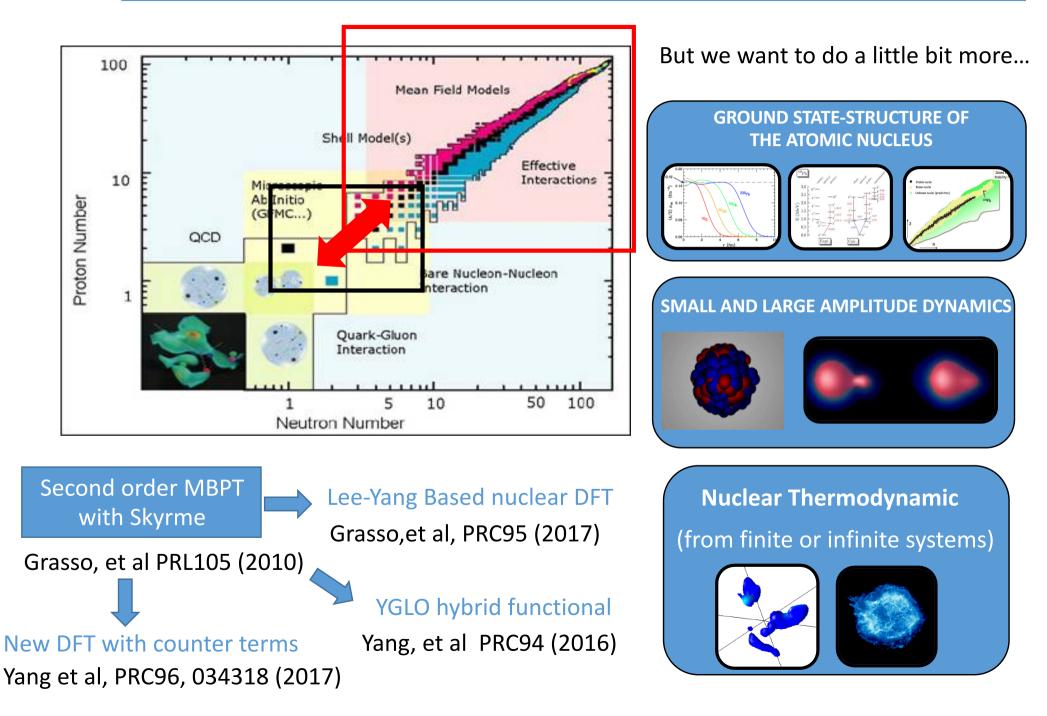
Density Functional theory from unitary gas to neutron matter: Equation of state, static and dynamical response

Outline:

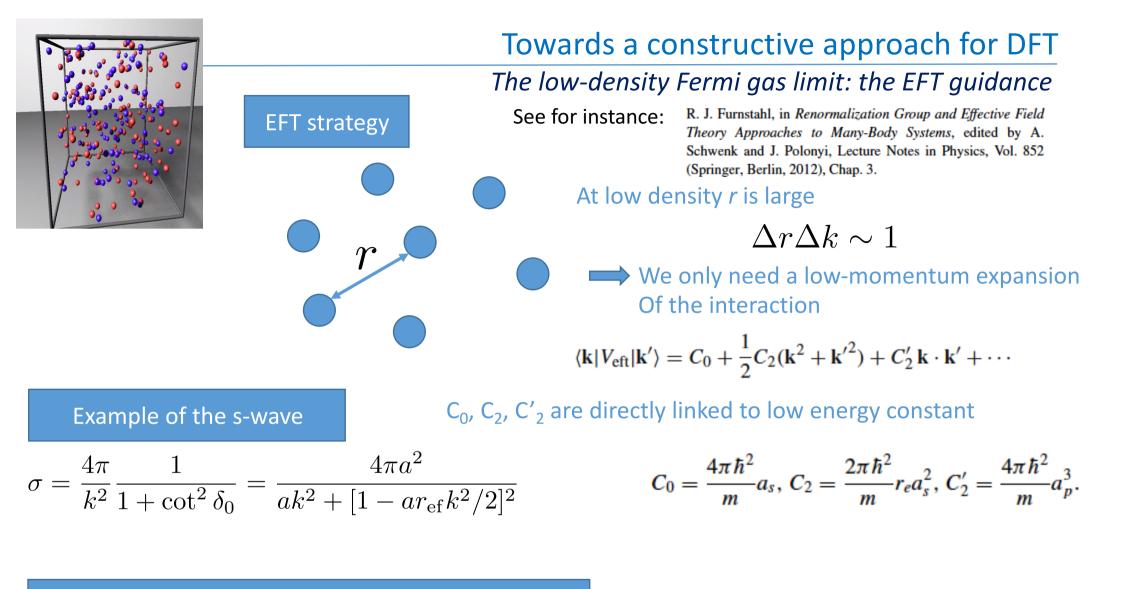
- Discussion on DFT with no free parameters
- EFT guiding the construction of DFT/EDF: resummation
- Unitary gas guidance: role of large but finite s-wave scattering length
- Applications: EOS of cold atoms and neutron matter.
- Applications: EOS of cold atoms and neutron matter.

Coll: J. Bonnard, A. Boulet, M. Grasso and C.J. Yang

So why we need to do something else?



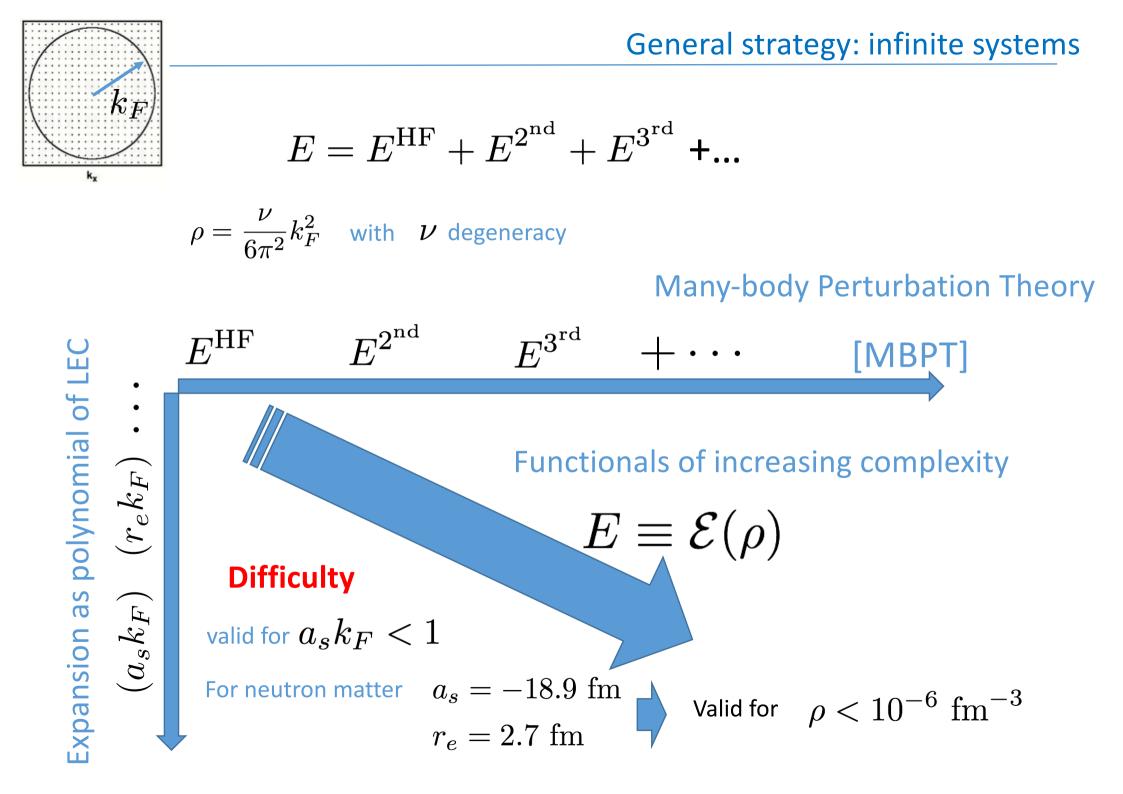
Can we link the energy density functional to the low energy constants of the bare interaction? and render it less empirical?



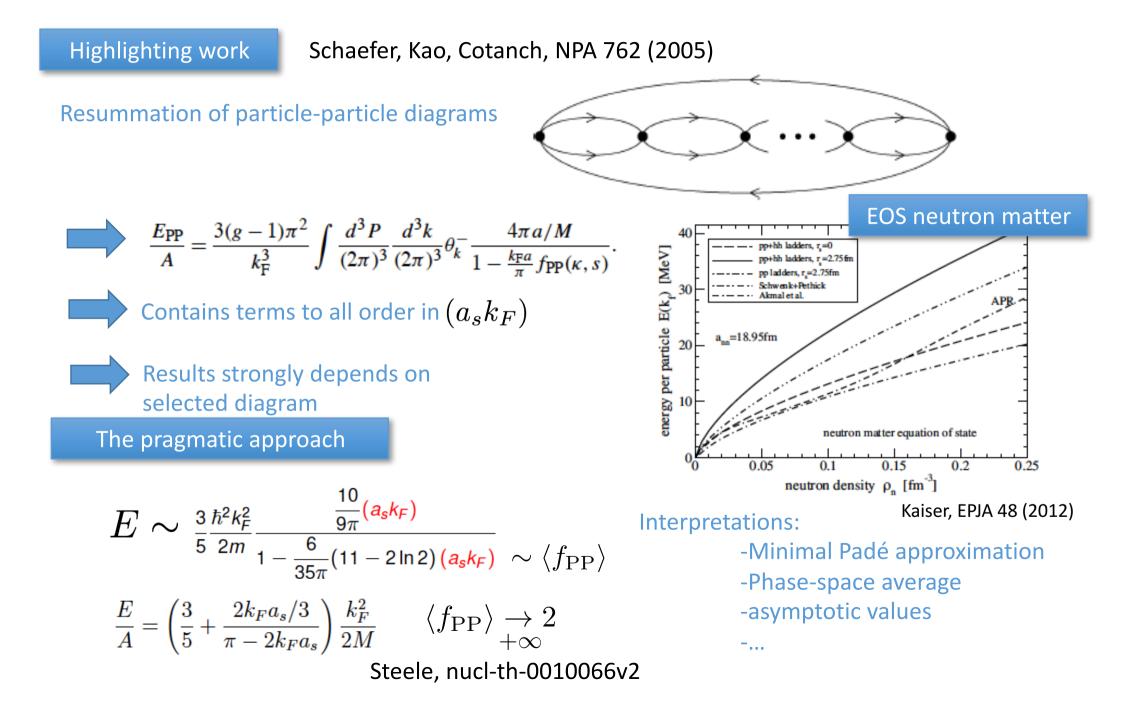
Constructive many-body perturbative approach

$$E = E^{\rm HF} + E^{2^{\rm nd}} + E^{3^{\rm rd}} + \dots$$

H.W. Hammer and R.J. Furnstahl, NPA678 (2000)



The "magic" technique: resummation



Resummed formula for Unitary gas

Great interest of resummed expression: 3000 It has a finite limit for Unitary gas 2000 scattering length (a) 1000 For unitary gas: -low density system -1000 $a_s \rightarrow +\infty$ -2000 -3000 $\frac{3}{5} \frac{\hbar^2 k_F^2}{2m} \frac{\frac{10}{9\pi} (a_s k_F)}{1 - \frac{6}{35\pi} (11 - 2\ln 2) (a_s k_F)} =$ $\rightarrow 0.32 \frac{3}{5} \frac{\hbar^2 k_F^2}{2m}$ $=\langle f \rangle$ $\frac{E}{A} = \left(\frac{3}{5} + \frac{2k_F a_s/3}{\pi - 2k_F a_s}\right) \frac{k_F^2}{2M} \longrightarrow 0.4 \frac{3}{5} \frac{\hbar^2 k_F^2}{2m}$

Not so far from the "admitted" value of the Bertsch parameter for unitary gas (0.37)

220

B (gauss)

225

230

215

Important remark for us, unitary gas has the simplest DFT ever !

$$\begin{split} \mathcal{E}[\rho] &= \xi \times \mathcal{E}_{\mathrm{FG}}[\rho] \\ \xi &= 0.37 \end{split} \qquad \text{The interest for us is that in neutron matter } \mathbf{a}_{\mathrm{s}} \text{ is very large} \end{split}$$

Density Functional Theory for system at or close to unitarity

A very pragmatic approach

Lacroix, PRA 94 (2016)

Minimal DFT for unitary gas

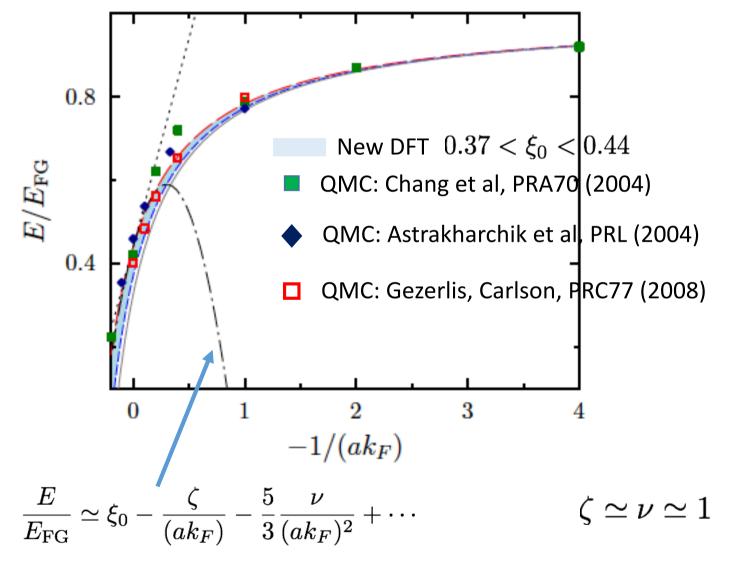
$$\frac{E}{E_{\rm FG}} = \left\{ 1 + \frac{(ak_F)A_0}{1 - A_1(ak_F)} \right\}$$

 $|a_s k_F| \ll 1$

 $|a_s k_F| \gg 1$

Result of the DFT for at or close to unitarity

Lacroix, PRA 94 (2016)



Taylor expansion in $(a_s k_F)^{-1}$: Bulgac and Bertsch, PRL 94 (2005)

Example of applications

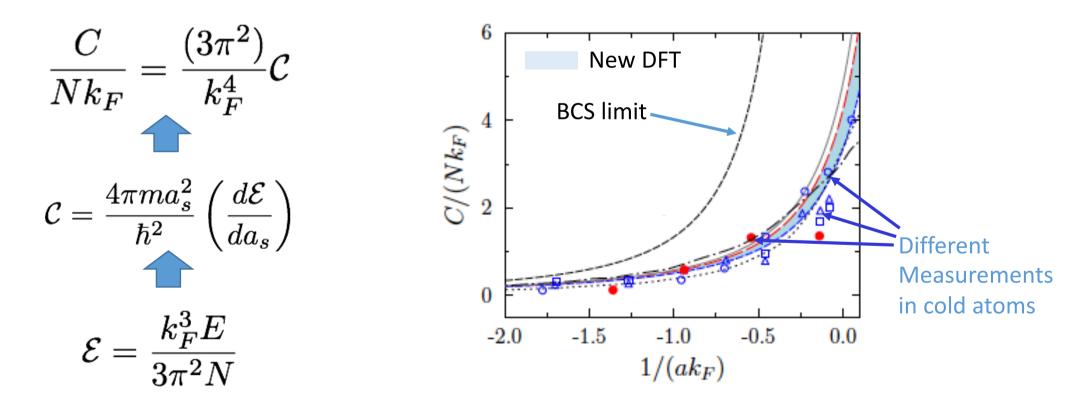
Lacroix, PRA 94 (2016)

$$\frac{E}{E_{\rm FG}} = \mathcal{F}(a_s, k_F) \equiv \mathcal{F}(a_s, \rho) \quad \blacksquare$$

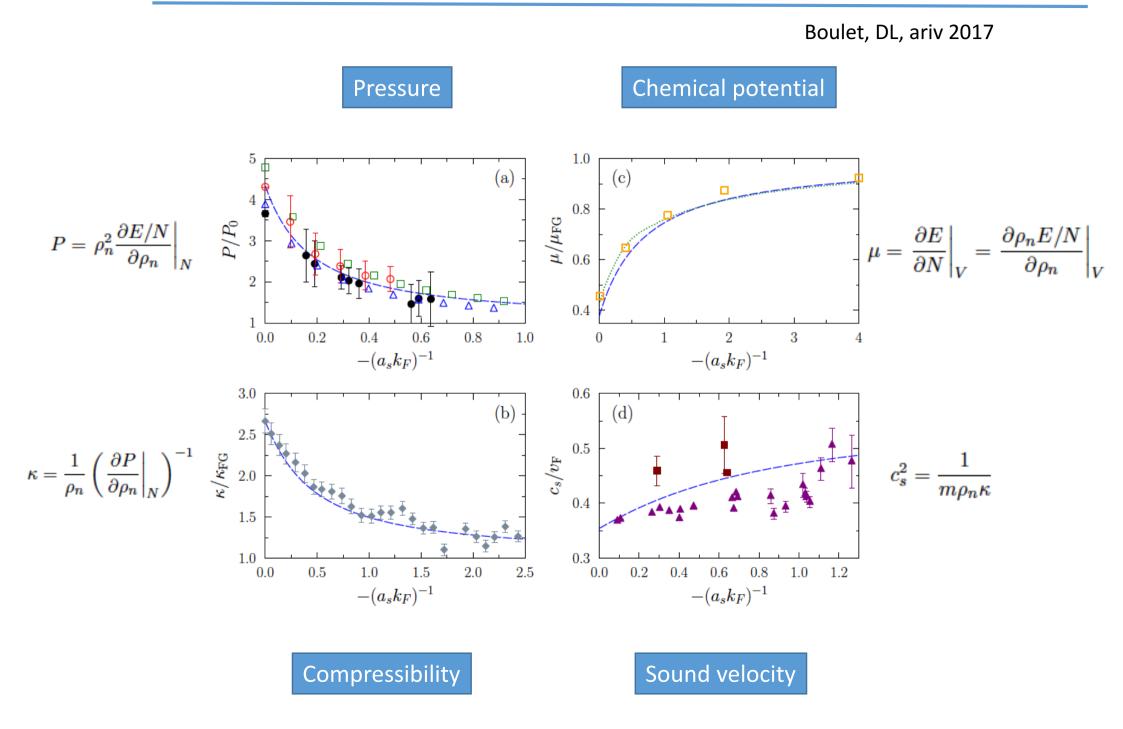
Any quantity that could be obtained through partial derivatives of the energy with respect to a_s or k_F or ρ is straightforward to obtain

Estimate of the density dependence of the Tan contact parameter

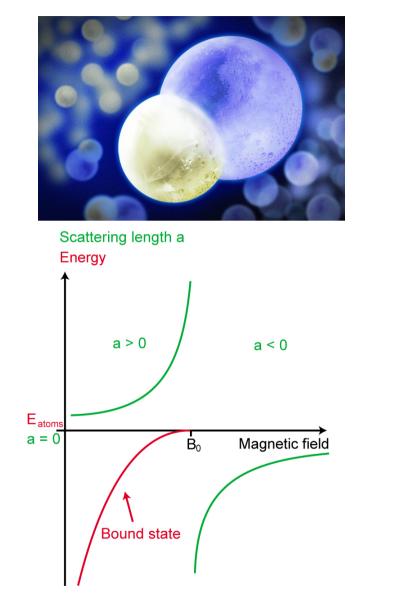
E. Braaten, Lect. Not. Phys. 836 (2011).



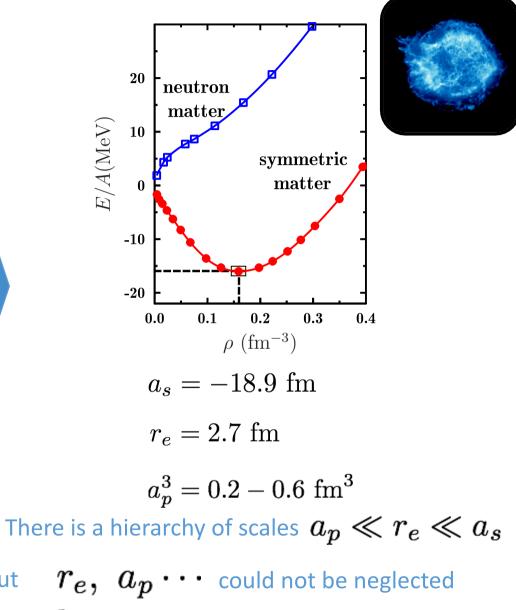
Example of applications: thermodynamical quantities around unitarity



From cold atom to neutron matter



Most often, only a_s matter



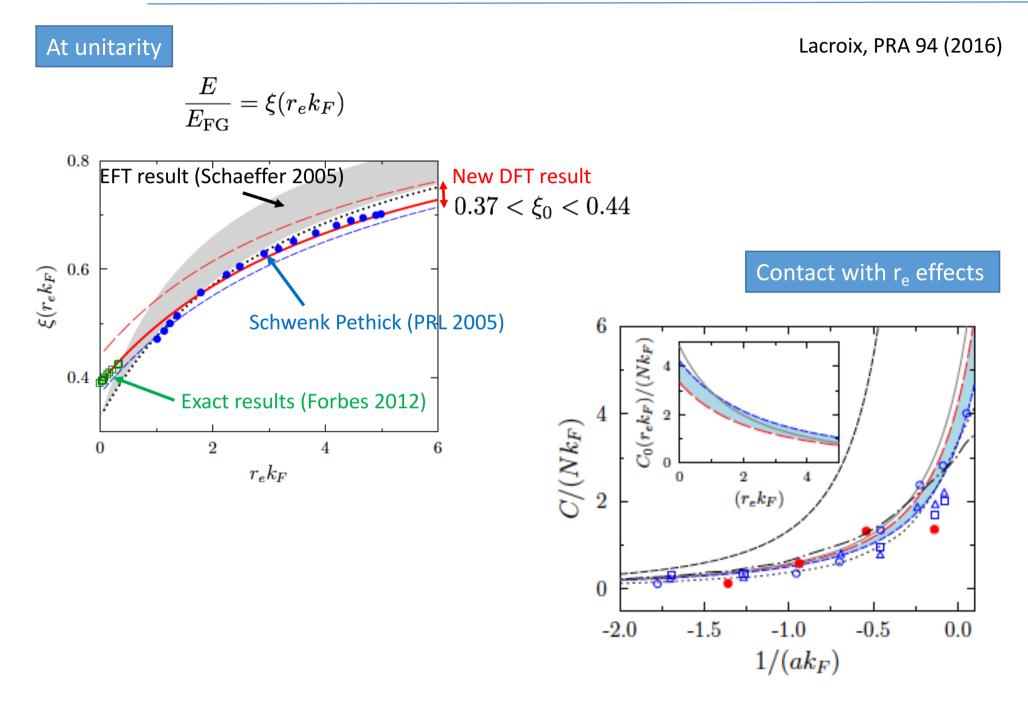
 k_F is not small and

but

From cold atom to neutron matter: inclusion of effective range

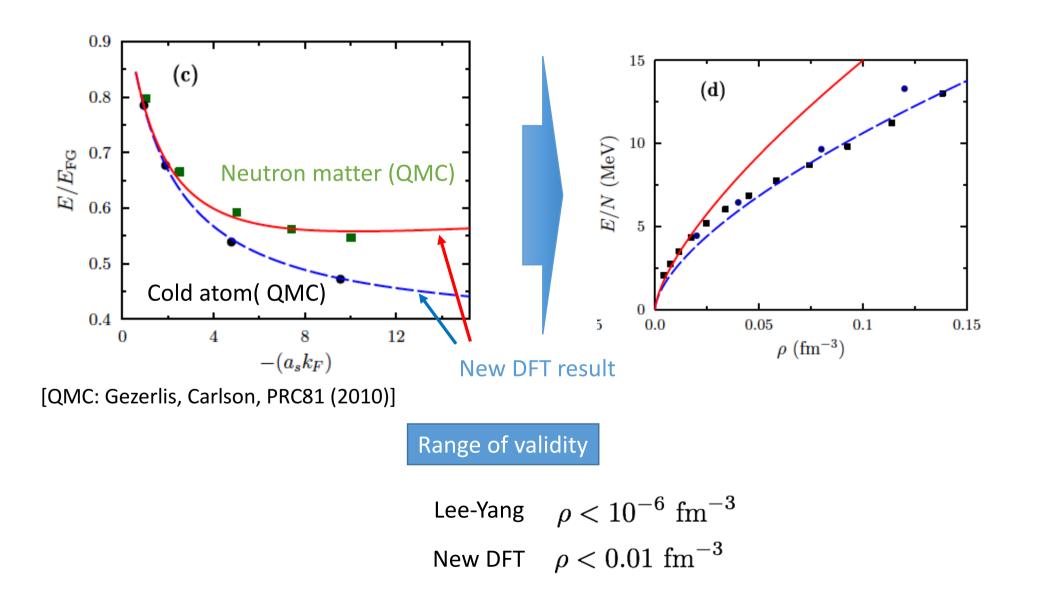
Lacroix, PRA 94 (2016)

Inclusion of effective range effects in cold atoms



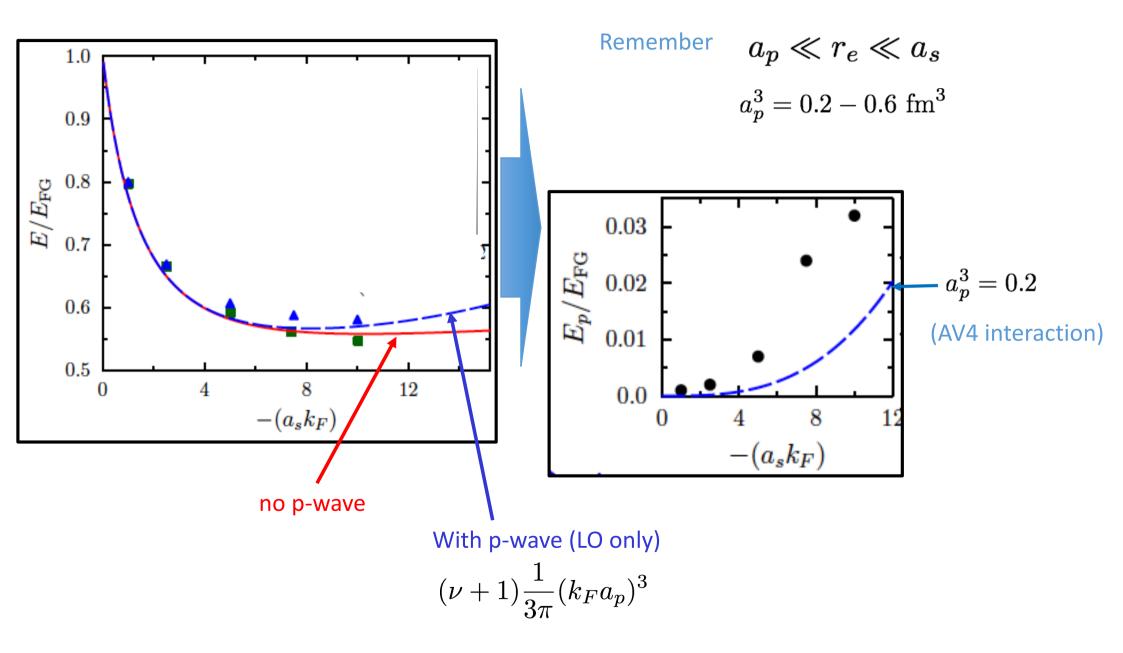
EDF with no-free parameters: Predictive power for neutron matter

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)

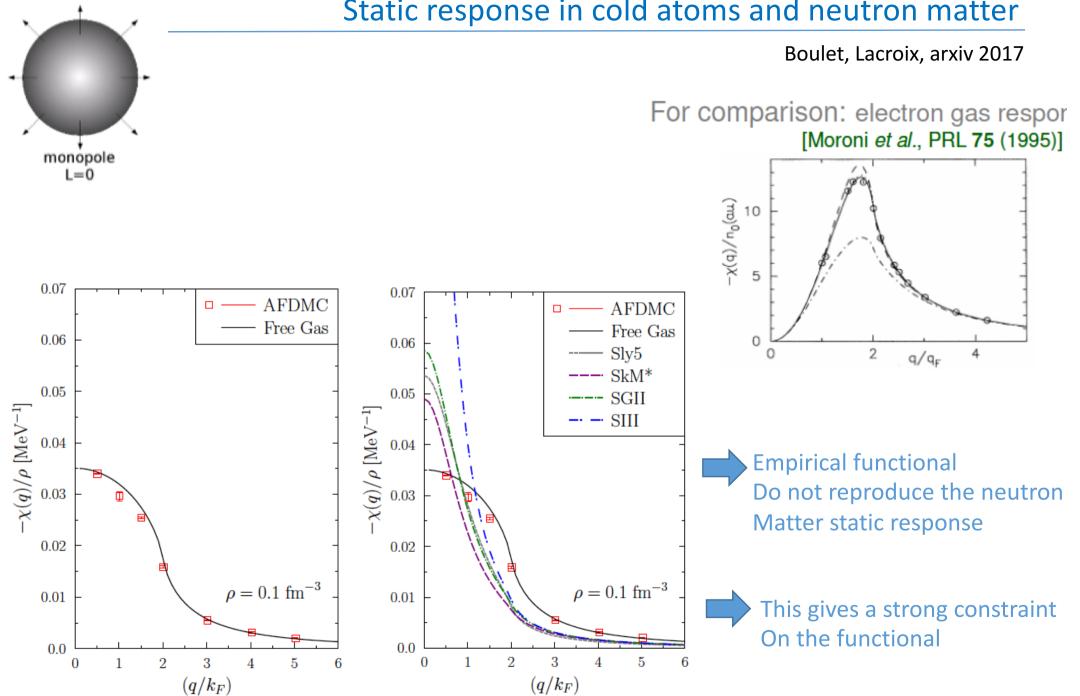


Including the p-wave ?

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



From static to dynamic

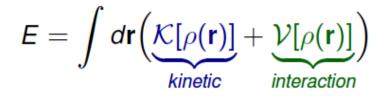


[Buraczynski and Gezerlis, PRL 116 (2016)]

Static response in cold atoms and neutron matter

Static response in cold atoms and neutron matter

Boulet, Lacroix, arxiv 2017



External field

$$\hat{V}_{\text{ext}} = \sum_{j} \phi(\boldsymbol{q}, \omega) \boldsymbol{e}^{i \mathbf{q} \cdot \mathbf{r}_{j} - i \omega t}$$

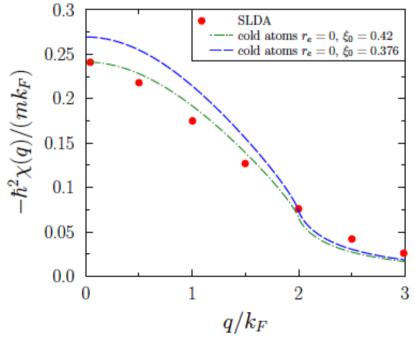
Assuming
$$m^* = m$$

Response function χ

$$\rho(\mathbf{r}) \equiv \rho \to \rho + \delta \rho$$

$$\delta \rho = -\chi(\boldsymbol{q}, \omega) \phi(\boldsymbol{q}, \omega)$$
$$\chi = \chi_0 \left[1 - \frac{\delta^2 \mathcal{V}}{\delta \rho^2} \chi_0 \right]^{-1}$$

Comparison with Superfluid LDA (Bulgac et al) in cold atoms

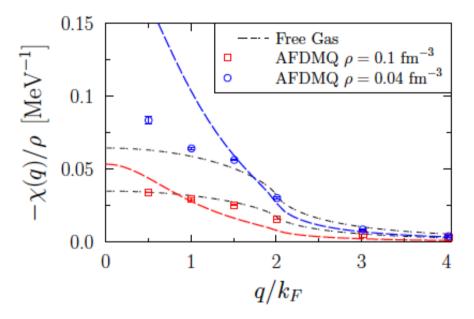


SLDA: [Forbes and Sharma, PRA 90 (2014)]

Static response in cold atoms and neutron matter

Boulet, Lacroix, arxiv 2017

Empirical functional (Sly5)

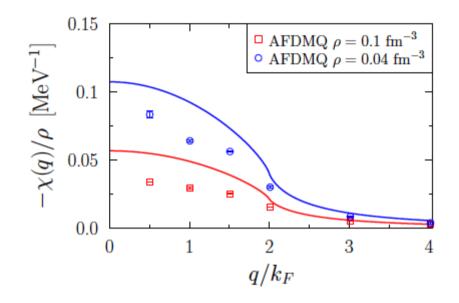


[Buraczynski and Gezerlis, PRL 116 (2016)]

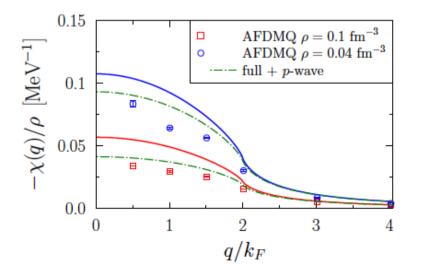
Adding *p*-wave (leading order term only)

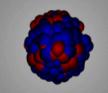
$$\frac{E_p}{E_{\rm FG}} = \frac{1}{\pi} (a_p k_F)^3$$

Non-empirical functional



Non-empirical functional + *p*-wave

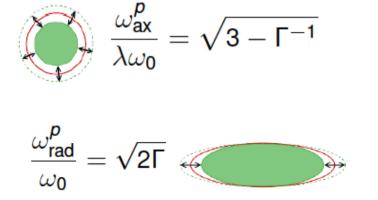


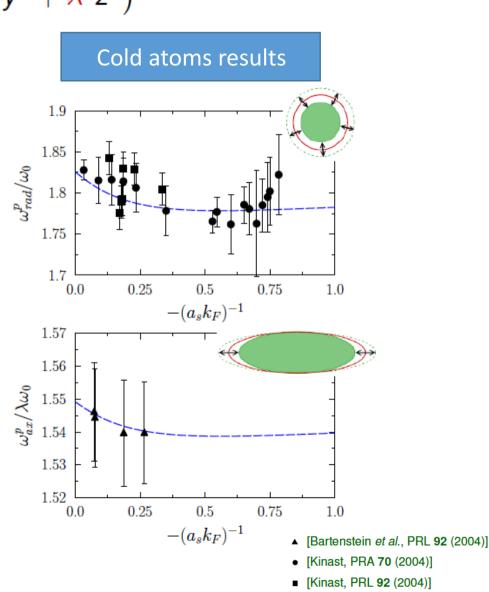


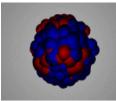
Dynamical response in cold atoms and neutron matter

Boulet, Lacroix, arxiv 2017

Anisoptropic trap $U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$ **Hypothesis** Hydrodynamical regime $\nabla^2 P = -\frac{1}{m} \nabla \cdot \left[\rho \nabla U \right]$ 1.9Polytropic equation of state 1.85 ω^p_{rad}/ω_0 [Heiselberg, PRL 93 (2004)] 1.8 $P \propto \rho^{\Gamma}$ with $\Gamma = \kappa P$ 1.751.7Solution of cigar-shaped / prolate ($\lambda \ll 1$):



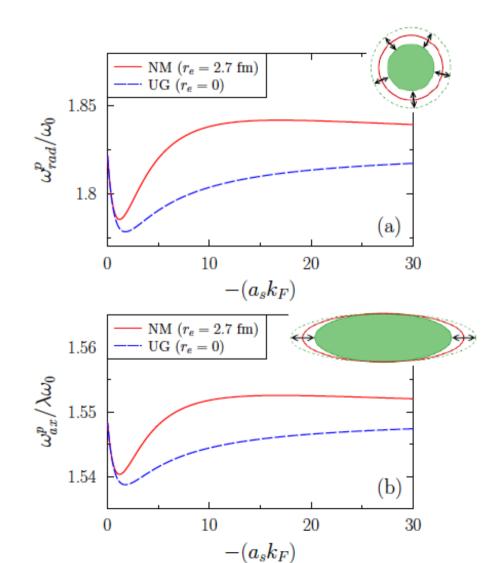


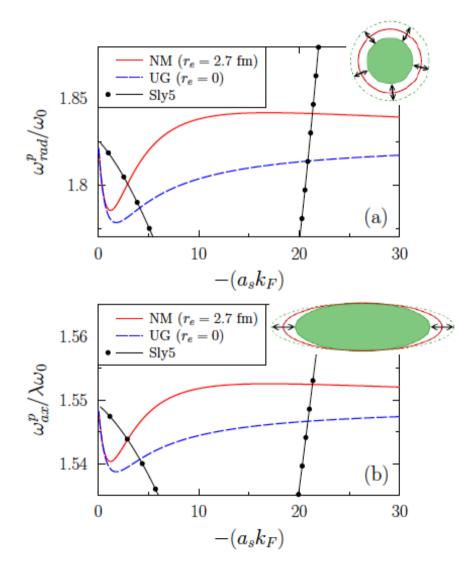


Dynamical response in cold atoms and neutron matter

l

Anisoptropic trap
$$U(\mathbf{r}) = \frac{m\omega_0^2}{2} \left(x^2 + y^2 + \lambda^2 z^2 \right)$$





Boulet, Lacroix, arxiv 2017

Can we conceal this functional with the Skyrme functionals?

Difficulty in nuclear systems

Yang, Grasso, Lacroix PRC94 (2016)

0.4

Skyrme functional

$$v(\mathbf{r}_{1} - \mathbf{r}_{2}) = t_{0} (1 + x_{0} \hat{P}_{\sigma}) \delta(\mathbf{r})$$

$$+ \frac{1}{2} t_{1} (1 + x_{1} \hat{P}_{\sigma}) [\mathbf{P}^{\prime 2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{P}^{2}]$$

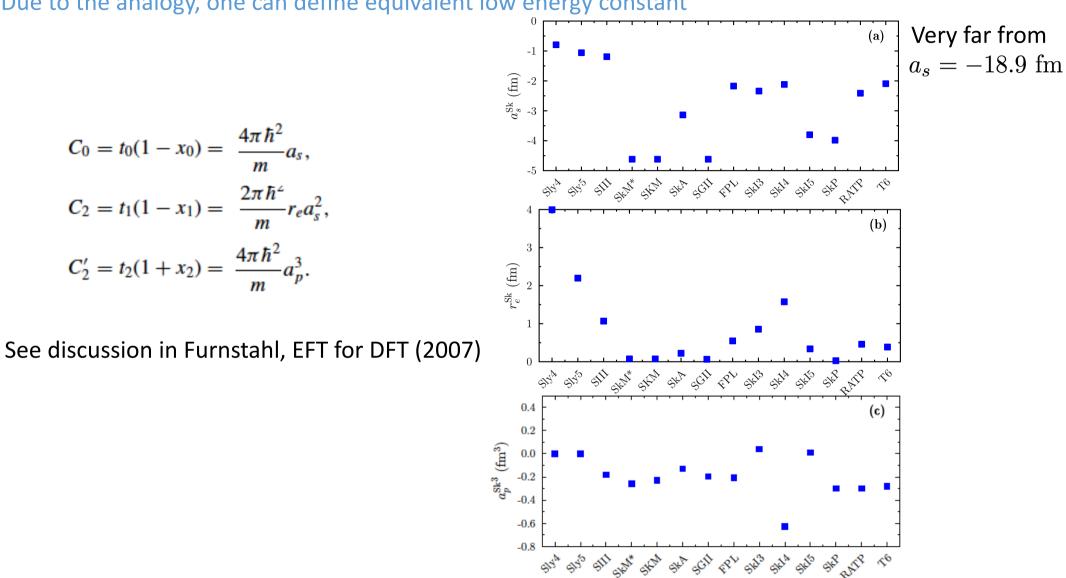
$$+ t_{2} (1 + x_{2} \hat{P}_{\sigma}) \mathbf{P}^{\prime} \cdot \delta(\mathbf{r}) \mathbf{P}$$

$$MBPT + expansion$$
in LEC is valid here
is very close to the EFT
starting point
$$\mathbf{k} | V_{\text{eft}} | \mathbf{k}^{\prime} \rangle = C_{0} + \frac{1}{2} C_{2} (\mathbf{k}^{2} + \mathbf{k}^{\prime 2}) + C_{2}^{\prime} \mathbf{k} \cdot \mathbf{k}^{\prime} + \cdots$$

But Skyrme works because it has been adjusted here !!!

Additional remarks on traditional Skyrme

Lacroix, Boulet, Yang, Grasso, PRC94 (2016)



Due to the analogy, one can define equivalent low energy constant

Can we make contact with Skyrme like empirical functional ?

Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)

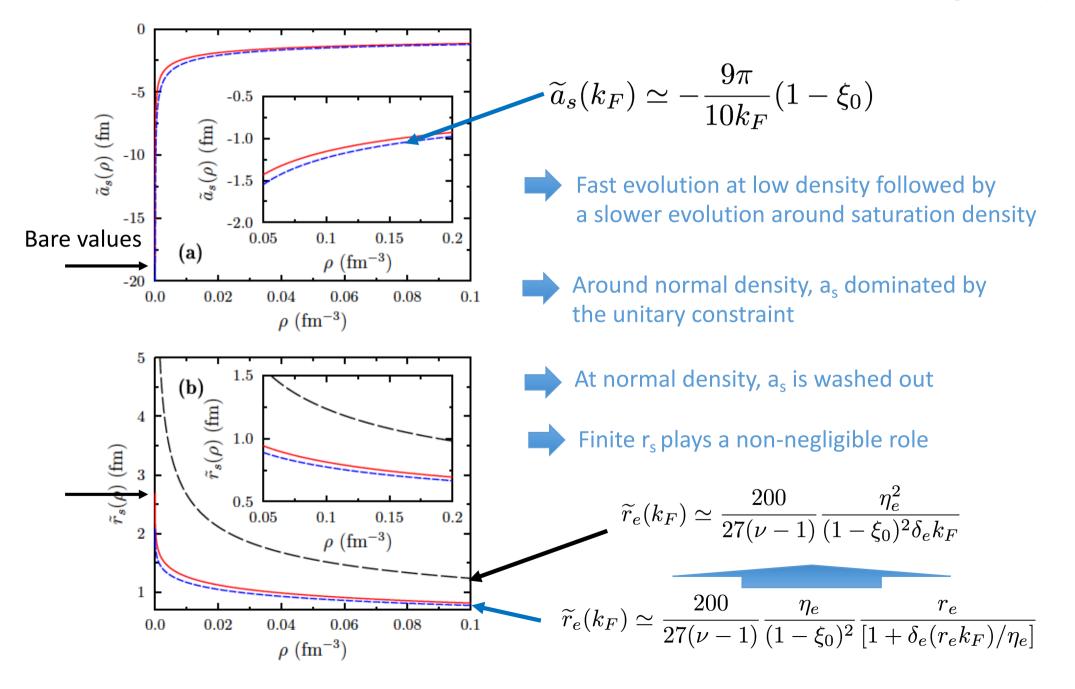
0.2

0.1

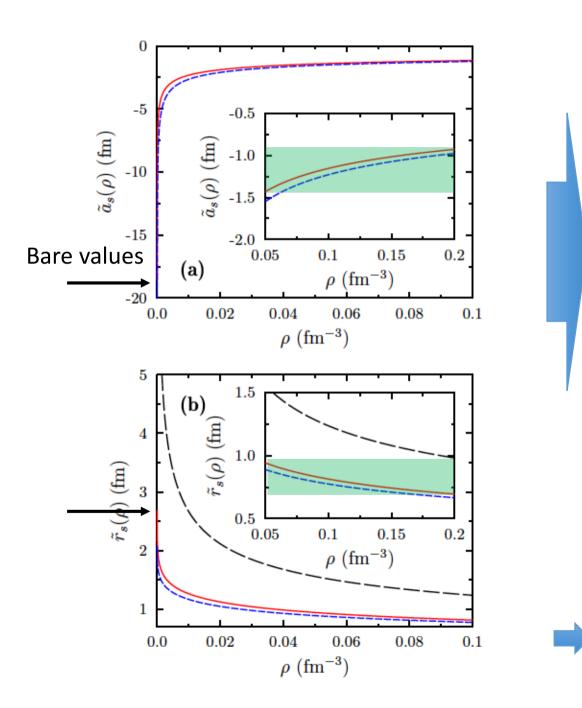
Starting point $\frac{E}{E_{\rm FG}} = 1 - \frac{U_0}{1 - (a_{\rm s}k_{\rm F})^{-1}U_1}$ + $\frac{R_0(r_ek_F)}{[1 - R_1(a_sk_F)^{-1}][1 - R_1(a_sk_F)^{-1} + R_2(r_ek_F)]}$ Rewrite it as $\frac{E}{E_{\rm EG}} = 1 + \frac{k_F^3}{4\pi^2 E_{\rm EG}} \left\{ \frac{\widetilde{C}_0(k_F)}{3} + \frac{k_F^2}{10} [(\nu - 1)\widetilde{C}_2(k_F) + (\nu + 1)\widetilde{C}_2'(k_F)] \right\}$ Define density dependent -0.5scattering length and range $\tilde{a}_{s}(\rho)$ (fm) $\tilde{a}_{s}(\rho)~(\mathrm{fm})$ -1.0 $\tilde{C}_0(k_F) = \frac{4\pi\hbar^2}{m}\tilde{a}_s(k_F)$ -1.5-15 -2.00.10.150.05(a) $\tilde{C}_2(k_F) = \frac{2\pi\hbar^2}{m}\tilde{r}_e(k_F)\tilde{a}_s^2(k_F)$ $\rho \text{ (fm}^{-3}\text{)}$ -200.00.020.04 0.060.08 $\rho \,(\mathrm{fm}^{-3})$

Can we make contact with empirical functional ?

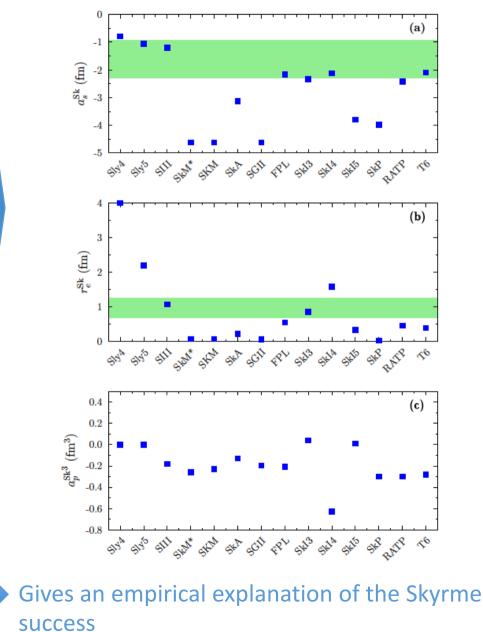
Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



Can we make contact with empirical functional ?



Lacroix, Boulet, Grasso, Yang, PRC 95 (2017)



Conclusions

We propose a new way design the nuclear (cold atom) DFT to parameters of the interaction

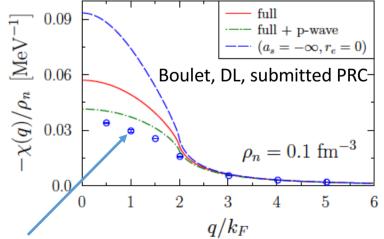
- Low energy constants becomes the only "non-freely" adjustable parameters
- Validity $ho < 0.01 \ {\rm fm}^{-3}$

The new DFT reproduces ab-initio results in cold atoms and neutron matter

• Transition from s-wave driven (low density) to unitary gas driven (Bertsch parameter) regime

Explain in some ways why Skyrme works so well

Applications and on-going work



AFDMC: Buraczynski, Gezerlis, PRL 116 (2016)]