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Why optical potentials?

A.I.	et	al.	Phys.	Rev.	C 92,	031304	(2015) Broglia et	al. Phys.	Scr. 91 06301*	(2016)

- Optical	potentials	reduce	many-body	
complexity decoupling	structure	
contribution	and	reactions	dynamics.

- Often	fitted	on	elastic	scattering	data	

1	particle transfer

2	particle transfer
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Objective: an	effective, consistent description	of	structure	and	
reactions	with	a	single	formalism.
(Hopefully)	Predictive power of	nuclear reactions measurements
over	a	range of	exotic isotopes.

Method: Optical	potential derived from	Self	Consistent Green	
Function and	χEFT	interactions.

1. reproduce	nuclear	bulk	properties,	i.e.	binding	energy	and	radii;	
NNLOsat

2. use	the	same	description	to	consistently	generate	an	optical	
potential	reproducing	elastic	scattering	data.

Optical	Potentials

09/10/2017 Andrea	Idini GANIL



Σ∗= +

Particle hole
‘polarization’
propagator	

(ph-RPA)

Particle-particle (pp-RPA)	
two-body	correlation ‘ladder’ propagator

Faddeev RPA
ADC(3)

n p

Green	Functions (Dyson	Equation)

HF
ADC(1)
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The	irreducible	self-energy	is	a	nucleon-
nucleus	optical	potential*

è This	provides	consistent	many-body	
and	scattering	wave	functions
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Nucleon	elastic	scattering

Σ789

E

*Mahaux &	Sartor,	Adv.	Nucl.	Phys.	20	(1991),	Escher	&	Jennings	PRC66:034313	(2002)
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𝜖;

correlated	mean-field

resonances	beyond	mean-field

Σ,
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Σ<,<=
>,?∗ (𝐸)

Σ>,?∗(𝑘, 𝑘), 𝐸)

Σ∗= +

- Solve	Dyson	equation in	HO	Space,	find

𝑘D

2𝑚𝜓>,? 𝑘 + ∫ 𝑑𝑘)𝑘)D Σ>,?∗ 𝑘, 𝑘), 𝐸 𝜓>,? 𝑘′ = E	𝜓>,?(𝑘)

- diagonalize in	full	continuum	momentum space

Σ<,<=
>,?∗ (𝐸)

Nmax
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FIG. 17. Comparison of di↵erent prescriptions for center of mass calculations in 16O phase shifts,

compared with NCSM/RGM calculation [2]. Result of Eq. (7) (left) for laboratory frame or Eq.(9)

(right) for center of mass frame, with E(A) solution of Hamiltonian in Eq. 1 for 16O, where

T
c.m.

(A = 16) has been employed.

FIG. 18. Comparison of di↵erent prescriptions for center of mass calculations in 16O phase shifts,

compared with NCSM/RGM calculation [2]. Result of Eq. (10) In the case of T
c.m.

= 0 (left),

T
c.m.

(A = 16) (center) and T
c.m.

(A = 17) (right) center of mass correction has been employed.
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Navràtil,	Roth,	Quaglioni,	
PRC82,	034609	(2010) Σ,

SRG-N3LO,	 Λ = 2.66	fm:9

𝑛 + O	 𝑔. 𝑠.9W
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SRG-N3LO,	 Λ = 2.66	fm:9
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Navràtil,	Roth,	Quaglioni,	
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𝑛 + O	9W
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SRG-N3LO,	 Λ = 2.66	fm:9

Navràtil,	Roth,	Quaglioni,	
PRC82,	034609	(2010)

𝑛 + O	9W
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Using	the	ab	initio optical potential for	neutron elastic scattering on	
Oxygen

GANIL
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Ψ0 𝑟 = 𝐴� ∫ 𝑑𝑟9 …𝑑𝑟7Φ 7:9
8 (𝑟9, … , 𝑟7:9)Φ 7

8 (𝑟9, … , 𝑟7)
𝑟0 𝑟0 𝑟0

Overlap function

EM results from A. Cipollone PRC92, 014306 (2015)
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Proton	particle-hole	gap
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Collaboration	with	C.	Bertulani
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open	circles	neutrons,	closed	protons

𝑆𝐹 = Φ<
7:9 Φ^._.7

D

Knockout	Spectroscopic Factors
𝑘D

2𝑚𝜓>,? 𝑘 + ∫ 𝑑𝑘)𝑘)D Σ>,?∗ 𝑘, 𝑘), 𝐸 𝜓>,? 𝑘′ = E	𝜓>,?(𝑘)

Strongly-bound systems

Shell M

A. Gade et al., Phys. Rev. C 77, 044306 (2008) 
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Volume integrals

Non	local potential

Im Σ 𝜖; = 0

different Fermi	
energies and	

particle-hole gap	
for	different
interactions

Cabc protons	 𝐽e

S.	Waldecker et	al. PRC84,	034616(2011)
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Ca	isotopes

neutron and	proton
volume	integrals of	
self	energies.	
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Figure 2. Volume integral of the imaginary part of the neutron optical potentials, JW (E), for
targets at the subshell closure of calcium isotopes: 40Ca, 48Ca, 52Ca, 54Ca, 60Ca, calculated at
N

max

=11.

on 40Ca was also computed in Ref. [32].

4. Conclusions

Even with the limitations of a (non optimal) oscillator basis, we found that most important
features of optical potentials are well reproduced. In the long term, it will be necessary to
properly account for the continuum in calculating the self-energy and to improve the realistic
nuclear interactions. Nevertheless, it is clear from the present results that reliable ab initio

calculations of optical potentials are now a goal within reach.
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systems is relevant.

The class I am going to employ is motivated by 60-
odd years of modelling EDFs in nuclei [31], and can be
formulated as

Ẽ [ρ] =
m
∑

i=1

CiVi [ρ] , (2)

where Ci are coupling constants and Vi [ρ] are the
Hartree-Fock (or first-order many-body-perturbation-
theory) averages of certain two-body, three-body, etc.,
operators V̂i. At early stages of developing the nuclear
EDFs, these operators were called interactions, but in
fact, their sole role was to generate specific terms in the
EDF, so here I call them EDF generators.

For the construction presented below, it is essential
that the model EDFs (2) are built in terms of true oper-
ators acting in the many-body space, because one must
be able to use them not only for defining the EDFs, but
also within the true ab initio many-body context. On
the one hand, some constructs typical in nuclear EDFs,
like the explicit density-dependent terms [31], are thus
excluded. On the other hand, functionals based on EDF
generators seem to be the only ones that allow for us-
ing EDFs in the multi-reference context, see, e.g., recent
Ref. [32], and, therefore, constructions based on EDF
generators are very much called for. We note here that
the proposed scheme would also work for EDFs generated
by operators depending on additional parameters, so the
specific linear dependence on the coupling constants al-
though convenient, is not really essential.

Before considering specific EDF generators V̂i that
were used and/or proposed in nuclear physics, let us dis-
cuss the main consequences of using the model EDF in
the form of Eq. (2). First of all, one should keep in mind
that the EDF is always meant to be minimized with re-
spect to the density, and thus its detailed form beyond
the minimum is not essential. By the same token, there is
always a one-to-one correspondence between the coupling
constants of the functional Ci and densities that mini-
mize it. Therefore, the manifold of meaningful ground-
state densities M [ρ] is not really infinite dimensional, but
it can be parametrized by the coupling constants Ci, and
eventually by conserved quantum numbers, so it has a fi-
nite number of dimensions. Conversely, the model EDF
(2) does not have to properly describe the exact ener-
gies of states having all possible densities, but only those
that have densities on this restricted finite-dimensional
manifold M [ρ].

This important observation has far reaching conse-
quences. Indeed, instead of probing the system with
all possible one-body potentials −U(r) of an arbitrary
shape, as in Eq. (1), it is enough to probe it within the
finite set of the EDF generators −V̂j , that is, to solve the

constrained variational equation,

δE′ = δ⟨Ψ|Ĥ −
m
∑

j=1

λj V̂j |Ψ⟩ = 0, (3)

for a suitable set of values of a finite number of Lagrange
multipliers λi, which is perfectly manageable a task. In
Eq. (3), there appear the same EDF generators, which in
Eq. (2) were used to define the model EDF in the first
place. This is perfectly logical: to meaningfully include
a term in the model EDF we must first test its proper-
ties in the real world of the ab initio phase space and
Hamiltonian.
Solution of Eq. (3) gives us the exact ground-state en-

ergiesE(λj) and one-body non-local densities ρλj (r1, r2),
both as functions (not functionals!) of the Lagrange mul-
tipliers λj . Of course, now the dependence of densities on
Lagrange multipliers cannot be inverted, however, this is
not at all necessary. It is enough to ensure that, on the
manifold generated by the Lagrange multipliers λj , the
model EDF (2) best reproduces the exact energies, that
is, it is enough to adjust the EDF coupling constants Ci

so as to have,

E(λj) =
m
∑

i=1

CiVi [ρλj ] . (4)

The adjustment is performed for a finite set of values
of the finite set of Lagrange multipliers, so Eq. (4) con-
stitutes, in fact, a basic standard linear-regression prob-
lem. After the adjustment, one obtains a true ab initio-
equivalent EDF.
The ab initio derivation of the model EDFs, proposed

in this work, may become a basis for future studies that
can bridge the ab initio methods with those related to de-
riving and improving the phenomenological EDFs. The
proposed research program will probably take some time,
especially in view of the fact that present-day successful
ab initio implementations are at the forefront of what
is currently possible within the high performance com-
puting. Therefore, in this work I only present a simple
proof-of-principle application of the proposed scheme to
a task of relating one class of the EDF to another.
To this end, I used the EDF generators corresponding

to the central and tensor parts of the nuclear Skyrme
interaction [31, 33–36], which is composed of eight terms
(m=8), that is,
⎛
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for	variational problem
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one	body	densities

Lagrange	multiplier

Model	(Ab	initio)	
Energies

Coupling	constants	extracted	with	
linear	regression

Dobaczewski JPG43, 04LT01 (2016) 

Derivation of	model	density functionals
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systems is relevant.

The class I am going to employ is motivated by 60-
odd years of modelling EDFs in nuclei [31], and can be
formulated as

Ẽ [ρ] =
m
∑

i=1

CiVi [ρ] , (2)

where Ci are coupling constants and Vi [ρ] are the
Hartree-Fock (or first-order many-body-perturbation-
theory) averages of certain two-body, three-body, etc.,
operators V̂i. At early stages of developing the nuclear
EDFs, these operators were called interactions, but in
fact, their sole role was to generate specific terms in the
EDF, so here I call them EDF generators.

For the construction presented below, it is essential
that the model EDFs (2) are built in terms of true oper-
ators acting in the many-body space, because one must
be able to use them not only for defining the EDFs, but
also within the true ab initio many-body context. On
the one hand, some constructs typical in nuclear EDFs,
like the explicit density-dependent terms [31], are thus
excluded. On the other hand, functionals based on EDF
generators seem to be the only ones that allow for us-
ing EDFs in the multi-reference context, see, e.g., recent
Ref. [32], and, therefore, constructions based on EDF
generators are very much called for. We note here that
the proposed scheme would also work for EDFs generated
by operators depending on additional parameters, so the
specific linear dependence on the coupling constants al-
though convenient, is not really essential.

Before considering specific EDF generators V̂i that
were used and/or proposed in nuclear physics, let us dis-
cuss the main consequences of using the model EDF in
the form of Eq. (2). First of all, one should keep in mind
that the EDF is always meant to be minimized with re-
spect to the density, and thus its detailed form beyond
the minimum is not essential. By the same token, there is
always a one-to-one correspondence between the coupling
constants of the functional Ci and densities that mini-
mize it. Therefore, the manifold of meaningful ground-
state densities M [ρ] is not really infinite dimensional, but
it can be parametrized by the coupling constants Ci, and
eventually by conserved quantum numbers, so it has a fi-
nite number of dimensions. Conversely, the model EDF
(2) does not have to properly describe the exact ener-
gies of states having all possible densities, but only those
that have densities on this restricted finite-dimensional
manifold M [ρ].

This important observation has far reaching conse-
quences. Indeed, instead of probing the system with
all possible one-body potentials −U(r) of an arbitrary
shape, as in Eq. (1), it is enough to probe it within the
finite set of the EDF generators −V̂j , that is, to solve the

constrained variational equation,

δE′ = δ⟨Ψ|Ĥ −
m
∑

j=1

λj V̂j |Ψ⟩ = 0, (3)

for a suitable set of values of a finite number of Lagrange
multipliers λi, which is perfectly manageable a task. In
Eq. (3), there appear the same EDF generators, which in
Eq. (2) were used to define the model EDF in the first
place. This is perfectly logical: to meaningfully include
a term in the model EDF we must first test its proper-
ties in the real world of the ab initio phase space and
Hamiltonian.
Solution of Eq. (3) gives us the exact ground-state en-

ergiesE(λj) and one-body non-local densities ρλj (r1, r2),
both as functions (not functionals!) of the Lagrange mul-
tipliers λj . Of course, now the dependence of densities on
Lagrange multipliers cannot be inverted, however, this is
not at all necessary. It is enough to ensure that, on the
manifold generated by the Lagrange multipliers λj , the
model EDF (2) best reproduces the exact energies, that
is, it is enough to adjust the EDF coupling constants Ci

so as to have,

E(λj) =
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CiVi [ρλj ] . (4)

The adjustment is performed for a finite set of values
of the finite set of Lagrange multipliers, so Eq. (4) con-
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lem. After the adjustment, one obtains a true ab initio-
equivalent EDF.
The ab initio derivation of the model EDFs, proposed

in this work, may become a basis for future studies that
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riving and improving the phenomenological EDFs. The
proposed research program will probably take some time,
especially in view of the fact that present-day successful
ab initio implementations are at the forefront of what
is currently possible within the high performance com-
puting. Therefore, in this work I only present a simple
proof-of-principle application of the proposed scheme to
a task of relating one class of the EDF to another.
To this end, I used the EDF generators corresponding
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CD_Bonn-V_Coul (case λ=0) vs SV
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Conclusions and	Perspectives
• We are	developing an	interesting tool to	study nuclear
reactions effectively.	
We have defined a	non-local generalized optical potential
corresponding to	nuclear self	energy.

• This tool is useful to	probe	properties of	nuclear interactions.
• Spectroscopic Factors from	ab-initio overlap wavefunctions
do	not seem to	depend much on	proton-neutron asymmetry
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CD_Bonn-V_Coul (case λ=0) vs SV
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𝑏 = 22.36	MeV

«Imaginary»	Parameter
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Escher	&	Jennings	PRC66	034313	(2002)

Σ∗= +

Σ corresponds to	the	Feshbach’s generalized optical potential

Dyson	Equation

Equation	of	motion

Corresponding Hamiltonian

Why Green’s Functions?
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Central	
Part

Andrea Idini
More details in 

C. Barbieri, A. Carbone, Lect. Notes Phys. arXiv:1611.03923 [nucl-th]

Σ∗(𝜔) Dyson	
Equation

Vertices
Summation

(𝜔)

Vertices
(ME)

𝐺(𝑟, 𝜔)
particle
structure

self-energy
(optical potential)

Building	
Blocks

Constitues

Unknown
2p1h

2p2h
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𝜎x 𝐸 = 4𝜋D𝛼𝐸𝑅(𝐸)	
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With
Francesco	Raimondi

RPAHO	ME

Dipole Response and	Polarizability

Hagen et al., Nature Physics 12, 186
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16O	neutron	propagator

Different	colors	to	different	𝑙
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𝐶𝑎 + 𝑛b� 	@3.2	MeV
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16O	and	24O	
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