Neutron-proton pairing and double beta decay in the IBM

P. Van Isacker, GANIL, France J. Engel*, University of North Carolina, Chapel Hill, US K. Nomura**, University of Zagreb, Croatia

> *supported by FUSTIPEN **Marie Curie fellow

Topical Meeting, GANIL, October 2017

Neutron-proton pairing and double beta decay in the IBM

Motivation Nucleon-pair shell model Effective operators in a collective subspace Mapping to boson operators Application to $OV\beta\beta$ decay in the *pf* shell

Neutrino-less $\beta\beta$ decay

The process:

 $_{Z}^{A}X_{N} \rightarrow _{Z+2}^{A}X_{N-2} + 2e^{-}$

Importance: neutrinos are Majorana particles with mass, violation of lepton number, physics beyond the standard model,...

The half-life of this process is $\frac{1}{\tau_{1/2}^{0\nu}} = G_{0\nu} |M_{0\nu}|^2 |f(m_i, U_{ei})|^2$ Nuclear physics must provide the

Nuclear physics must provide the nuclear matrix element $M_{0\nu}$.

Observed $2\nu\beta\beta$ emitters

Isotope	isotopic abundance $(\%)$	$Q_{\beta\beta}$ [MeV]
48 Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
$^{100}\mathrm{Mo}$	9.6	3.035
$^{116}\mathrm{Cd}$	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
136 Xe	8.9	2.459
$^{150}\mathrm{Nd}$	5.6	3.371

$0\nu\beta\beta$ experiments

Isotope	Technique	$T^{0 u}_{1/2}$	$\langle m_{\beta\beta} \rangle ~({\rm eV})$	Reference
⁴⁸ Ca	CaF ₂ scint. crystals	$> 1.4 \times 10^{22} \text{ yr}$	<7.2-44.7	Ogawa et al. (2004)
⁷⁶ Ge	^{enr} Ge det.	$> 1.9 \times 10^{25} \text{ yr}$	< 0.35	Klapdor-Kleingrothaus et al. (2001a)
⁷⁶ Ge	^{enr} Ge det.	$(2.23^{+0.44}_{-0.31}) \times 10^{25} \text{ yr} (1\sigma)$	0.32 ± 0.03	Klapdor-Kleingrothaus and Krivosheina (2006)
⁷⁶ Ge	^{enr} Ge det.	$>1.57 \times 10^{25} \text{ yr}$	< 0.33 - 1.35	Aalseth et al. (2002a)
⁸² Se	Thin metal foils and tracking	$>2.1 \times 10^{23} \text{ yr}$	<1.2-3.2	Barabash (2006b)
¹⁰⁰ Mo	Thin metal foils and tracking	$> 5.8 \times 10^{23} \text{ yr}$	<0.6-2.7	Barabash (2006b)
¹¹⁶ Cd	¹¹⁶ CdWO ₄ scint. crystals	$> 1.7 \times 10^{23} \text{ yr}$	<1.7	Danevich et al. (2003)
¹²⁸ Te	Geochemical	$>7.7 \times 10^{24} \text{ yr}$	<1.1-1.5	Bernatowicz et al. (1993)
¹³⁰ Te	TeO ₂ bolometers	$> 3.0 \times 10^{24} \text{ yr}$	< 0.41 - 0.98	Arnaboldi et al. (2007)
¹³⁶ Xe	Liquid Xe scint.	$>4.5 \times 10^{23} \text{ yr}^{a}$	<0.8-5.6	Bernabei et al. (2002)
¹⁵⁰ Ne	Thin metal foils and tracking	$> 3.6 \times 10^{21} \text{ yr}$		Barabash (2005)

Comparison SM-QRPA-IBM

J. Barea et al., Phys. Rev. C 91 (2015) 034304

Aims of this work

- To obtain a better understanding of the relation between IBM and SM.
- To use an isospin-invariant version of the IBM.
- To study the influence of neutron-proton pairing on double-beta decay.

Nucleon-pair shell model (NPSM)

Pairs of fermions

 $P_{j_{1}j_{2}JM}^{+} = \left(a_{j_{1}}^{+} \times a_{j_{2}}^{+}\right)_{M}^{(J)} \equiv P_{\alpha JM}^{+}$ Basis states for 2*n* nucleons in NPSM $|\alpha_{1}J_{1}...\alpha_{n}J_{n}; L_{2}...L_{n}\rangle \equiv \left(\cdots \left(\left(P_{\alpha_{1}J_{1}}^{+} \times P_{\alpha_{2}J_{2}}^{+}\right)^{(L_{2})} \times P_{\alpha_{3}J_{3}}^{+}\right)^{(L_{3})} \times \cdots \times P_{\alpha_{n}J_{n}}^{+}\right)^{(L_{n})} |O\rangle$ Isospin-invariant formulation: $\mathcal{J} \rightarrow \mathcal{JT}$. Matrix elements can be calculated with a recursive technique.

Use of this overcomplete & non-orthogonal basis requires diagonalization of overlap matrix.

J.-Q. Chen, Nucl. Phys. A **562** (1993) 218; **626** (1997) 686 Y. Zhao and A. Arima, Phys. Reports **545** (2014) 1 G.J. Fu *et al.*, Phys. Rev. C **87** (2013) 044310

Collective subspace

Collective pairs of fermions

$$B_{JM}^{+} = \sum_{j_1 j_2} \alpha_{j_1 j_2}^{J} \left(a_{j_1}^{+} \times a_{j_2}^{+} \right)_{M}^{(J)}$$

Collective basis states for 2*n* nucleons

$$\left|J_{1}\ldots J_{n};L_{2}\ldots L_{n}\right\rangle \equiv \left(\cdots \left(\left(B_{J_{1}}^{+}\times B_{J_{2}}^{+}\right)^{\left(L_{2}\right)}\times B_{J_{3}}^{+}\right)^{\left(L_{3}\right)}\times\cdots\times B_{J_{n}}^{+}\right)^{\left(L_{n}\right)}\left|O\right\rangle$$

Dimension of the collective subspace much smaller than that of the full shell-model space, $\omega << \Omega$.

Effective operators

- Let H_p be the collective subspace, H_Q the excluded space and $H=H_p+H_Q$ the full SM space.
- The method of Lee-Suzuki defines an operator η that maps states in H_p to states in H_0 such that

$$\hat{\eta}(\hat{P}|E_k) = \hat{Q}|E_k\rangle, \quad k = 1,...,\omega, \quad |E_k\rangle \in \mathbf{H}$$

For small nucleon number η can be calculated exactly

$$\eta_{ri} = \left(\left(\boldsymbol{I}_{\Omega} - \boldsymbol{b}^{T} \times \boldsymbol{b} \right) \times \tilde{\boldsymbol{E}}^{T} \times \boldsymbol{d}^{-1} \right)_{ri}, \quad r = 1, \dots, \Omega, \quad i = 1, \dots, \omega$$

Mapping to bosons

Map fermion pairs to bosons

$$B_{JM}^{+} = \sum_{j_1 j_2} \alpha_{j_1 j_2}^{J} \left(a_{j_1}^{+} \times a_{j_2}^{+} \right)_{M}^{(J)} \Longrightarrow b_{JM}^{+}$$

Basis states for *n* bosons $|b_i^n\rangle = \left(\cdots \left(\left(b_{J_1}^+ \times b_{J_2}^+\right)^{(L_2)} \times b_{J_3}^+\right)^{(L_3)} \times \cdots \times b_{J_n}^+\right)^{(L_n)} |\mathbf{o}\rangle$

Corresponding NPSM basis is not orthogonal. Mapping is based on the diagonalization of the overlap matrix.

Mapping to boson operators

For the mapping to 1+2-body boson operators we need the correspondence for n=1 & n=2:

$$n = 1: |B_{JM}\rangle \Longrightarrow |b_{JM}\rangle$$
$$n = 2: |\overline{B}_{i}^{2}\rangle \Longrightarrow |\overline{b}_{i}^{2}\rangle = \sum_{j=1}^{\omega} c_{ij} |b_{j}^{2}\rangle$$

This is known as a `democratic mapping' and avoids the hierarchy of states in OAI.

Boson operators are defined through

$$\left\langle \overline{b}_{i}^{n} \left| \hat{T}^{\mathrm{b}} \right| \overline{b}_{j}^{n} \right\rangle = \left\langle \overline{B}_{i}^{n} \left| \hat{T}^{\mathrm{f}} \right| \overline{B}_{j}^{n} \right\rangle$$

Application to $0\nu\beta\beta$ decay

Shell-model Hamiltonian in the *pf* shell: Modified Kuo-Brown KB3G Collective separable approximation to it Shell-model $0 \nu \beta \beta$ -decay operator defined via its matrix elements: $M_{0\nu\beta\beta} = M_{0\nu\beta\beta}^{GT} - \left(\frac{g_V}{g_A}\right)^2 M_{0\nu\beta\beta}^{F} + M_{0\nu\beta\beta}^{T}$

A. Poves et al., Nucl. Phys. A 694 (2001) 157
M. Dufour and A.P. Zuker, Phys. Rev. C 54 (1996) 1641
J. Menéndez *et al.*, Phys. Rev. C 93 (2013) 014305

Mapping to boson models

- 1. Bosons with J=0 (s) and J=2 (d) and isospin T=1. This is an isospin-invariant version of IBM.
- 2. In addition a boson with J=1(p) and isospin T=0. This to probe the importance of isoscalar correlations in $0\nu\beta\beta$ decay. This will be referred to as p-IBM.

We map

original SM operators -> IBMb (bare) effective SM operators -> IBMe (effective)

A=44 energy spectra

A fly in the ointment

The mapped IBM Hamiltonian is obtained from A=42 and A=44.

To obtain an A-dependent IBM Hamiltonian, we use the following property:

$$\left\langle \hat{H}_{e}^{b} \right\rangle_{n,J,T} \leq \left\langle \hat{H}^{f} \right\rangle_{2n,J,T} \leq \left\langle \hat{H}_{b}^{b} \right\rangle_{n,J,T}$$

This suggests the use of an (n,T)-dependent boson Hamiltonian of the form

$$\hat{H}^{b} = x\hat{H}^{b}_{e} + (1-x)\hat{H}^{b}_{b}$$

with x an (n, T)-dependent parameter.

A=46 energy spectra

A=48 energy spectra

A=50 energy spectra

Gamow-Teller $\beta\beta$ in sd-IBM

Gamow-Teller $\beta\beta$ in *sdp*-IBM

Gamow-Teller $\beta\beta$ in sd-IBM

Gamow-Teller $\beta\beta$ in *sdp*-IBM

Gamow-Teller $\beta\beta$ in sd-IBM

Gamow-Teller $\beta\beta$ in *sdp*-IBM

Conclusions and open problems

Lee-Suzuki transformation is used to define an effective collective Hamiltonian.

In light nuclei (⁴⁸Ca, ⁷⁶Ge, ⁸²Se):

Isospin invariance must be included in the IBM.

Isoscalar-pair bosons are not needed for energy spectra but they are important for $\beta \beta$ decay.

Open problems:

What is the boson-number dependence of the Hamiltonian?

How to couple this study to phenomenology?

Total $\beta\beta$ in *sd*-IBM

Total $\beta\beta$ in *sdp*-IBM

