multi-fermion scattering states

Historical Review

~ search for a bound state of $4 n \sim$

1960s

fission of Uranium

- No evidence for particle stable state of tetra-neutron

$$
\begin{aligned}
& \text { J. P. Shiffer Phys. Lett. 5, 4, } 292 \text { (1963) } \\
& \text { • Only upper limit of cross section was decided. } \\
& \text { J. E. Unger, et al., Phys. Lett. B 144, } 333 \text { (1984) }
\end{aligned}
$$

Bound state: No clear evidence.

Dieaiup Oi

- Candidates of bound tetra-neutron were observed.
F. M. Marques, et al, Phys. Rev. C 65, 044006 (2002)

2000s

* Theoretical work
- ab-initio calculation NN, NNN interaction

S. C. Piper, Phys. Rev. Lett. 90, 252501 (2003)
- Bound ${ }^{4}$ n cannot exist
- Possible resonance stete $\sim 2 \mathrm{MeV}$

Resonance state : Possibility of the state is still an open and fascinating question.

$\left(\pi^{-}, \pi^{+}\right)$reaction @ $165 \mathrm{MeV} ; \theta_{\pi^{+}}=0$ degree

The peak is due primarily to the transition to the ${ }^{12} \mathrm{Be}$ ground state, with some contribution from the first two excited states as well.

We have measured the momentum spectrum of π^{+} produced at 0° by $165 \mathrm{MeV} \pi^{-}$on ${ }^{4} \mathrm{He}$. A $\Delta P / P=$ 1% beam of $10^{6} \pi^{-}$per second was provided by the P^{3} line of the Los Alamos Meson Physics Facility, and a cell of $910 \mathrm{mg} / \mathrm{cm}^{2}$ liquid ${ }^{4} \mathrm{He}$ with windows of $18 \mathrm{mg} / \mathrm{cm}^{2}$ Kapton served as the target [15]. An

Fig. 3. The experimental results are plotted against the excitation of the final four-neutron state. The solid curve corresponds to the pure four-neutron phase space, while the dotdashed and dashed curves are the four-neutron phase space curves with singlet state interactions in, respectively, one and both of the final state neutron pairs.

[^0]
(1) Historical review (2)
 Nucl. Phys. A477 (1988) 131

EXCITATION ENERGY (MAV)

NS Double charge exchange (DCX) reaction of HI

Tetra-neutron system produced by exothermic double-charge exchange reaction

Almost recoil-less condition with
${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ reaction at 200 A MeV

$$
{ }^{4} \mathrm{He} \rightarrow 4 \mathrm{n}
$$

Recoil-less $4 n$ system via DCX using internal energy of ${ }^{8} \mathrm{He}$

Level diagrams

$q_{\min } \sim 10 \mathrm{MeV} / \mathrm{c}$

Reaction Mechanism

${ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}$

${ }^{4} \mathrm{He} \rightarrow 4 n$

RI Beam Factory at RIKEN

3 injectors + cascade of 4 cyclotrons
\Rightarrow several to $345 \mathrm{MeV} /$ nucleon
A variety of primary beams ($\mathrm{d}(\mathrm{pol})$ to U)

SHARAQ @ RI beam factory

 RNC: Beam-line, Infrastructure

SHARAQ spectrometer

T. Uesaka et al., NIMB B 266 (2008) 4218.
PTEP 2012, 03 C 007 (2012)

Maximum rigidity
Momentum resolution
Angular resolution
Momentum acceptance Angular acceptance

6.8 Tm

$\mathrm{d} p / p=1 / 14700$
$\sim 1 \mathrm{mrad}$
$\pm 1 \%$
~ $\mathbf{5} \mathbf{~ m s r}$

Analysis

- Selection of 4n Events
+ Extracting 2α events @SHARAQ
+ Multi-particle in high-intensity beam

Background process:

Breakup of two ${ }^{8} \mathrm{He}$ in the same beam bunch to two alpha particle Identified by multi-hit in F6-MWDC

- Background Estimation
- Shape in spectrum: random 2α
+ Number of events:

- failure of the multi-particle rejection at MWDC
- multi-particle in one cell of MWDC

Backgrounds after analysis:
Finite efficiency of multi-hit events at F6-MWDC

Experimental Results

Phase Space

$$
\begin{array}{rlr}
\rho(E) & \propto E^{1 / 2} & (2 \text { body }) \\
& \propto E^{2} & (3 \text { body }) \\
& \propto E^{7 / 2} & (4 \text { body })
\end{array}
$$

- Deviation from four-body phase space informs us the final state interaction(s) of subsystem

Transition Probabilities

$$
M_{i f}=\left\langle E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\|O(l s j \tau ; \xi)\| E_{i} J_{i} \pi_{i} T_{i} \xi_{i}\right\rangle
$$

if distortion is insensitive to ω
Cross Section $\propto\left|M_{i f}\right|^{2} ;$ Lifetime $\propto 1 /\left.M_{i f}\right|^{2}$
$O(l s j \tau ; \xi)$: Propety of Reaction / Aciton / Decay Processes

$$
\begin{array}{ll}
\text { sum of } \\
\text { sere-body operator } & O(l s j ; ; \vec{r})=\sum_{i} f\left(r_{i}\right) T\left(\tau_{i}\right)\left[S\left(\sigma_{i}\right) \otimes Y_{l}\left(\hat{r}_{i}\right)\right]_{j}
\end{array}
$$

$\left|E_{i} J_{i} \pi_{i} T_{i} ; \xi_{i}\right\rangle$ and $/$ or $\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle^{i}$ energy eigen functions
$O(l s j \tau ; \xi)\left|E_{i} J_{i} \pi_{i} T_{i} ; \xi_{i}\right\rangle=\oint_{f} M_{i f}\left(E_{f}\right)\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle$ Response
$\left|M_{i f}\left(E_{f}\right)\right|^{2}:$ Energy Spectrum
coherent sum of wave packets made by one-body action "Collective wave packet" (not always energy eigen state), e.g. coherent sum of $1 p-1 h$ for inelastic-type excitation

Reaction time \& excitation energy

 for intermediate-energy "inelastic-type scattering"$$
\omega \ll \mu c^{2}(\gamma-1) \simeq \frac{1}{2} \mu c^{2} \beta^{2}
$$

$$
\begin{aligned}
& \Delta E \cdot \Delta t \sim 2 \pi \hbar \\
& \omega_{\max } \sim \frac{2 \pi \hbar \cdot \beta c}{2 R} \simeq 100 \beta \mathrm{MeV}
\end{aligned}
$$

Off energy shell
$\mathrm{E} / \mathrm{A} \sim 200 \mathrm{MeV}: \beta \sim 0.6: \omega_{\max } \sim 60 \mathrm{MeV}$

$$
\overbrace{\left|M_{i f}\left(E_{f}\right)\right|^{2}: \text { Energy Spectrum }}^{O(l s j \tau ; \xi)\left|E_{i} J_{i} \pi_{i_{i}} T_{i} ; \xi_{i}\right\rangle}=\underset{T_{i f}\left(E_{f}\right)\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle \text { Response }}{ }
$$

"Transition" as time-dependent action

$$
\begin{aligned}
& i \hbar \frac{\partial}{\partial t} \Psi(t)=\left(H+V_{R}(t)\right) \Psi(t) \\
& \Psi(t)=\sum_{i} a_{i}(t) \psi_{i} \exp \left(-i E_{i} t / \hbar\right) \\
& H \psi_{i}=E_{i} \psi_{i} \\
& a_{0}(-\infty)=1 ; a_{i}(-\infty)=0 \text { for } i>0 \\
&\left|a_{i}(+\infty)\right|^{2}: \text { Energy spectrum after reaction } \\
& \sum_{i} i \hbar \dot{a}_{i}(t) \psi_{i} \exp \left(-i E_{i} t / \hbar\right)=\sum_{i} a_{i}(t) V_{R}(t) \psi_{i} \exp \left(-i E_{i} t / \hbar\right) \\
& i \hbar \dot{a}_{k}(t)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2 \Delta T^{2}}\right) \\
& \times \sum_{i} a_{i}(t)\left\langle\psi_{k}\right| \mathcal{O}\left|\psi_{i}\right\rangle \exp \left(-\frac{i\left(E_{i}-E_{k}\right) t}{\hbar}\right) \\
& V_{R}(t)=\frac{\mathcal{O}}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2 \Delta T^{2}}\right)
\end{aligned}
$$

Perturbation

$$
a_{i}(-\infty) \ll 1 \quad \text { for } i>0
$$

$$
\begin{aligned}
a_{0}(+\infty)-a_{0}(-\infty) & \simeq-i \frac{\Delta T}{\hbar}\left\langle\psi_{0}\right| \mathcal{O}\left|\psi_{0}\right\rangle \\
a_{k}(+\infty) & \simeq-i \frac{\Delta T}{\hbar}\left\langle\psi_{k}\right| \mathcal{O}\left|\psi_{0}\right\rangle \exp \left(-\frac{\left(E_{i 0} \Delta T\right)^{2}}{2 \hbar^{2}}\right)
\end{aligned}
$$

(NS NN case with FSI

Density of State

$$
\begin{aligned}
D\left(E_{\mathrm{nn}}\right) & =\frac{|A(k)|^{2}}{k} ; E_{\mathrm{nn}}=\frac{\hbar^{2} k^{2}}{m_{\mathrm{N}}} \\
A(k) & =\int d r r \Psi(r) \phi_{k}(r)
\end{aligned}
$$

Expand Ψ_{0} with correlated n-n scattering wave $\phi_{k}(r)$ $A(k)$'s are used instead of Fourier component

Effective Range Theory :

$$
\phi_{k}(r) \sim \sin \delta(k) \times f(r) \text { for small } r
$$

Two step

$\omega \ll \mu c^{2}(\gamma-1) \simeq \frac{1}{2} \mu c^{2} \beta^{2}$
β

$$
\begin{gathered}
\boldsymbol{L}_{1} \boldsymbol{S}_{1} \boldsymbol{J}_{1} ; \boldsymbol{q}_{1}, \omega_{1} \sim \boldsymbol{L}_{2} \boldsymbol{S}_{2} \boldsymbol{J}_{2} ; \boldsymbol{q}_{2}, \omega_{2} \\
\left\{\begin{array}{l}
\{\boldsymbol{L} \boldsymbol{J} ; \boldsymbol{q}, \omega\}=\left\{\boldsymbol{L}_{1} \boldsymbol{S}_{1} \boldsymbol{J}_{1} ; \boldsymbol{q}_{1}, \omega_{1}\right\} \oplus\left\{\boldsymbol{L}_{2} \boldsymbol{S}_{2} \boldsymbol{J}_{2} ; \boldsymbol{q}_{2}, \omega_{2}\right\} \\
\Delta E \cdot \Delta t \sim 2 \pi \hbar
\end{array}\right. \\
\begin{array}{l}
2 R
\end{array} \begin{array}{l}
\omega_{\max } \sim \frac{2 \pi \hbar \cdot \beta c}{2 R} \simeq 100 \beta \mathrm{MeV} \\
\Delta t=\Delta t_{1}+\Delta t_{2}
\end{array}
\end{gathered}
$$

"Intermediate state": Not energy eigen state
~ wave packet consists of "eigen states" over $200 \beta \mathrm{MeV}$
\sim closure approximation \sim almost one-step

Picture of ${ }^{4} \mathrm{He}$ DCX reaction @ 200 A MeV

Direct Part

$$
\begin{aligned}
& \Phi_{0} \propto \mathcal{A}\left[\left(r_{\alpha}^{2}-r_{12}^{2}\right) \exp \left(-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right) \chi(1,2) \chi(3,4)\right] \\
& \propto\left(\frac{4 r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{a^{2}}-\frac{r_{34}^{2}}{a^{2}}\right) \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \chi(1,2) \chi(3,4) \\
& +\frac{4 \vec{r}_{12} \cdot \vec{r}_{34}}{a^{2}} \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \vec{X}(1,2) \cdot \vec{X}(3,4) \\
& \vec{r}_{\alpha}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}-\frac{\vec{r}_{3}+\vec{r}_{4}}{2} \\
& \chi(i, j)=\frac{1}{\sqrt{2}}(\uparrow(i) \downarrow(j)-\downarrow(i) \uparrow(j)) \\
& \vec{X}(i, j)=\left(\begin{array}{c}
\uparrow(i) \uparrow(j) \\
\frac{1}{\sqrt{2}}(\uparrow(i) \downarrow(j)+\downarrow(i) \uparrow(j)) \\
\downarrow(i) \downarrow(j)
\end{array}\right) \\
& 4 n \text { wave packet just } \\
& \text { after DCX } \\
& \Phi_{0} \sim \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2} \Phi\left[(0 \mathrm{~s})^{4}\right]
\end{aligned}
$$

Fourier Transform: $\left(\boldsymbol{r}_{12}, \boldsymbol{r}_{34}, \boldsymbol{r}_{\alpha}\right) \rightarrow\left(\boldsymbol{k}_{12}, \boldsymbol{k}_{34}, \boldsymbol{k}\right)$

$$
\begin{array}{rl}
\int\left|\mathcal{A} \tilde{\Phi}_{0}\right|^{2} d^{3} k d^{3} k_{12} d^{3} k_{34} \delta\left(E-\epsilon-\epsilon_{12}-\epsilon_{34}\right) & \propto X^{11 / 2} \exp (-X) \\
\text { Peak at } X=11 / 2 ; E \sim 60 \mathrm{MeV} & X=E / \epsilon_{a} \quad \epsilon_{a}=\frac{\hbar^{2}}{m_{\mathrm{N}} a^{2}}=11 \mathrm{MeV}
\end{array}
$$

NN FSI

c.f. Continuum spectrum with n - n FSI
L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)

Density of State

$$
\begin{aligned}
D_{n \mathrm{~s}}\left(\epsilon_{\mathrm{nn}}\right) & =\frac{\left|\hat{A}_{n \mathrm{~s}}(k)\right|^{2}}{k}(\text { for } n=1,2) ; \epsilon_{\mathrm{nn}}=\frac{\hbar^{2} k^{2}}{m_{\mathrm{N}}} \\
\hat{A}_{1 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{1 \mathrm{~s}}(r) \phi_{k}(r)=2\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{1 \mathrm{~s}}(k) \\
\hat{A}_{2 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{2 \mathrm{~s}}(r) \phi_{k}(r)=2 \sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{2 \mathrm{~s}}(k)
\end{aligned}
$$

$4 n$ wave packet just after DCX $\Phi_{0} \sim \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2} \Phi\left[(0 \mathrm{~s})^{4}\right]$

Two correlated neutron pairs with weakly correlated

Expand $\mathcal{A} \Phi_{0}$ with correlated n-n scattering wave $\phi_{k}(r)$ $A(k)$'s are used instead of Fourier component

Correlation is taking into account for $2 \mathrm{n}-2 \mathrm{n}$ relative motion by using scattering length

(10) Fit with direct component \& BG

Energy spectrum is expressed by the continuum from the direct decay and (small) experimental background except for four events at $0<E_{4 \mathrm{n}}<2 \mathrm{MeV}$ The Four events suggest a possible resonance at 0.83 ± 0.65 (stat.) ± 1.25 (sys.) MeV with width narrower than 2.6 MeV (FWHM). [4.9 σ significance]
Integ. cross section $\theta_{\mathrm{cm}}<5.4 \mathrm{deg}$:
$3.8^{+2.9}{ }_{-1.8} \mathrm{nb}$

+ likelihood ratio test

$$
\chi_{\lambda}^{2}=-2 \ln [L(\boldsymbol{y} ; \boldsymbol{n}) / L(\boldsymbol{n} ; \boldsymbol{n})]
$$

- Significance:

$$
\begin{gathered}
s_{i}=\sqrt{2\left[y_{i}-n_{i}+n_{i} \ln \left(n_{i} / y_{i}\right)\right]} \\
n_{i}: \text { num. of events in the } i \text { th bin } \\
y_{i}: \text { trial function in the } i \text {-th bin }
\end{gathered}
$$

$\mu^{n} e^{-\mu} / n!\simeq 10^{-6}$ for $\mu=0.07, n=4$

Further experimental approarch

- ${ }^{29} \mathrm{~F}$ (knockout 1p) $\rightarrow{ }^{28} \mathrm{O} \rightarrow{ }^{24} \mathrm{O}+4 n$
- 8 He (knockout a by proton) -> 4n
- ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ again with more statistics

All of three can produce recoil-less condition

Three approaches produce different initial wave packets of $4 n$

- resonance/continuum will be different

(1S Experiment for confirmation (2016.6.16-25)

Better statistics and Better accuracy of energy than previous experiment $\left({ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},,^{8} \mathrm{Be}\right) 4 \mathrm{n}\right.$ @ $\left.186 \mathrm{MeV} / \mathrm{u}\right)$ 4 events
$\rightarrow 5$ times or more
Improve efficiencies (redundancy)
$E_{4 \mathrm{n}}=0.83 \pm 0.65$ (stat.) ± 1.25 (sys.) MeV
\rightarrow better than 0.3 MeV both for stat. and syst.
Calibration using ${ }^{1} \mathrm{H}\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right) \mathrm{n}$ with same rigidity ${ }^{3} \mathrm{H}$ beam ($310 \mathrm{MeV} / \mathrm{u}$) as ${ }^{8} \mathrm{He}$ preliminary achievement : < 100 keV

On-line X image @ SHARAO corrected by beam momentum

Resolution \& Statistics are consistent with expected
\propto momentum ($\sim 6 \mathrm{~mm} / \%$)

Summary

- ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ has been measured at 190 A MeV at RIBFSHARAQ
- Missing mass spectrum with very few background
- Although statistics is low (27 evs), spectrum looks two components (continuum + peak)
- Continuum is consistent with direct breakup process from $(0 s)^{2}(0 p)^{2}$ wave packe \dagger
- Four events just above $4 n$ threshold is statistically beyond prediction of continuum + background (4.9 σ significance)
\rightarrow candidate of $4 n$ resonance

$$
\text { at } 0.83 \pm 0.65 \text { (stat.) } \pm 1.25 \text { (sys.) MeV; } \Gamma<2.6 \mathrm{MeV}
$$

- Constraint to $T=3 / 2$ three-body force

[^0]: J.E. Ungar et al., PLB 144 (1987) 333

