Neutron-proton pairing and double beta decay in the IBM

P. Van Isacker, GANIL, France
J. Engel*, University of North Carolina, Chapel Hill, US
K. Nomura**, University of Zagreb, Croatia

Topical Mecting, GANT2L. October 2017

Neutron-proton pairing and double beta decay in the IBM

Motivation
Nucleon-pair shell model
Effective operators in a collective subspace
Mapping to boson operators
Application to $O v \beta \beta$ decay in the pf shell

Neutrino-less $\beta \beta$ decay

The process:

$$
{ }_{Z}^{A} X_{N} \rightarrow{ }_{Z+2}^{A} X_{N-2}+2 \mathrm{e}^{-}
$$

Importance: neutrinos are Majorana particles with mass, violation of lepton number, physics beyond the standard model,...
The half-life of this process is

$$
\frac{1}{\tau_{1 / 2}^{0 \nu}}=G_{0 v}\left|M_{0 v}\right|^{2}\left|f\left(m_{i}, U_{e i}\right)\right|^{2}
$$

Nuclear physics must provide the nuclear matrix element $M_{0 \nu}$.

Observed $2 v \beta \beta$ emitters

Isotope	isotopic abundance (\%)	$Q_{\beta \beta}[\mathrm{MeV}]$
${ }^{48} \mathrm{Ca}$	0.187	4.263
${ }^{76} \mathrm{Ge}$	7.8	2.039
${ }^{82} \mathrm{Se}$	9.2	2.998
${ }^{96} \mathrm{Zr}$	2.8	3.348
${ }^{100} \mathrm{Mo}$	9.6	3.035
${ }^{116} \mathrm{Cd}$	7.6	2.813
${ }^{130} \mathrm{Te}$	34.08	2.527
${ }^{136} \mathrm{Xe}$	8.9	2.459
${ }^{150} \mathrm{Nd}$	5.6	3.371

$0 v \beta \beta$ experiments

Isotope	Technique	$T_{1 / 2}^{0 \nu}$	$\left\langle m_{\beta \beta}\right\rangle(\mathrm{eV})$	Reference
${ }^{48} \mathrm{Ca}$	CaF_{2} scint. crystals	$>1.4 \times 10^{22} \mathrm{yr}$	$<7.2-44.7$	Ogawa et al. (2004)
${ }^{76} \mathrm{Ge}$	${ }^{\text {enr }} \mathrm{Ge}$ det.	$>1.9 \times 10^{25} \mathrm{yr}$	<0.35	Klapdor-Kleingrothaus et al. (2001a)
${ }^{76} \mathrm{Ge}$	${ }^{\text {enr }}$ Ge det.	$\left(2.23_{-0.31}^{+0.44}\right) \times 10^{25} \mathrm{yr}(1 \sigma)$	0.32 ± 0.03	Klapdor-Kleingrothaus and Krivosheina (2006)
${ }^{76} \mathrm{Ge}$	${ }^{\text {enr }} \mathrm{Ge}$ det.	$>1.57 \times 10^{25} \mathrm{yr}$	$<0.33-1.35$	Aalseth et al. (2002a)
${ }^{82} \mathrm{Se}$	Thin metal foils and tracking	$>2.1 \times 10^{23} \mathrm{yr}$	$<1.2-3.2$	Barabash (2006b)
${ }^{100} \mathrm{Mo}$	Thin metal foils and tracking	$>5.8 \times 10^{23} \mathrm{yr}$	$<0.6-2.7$	Barabash (2006b)
${ }^{116} \mathrm{Cd}$	${ }^{116} \mathrm{CdWO}_{4}$ scint. crystals	$>1.7 \times 10^{23} \mathrm{yr}$	<1.7	Danevich et al. (2003)
${ }^{128} \mathrm{Te}$	Geochemical	$>7.7 \times 10^{24} \mathrm{yr}$	$<1.1-1.5$	Bernatowicz et al. (1993)
${ }^{130} \mathrm{Te}$	TeO_{2} bolometers	$>3.0 \times 10^{24} \mathrm{yr}$	$<0.41-0.98$	Arnaboldi et al. (2007)
${ }^{136} \mathrm{Xe}$	Liquid Xe scint.	$>4.5 \times 10^{23} \mathrm{yr}^{\text {a }}$	$<0.8-5.6$	Bernabei et al. (2002)
${ }^{150} \mathrm{Ne}$	Thin metal foils and tracking	$>3.6 \times 10^{21} \mathrm{yr}$		Barabash (2005)

Comparison SM-QRPA-IBM

Aims of this work

To obtain a better understanding of the relation between IBM and SM.

To use an isospin-invariant version of the IBM.
To study the influence of neutron-proton pairing on double-beta decay.

Nucleon-pair shell model (NPSM)

Pairs of fermions

$$
P_{j_{i, 2}, M}^{+}=\left(a_{j_{1}}^{+} \times a_{j_{2}}^{+}\right)_{M}^{(J)} \equiv P_{\alpha J M}^{+}
$$

Basis states for $2 n$ nucleons in NPSM

Isospin-invariant formulation: J-> JT.
Matrix elements can be calculated with a recursive technique.
Use of this overcomplete \& non-orthogonal basis requires diagonalization of overlap matrix.

Collective subspace

Collective pairs of fermions

$$
B_{J M}^{+}=\sum_{j_{1} j_{2}} \alpha_{j_{1} j_{2}}^{J}\left(a_{j_{1}}^{+} \times a_{j_{2}}^{+}\right)_{M}^{(J)}
$$

Collective basis states for $2 n$ nucleons

$$
\left|J_{1} \ldots J_{n} ; L_{2} \ldots L_{n}\right\rangle \equiv\left(\cdots\left(\left(B_{J_{1}}^{+} \times B_{J_{2}}^{+}\right)^{\left(L_{2}\right)} \times B_{J_{3}}^{+}\right)^{\left(L_{3}\right)} \times \cdots \times B_{J_{n}}^{+}\right)^{\left(L_{n}\right)}|\mathrm{O}\rangle
$$

Dimension of the collective subspace much smaller than that of the full shell-model space, $\omega \ll \Omega$.

Effective operators

Let H_{p} be the collective subspace, H_{Q} the excluded space and $H=H_{p}+H_{Q}$ the full $S M$ space.
The method of Lee-Suzuki defines an operator η that maps states in H_{p} to states in H_{Q} such that

$$
\hat{\eta}\left(\hat{P}\left|E_{k}\right\rangle\right)=\hat{Q}\left|E_{k}\right\rangle, \quad k=1, \ldots, \omega, \quad\left|E_{k}\right\rangle \in \mathbf{H}
$$

For small nucleon number η can be calculated exactly

$$
\eta_{r i}=\left(\left(\boldsymbol{I}_{\Omega}-\boldsymbol{b}^{T} \times \boldsymbol{b}\right) \times \tilde{\boldsymbol{E}}^{T} \times \boldsymbol{d}^{-1}\right)_{r i}, \quad r=1, \ldots, \Omega, \quad i=1, \ldots \omega
$$

Mapping to bosons

Map fermion pairs to bosons

$$
B_{J M}^{+}=\sum_{j_{1} j_{2}} \alpha_{j_{1} j_{2}}^{J}\left(a_{j_{1}}^{+} \times a_{j_{2}}^{+}\right)_{M}^{(J)} \Rightarrow b_{J M}^{+}
$$

Basis states for n bosons

$$
\left|b_{i}^{n}\right\rangle \equiv\left(\cdots\left(\left(b_{J_{1}}^{+} \times b_{J_{2}}^{+}\right)^{\left(L_{2}\right)} \times b_{J_{3}}^{+}\right)^{\left(L_{3}\right)} \times \cdots \times b_{J_{n}}^{+}\right)^{\left(L_{n}\right)}|0\rangle
$$

Corresponding NPSM basis is not orthogonal. Mapping is based on the diagonalization of the overlap matrix.

Mapping to boson operators

For the mapping to $1+2$-body boson operators we need the correspondence for $n=1 \& n=2$:

$$
\begin{aligned}
& n=1:\left|B_{J M}\right\rangle \Rightarrow\left|b_{J M}\right\rangle \\
& n=2:\left|\bar{B}_{i}^{2}\right\rangle \Rightarrow\left|\bar{b}_{i}^{2}\right\rangle=\sum_{j=1}^{\infty} c_{i j}\left|b_{j}^{2}\right\rangle
\end{aligned}
$$

This is known as a 'democratic mapping' and avoids the hierarchy of states in OAI.
Boson operators are defined through

$$
\left\langle\bar{b}_{i}^{n}\right| \hat{T}^{\mathrm{b}}\left|\bar{b}_{j}^{n}\right\rangle=\left\langle\bar{B}_{i}^{n}\right| \hat{T}^{\mathrm{f}}\left|\bar{B}_{j}^{n}\right\rangle
$$

Application to $0 v \beta \beta$ decay

Shell-model Hamiltonian in the pf shell:
Modified Kuo-Brown KB3G
Collective separable approximation to it
Shell-model $0 \nu \beta \beta$-decay operator defined via its matrix elements:

$$
M_{0 v \beta \beta}=M_{0 v \beta \beta}^{\mathrm{GT}}-\left(\frac{g_{\mathrm{v}}}{g_{\mathrm{A}}}\right)^{2} M_{0 v \beta \beta}^{\mathrm{F}}+M_{0 \nu \beta \beta}^{\mathrm{T}}
$$

Mapping to boson models

1. Bosons with $J=0(s)$ and $J=2(d)$ and isospin $T=1$. This is an isospin-invariant version of IBM.
2. In addition a boson with $J=1(p)$ and isospin $T=0$. This to probe the importance of isoscalar correlations in $0 v \beta \beta$ decay. This will be referred to as p-IBM.
We map
original SM operators -> IBMb (bare)
effective SM operators \rightarrow IBMe (effective)

A=44 energy spectra

A fly in the ointment

The mapped IBM Hamiltonian is obtained from $A=42$ and $A=44$.

To obtain an A-dependent IBM Hamiltonian, we use the following property:

$$
\left\langle\hat{H}_{\mathrm{e}}^{\mathrm{b}}\right\rangle_{n, J, T} \leq\left\langle\hat{H}^{\mathrm{f}}\right\rangle_{2 n, J, T} \leq\left\langle\hat{H}_{\mathrm{b}}^{\mathrm{b}}\right\rangle_{n, J, T}
$$

This suggests the use of an (n, T)-dependent boson Hamiltonian of the form

$$
\hat{H}^{\mathrm{b}}=x \hat{H}_{\mathrm{e}}^{\mathrm{b}}+(1-x) \hat{H}_{\mathrm{b}}^{\mathrm{b}}
$$

with x an (n, T)-dependent parameter.

A=46 energy spectra

A=48 energy spectra

A=50 energy spectra

Gamow-Teller $\beta \beta$ in sd-IBM

Gamow-Teller $\beta \beta$ in sdp-IBM

Gamow-Teller $\beta \beta$ in sd-IBM

Gamow-Teller $\beta \beta$ in sdp-IBM

Gamow-Teller $\beta \beta$ in sd-IBM

Gamow-Teller $\beta \beta$ in sdp-IBM

Conclusions and open problems

Lee-Suzuki transformation is used to define an effective collective Hamiltonian.
In light nuclei $\left({ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se}\right)$:
Isospin invariance must be included in the IBM.
Isoscalar-pair bosons are not needed for energy spectra but they are important for $\beta \beta$ decay.
Open problems:
What is the boson-number dependence of the Hamiltonian?
How to couple this study to phenomenology?

Total $\beta \beta$ in sd-IBM

Total $\beta \beta$ in sdp-IBM

