On the norm overlap between many-body states

Thomas DUGUET

CEA/SPhN, Saclay, France
IKS, KU Leuven, Belgium NSCL, Michigan State University, USA
B. Bally, T. Duguet, arXiv:1704.05324 and arXiv:1706.04553

Nuclear Structure and Reactions: Building Together for the Future Topical meeting, GANIL, Caen, Oct. 9-13 2017

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Background 1

(6) A-body Schrödinger equation within a set of non-orthogonal states

\rightarrow Set of N non-orthogonal many-body states $\mathcal{M} \equiv\left\{\left|\Phi_{k}\right\rangle, k=1 \ldots, N\right\}$
\rightarrow Secular equation = generalized eigenvalue problem
$\mathrm{N}(\mathrm{N}+1) / 2$ independent elements

$$
\begin{aligned}
\left(\mathfrak{f}_{n}\right)_{k} & \equiv f_{n k} \\
\mathcal{N}_{k l} & \equiv\left\langle\Phi_{k} \mid \Phi_{l}\right\rangle
\end{aligned}
$$

$$
\mathcal{H}_{k l} \equiv\left\langle\Phi_{k}\right| H\left|\Phi_{l}\right\rangle \quad \text { Hermitian Hamiltonian matrix }
$$

1) Set of Slater determinants $\mathcal{N}_{k l} \rightarrow \operatorname{det}$
2) Set of Bogoliubov states $\mathcal{N}_{k l} \rightarrow \mathrm{pf} \quad[\mathrm{L}$. M. Robledo, 2009]

Solved a long-standing problem related to capturing the complex phase
$\rightarrow \rightarrow$ Examples: generator coordinate method and symmetry restoration (proj. only makes use of first line of \mathcal{N})
\rightarrow Complex phases

1) The phase of each state $\left|\Phi_{k}\right\rangle$ can be arbitrarily chosen
2) One must make a choice and compute all entries $\mathcal{N}_{k l}$ consistently with it
\rightarrow Practical phase conventions

$$
\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{1}\right\rangle\right)=\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{2}\right\rangle\right) \ldots=\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{N_{\text {set }}}\right\rangle\right) \quad \begin{aligned}
& |\bar{\Phi}\rangle \equiv\left|\Phi_{1}\right\rangle \text { Reference state within the set } \\
& |\bar{\Phi}\rangle \equiv|0\rangle \quad \text { Reference state outside the set (i.e. Proj.) }
\end{aligned}
$$

Background 2

© Particle-number-restored Bogoliubov MBPT and CC theory
[T. Duguet, 2015]
[T. Duguet, A. Signoracci, 2016]
\rightarrow Set of N non-orthogonal gauge-rotated Bogoliubov states $\mathcal{M} \equiv\left\{|\Phi(\varphi)\rangle \equiv e^{i A \varphi}|\Phi\rangle ; \varphi \in[0,2 \pi]\right\}$
$|\Phi\rangle$ such that $\beta_{k}|\Phi\rangle=0 \forall k$
\rightarrow Correlated off-diagonal kernels
Exact ground state
$\left|\Psi_{0}\right\rangle \equiv U(\infty)|\Phi\rangle$
Evolution operator in imaginary time atic expansion

$$
\mathcal{N}(\varphi) \equiv \frac{\left\langle\Psi_{0} \mid \Phi(\varphi)\right\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle}
$$

$$
\mathcal{H}(\varphi) \equiv \frac{\left\langle\Psi_{0}\right| H|\Phi(\varphi)\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle}=h(\varphi) \mathcal{N}(\varphi) \quad h(\varphi) \equiv \frac{\left\langle\Psi_{0}\right| H|\Phi(\varphi)\rangle}{\left\langle\Psi_{0} \mid \Phi(\varphi)\right\rangle}
$$

Sum of connected diagrams linked to H/A Naturally terminating BCC expansion

$$
\mathcal{A}(\varphi) \equiv \frac{\left\langle\Psi_{0}\right| A|\Phi(\varphi)\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle}=a(\varphi) \mathcal{N}(\varphi)
$$

$$
a(\varphi) \equiv \frac{\left\langle\Psi_{0}\right| A|\Phi(\varphi)\rangle}{\left\langle\Psi_{0} \mid \Phi(\varphi)\right\rangle}
$$

$" \rightarrow$ Lowest order = mean-field kernels
$\xrightarrow{\prime \rightarrow} \rightarrow$ Exact ground-state energy
$E_{0}^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{H}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}$
Projected HFB theory

$$
\begin{aligned}
\mathcal{N}^{(1)}(\varphi) & =\frac{\langle\Phi \mid \Phi(\varphi)\rangle}{\langle\Phi \mid \Phi\rangle} \\
h^{(1)}(\varphi) & =\frac{\langle\Phi| H|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle} \\
a^{(1)}(\varphi) & =\frac{\langle\Phi| A|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}
\end{aligned}
$$

Background 2

© Correlated off-diagonal norm kernels within PNR-BCC and PNR-BMBPT theories

$$
\left.\begin{array}{l}
|\Phi(\varphi)\rangle \equiv e^{i A \varphi}|\Phi\rangle \\
\mathcal{N}(\varphi)=\frac{\left\langle\Psi_{0} \mid \Phi(\varphi)\right\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle}
\end{array}\right\} \begin{cases}\frac{d}{d \varphi} \mathcal{N}(\varphi)-i a(\varphi) \mathcal{N}(\varphi)=0 & \underbrace{\text { 1st order OQlesed form expression }} \\
a(\varphi) \equiv \frac{\left\langle\Psi_{0}\right| A|\Phi(\varphi)\rangle}{\left\langle\Psi_{0} \mid \Phi(\varphi)\right\rangle} & \begin{array}{l}
\mathcal{N}(\varphi)=e^{i \int_{0}^{\varphi} d \phi a(\phi)}
\end{array} \\
\text { Correlated linked-cennected kernel of A } \\
\text { Involves }\{|\Phi(\phi)\rangle \text { for } \phi \in[0, \varphi]\}\end{cases}
$$

" \rightarrow First-order diagram

$$
a^{(1)}(\varphi) \equiv \frac{\langle\Phi| A|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle}=A^{00}+\frac{1}{2} \sum_{k_{1} k_{2}} A_{k_{1} k_{2}}^{02} R_{k_{2} k_{1}}^{--}(\varphi)
$$

$$
\mathcal{N}^{(1)}(\varphi)=\langle\Phi \mid \Phi(\varphi)\rangle=e^{i A^{00} \varphi+\frac{i}{2} \sum_{k_{1} k_{2}} \int_{0}^{\varphi} d \phi A_{k_{1} k_{2}}^{02} R_{k_{2} k_{1}}^{--}(\phi)}
$$

$$
\begin{gathered}
A^{i j} \leftrightarrow \underbrace{\beta^{\dagger} \ldots \beta^{\dagger}}_{\text {i operators j operators }} \underbrace{\beta \ldots \beta} \\
R_{k_{1} k_{2}}^{--}(\varphi) \equiv \frac{\langle\Phi| \beta_{k_{1}} \beta_{k_{2}}|\Phi(\varphi)\rangle}{\langle\Phi \mid \Phi(\varphi)\rangle} \\
\Omega \equiv H-\lambda A
\end{gathered}
$$

${ }^{\prime} \rightarrow$ Second-order diagram $\quad a^{(2)}(\varphi)=a^{(1)}(\varphi)-\frac{1}{4} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\Omega_{k_{1} k_{2} k_{3} k_{4}}^{04} \tilde{A}_{k_{1} k_{2}}^{20}(\varphi)}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}} R_{k_{4} k_{3}}^{--}(\varphi)$

Depends on the dynamics
\square Derived up to 5th order
[P. Arthuis et al., unpublished]

Objectives $=$ General correlated off-diagonal norm kernels

(2) Two arbitrary Bogoliubov vacua $|\Phi\rangle$ and $|\breve{\Phi}\rangle$

$$
\begin{aligned}
& \left.\begin{array}{c}
\binom{\beta}{\beta^{\dagger}}=\mathcal{W}^{\dagger}\binom{c}{c^{\dagger}} \equiv\left(\begin{array}{cc}
U^{\dagger} & V^{\dagger} \\
V^{T} & U^{T}
\end{array}\right)\binom{c}{c^{\dagger}} \\
\binom{\breve{\beta}}{\breve{\beta}^{\dagger}}=\breve{W}^{\dagger}\binom{c}{c^{\dagger}} \equiv\left(\begin{array}{ll}
\breve{U}^{\dagger} & \breve{V}^{\dagger} \\
\breve{V}^{T} & \breve{U}^{T}
\end{array}\right)\binom{c}{c^{\dagger}}
\end{array}\right] \\
& \text { Sole given of the problem }
\end{aligned} \longrightarrow \begin{aligned}
& |\Phi\rangle \text { such that } \beta_{k}|\Phi\rangle=0 \forall k \\
& |\breve{\Phi}\rangle \text { such that } \breve{\beta}_{k}|\breve{\Phi}\rangle=0 \forall k \\
& \downarrow
\end{aligned}
$$

$$
\mathcal{N}=\frac{\left\langle\Psi_{0} \mid \breve{\Phi}\right\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle} \quad \text { with } \quad\left|\Psi_{0}\right\rangle \equiv U(\infty)|\Phi\rangle
$$

(First order = norm overlap between arbitrary Bogoliubov states

$$
\mathcal{N}^{(1)}=\frac{\langle\Phi \mid \breve{\Phi}\rangle}{\langle\Phi \mid \Phi\rangle}
$$

Question 1: can we find a method to calculate 1) general 2) correlated norm kernels without any phase ambiguity? Question 2: that provides an alternative to Pfaffians [L.M. Robledo (2009)] at lowest order?

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Master equations

© Auxiliary manifold linking $|\Phi\rangle$ and $|\breve{\Phi}\rangle$
\rightarrow Write unitary transformation $|\breve{\Phi}\rangle=e^{i S}|\Phi\rangle$ with general one-body Hermitian operator S on Pock space

$$
\begin{aligned}
S & =S^{00}+\sum_{k_{1} k_{2}} S_{k_{1} k_{2}}^{11} \beta_{k_{1}}^{+} \beta_{k_{2}}+\frac{1}{2} \sum_{k_{1} k_{2}}\{S_{k_{1} k_{2}}^{20} \beta_{k_{1}}^{+} \beta_{k_{2}}^{+}+\underbrace{S_{k_{1} k_{2}}^{02} \beta_{k_{2}} \beta_{k_{1}}})^{v} \\
& =S^{00}+\frac{1}{2} \operatorname{Tr}\left(S^{11}\right)+\frac{1}{2}\left(\beta^{\dagger} \beta\right) \underbrace{(\text { Hermitian matrix }}_{\substack{\left.S^{11} \\
-S^{02} \\
S^{20} \\
\hline \\
\hline \\
\hline 1 * \\
\hline \\
\hline \\
\beta \\
\beta^{\dagger}\\
\right)}}
\end{aligned}
$$

will play a key role
To be determined from \mathscr{W} and $\breve{\mathcal{W}}$
Entirely?
$\rightarrow \rightarrow$ Introduce the manifold $\mathcal{M}[|\Phi\rangle, S] \equiv\left\{|\Phi(\theta)\rangle \equiv e^{i \theta S}|\Phi\rangle, \theta \in[0,1]\right\}$

$$
\begin{aligned}
& |\Phi(0)\rangle=|\Phi\rangle \\
& |\Phi(1)\rangle=|\Phi \bar{\Phi}\rangle
\end{aligned}
$$

(Off-diagonal norm kernel along the manifold (arbitrary bra $\langle\Theta|$)

Norm kernels

Closed-form expression

Correlated off-diagonal kernel for $\langle\Theta| \equiv\left\langle\Psi_{0}\right|$ and $\theta=1$
(2)Uncorrelated off-diagonal kernel for $\langle\Theta| \equiv\langle\Phi|$ and $\theta=1$

$$
\begin{aligned}
& \frac{\left\langle\Psi_{0} \mid \breve{\Phi}\right\rangle}{\left\langle\Psi_{0} \mid \Phi\right\rangle}=e^{i \int_{0}^{1} d \phi s\left[\left\langle\Psi_{0}\right|,|\Phi(\phi)\rangle\right]} \\
& s\left[\left\langle\Psi_{0}\right|,|\Phi(\theta)\rangle\right]=\frac{\left\langle\Psi_{0}\right| S|\Phi(\theta)\rangle}{\left\langle\Psi_{0} \mid \Phi(\theta)\right\rangle}
\end{aligned}
$$

(Phase convention

1) Calculable without phase ambiguity from generalized diagrammatic (GWT)

$" \rightarrow$ The phase of $\langle\Phi \mid \breve{\Phi}\rangle$ reflects an implicit or explicit convention fixing the relative phase between both states
" \rightarrow Actual problem of interest
$\{|\Phi\rangle,|\Phi \breve{\Phi}\rangle\} \in \mathcal{M}_{\text {set }} \equiv\left\{\left|\Phi_{1}\right\rangle, \ldots,\left|\Phi_{N_{\text {set }}}\right\rangle\right\} \Rightarrow N \equiv$
\rightarrow Fix their phase relative to given $|\bar{\Phi}\rangle$

Goal = consistent set of complex phases

$$
\left.\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{1}\right\rangle\right)=\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{2}\right\rangle\right)=\ldots=\operatorname{Arg}\left(\left\langle\bar{\Phi} \mid \Phi_{N_{\text {set }}}\right\rangle\right)\right\rangle
$$

Fix their relative phases
Actual phase relative to $|\bar{\Phi}\rangle$ unspecified Ex: $|\bar{\Phi}\rangle \equiv|0\rangle$ or $|\bar{\Phi}\rangle \equiv\left|\Phi_{1}\right\rangle$
$\xrightarrow{\prime} \rightarrow$ The above phase convention translates into a constrain on S, ie. it fixes \mathbf{S}^{00}
$\langle\Theta| \equiv\langle\bar{\Phi}|$ and $\theta=1 \quad \boldsymbol{\rightharpoonup} \frac{\langle\bar{\Phi} \mid \breve{\Phi}\rangle}{\langle\bar{\Phi} \mid \Phi\rangle}=e^{-\mathfrak{I} m \int_{0}^{1} d \phi s[\langle\bar{\Phi}|,|\Phi(\phi)\rangle]} e^{i \Re e \int_{0}^{1} d \phi s[\langle\bar{\Phi}|,|\Phi\rangle}$

$$
\mathfrak{R} e \int_{0}^{1} d \theta s[\langle\bar{\Phi}|,|\Phi(\theta)\rangle]=0
$$

Extraction of S and of the auxiliary manifold

(Bogoliubov transformation linking $|\Phi\rangle$ and $|\Phi(\theta)\rangle$
Key lessons (but not general/practical)
[P. Ring, P. Schuck (1977)]
[K. Hara, S . Iwasaki (1979)]
[K. Takayanagi (2008)]

$$
\begin{gathered}
\binom{\beta}{\beta^{\dagger}}=\mathcal{X}^{\dagger}(\theta)\binom{\beta^{\theta}}{\beta^{\theta \dagger}} \equiv\left(\begin{array}{cc}
A^{\dagger}(\theta) & B^{\dagger}(\theta) \\
B^{T}(\theta) & A^{T}(\theta)
\end{array}\right)\binom{\beta^{\theta}}{\beta^{\theta \dagger}} \text { with }\left\{\begin{array}{l}
X(0)=1 \\
X(1)=\breve{W}^{\dagger} \mathcal{W}
\end{array}\right. \\
\\
X(\theta)=e^{-i \theta S} \quad
\end{gathered}
$$

(2) Extraction of S and $\chi(\theta)$

1) Diagonalize unitary matrix
2) Take principal logarithm
3) Take exponential
$\mathcal{X}_{\mathrm{D}}(1) \equiv \mathcal{P}^{\dagger} X(1) \mathcal{P}$
$\operatorname{Sp} \mathcal{X}(1)=\left\{x_{i},\left|x_{i}\right|=1\right\}$
$\mathcal{S}=\mathcal{P} \mathcal{S}_{\mathrm{D}} \mathcal{P}^{\dagger}$
$\left.\left.\operatorname{Sp} \mathcal{S} \equiv\left\{s_{i}=i \log x_{i} \in\right]-\pi, \pi\right]\right\}$

$$
\begin{aligned}
& \mathcal{X}(\theta)=\mathcal{P} \mathcal{X}_{\mathrm{D}}(\theta) \mathcal{P}^{\dagger} \\
& \operatorname{Sp} \mathcal{X}(\theta)=\left\{x_{i}(\theta)=e^{-i \theta s_{i}}\right\}
\end{aligned}
$$

© Elementary contractions along the auxiliary manifold

$$
\mathcal{R}(\theta) \equiv\left(\begin{array}{cc}
\frac{\langle\Phi| \beta^{\dagger} \beta|\Phi(\theta)\rangle}{\langle\Phi \mid \Phi(\theta)\rangle} & \frac{\langle\Phi| \beta \beta|\Phi(\theta)\rangle}{\langle\Phi \mid \Phi(\theta)\rangle} \\
\frac{\left\langle\Phi \beta^{\dagger} \beta^{\dagger} \mid \Phi(\theta)\right\rangle}{\langle\Phi \mid \Phi(\theta)\rangle} & \frac{\langle\Phi| \beta \beta^{\dagger}|\Phi(\theta)\rangle}{\langle\Phi \mid \Phi(\theta)\rangle}
\end{array}\right) \equiv\left(\begin{array}{cc}
R^{+-}(\theta) & R^{--}(\theta) \\
R^{++}(\theta) & R^{-+}(\theta)
\end{array}\right)=\left(\begin{array}{cc}
0 & -B^{\dagger}(\theta)\left[A^{T}(\theta)\right]^{-1} \\
0 & 1
\end{array}\right)
$$

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Computation of the norm overlap

© Final expression
From phase condition (not explicited here)
Onishi
(1) Add arbitrary «third»Bogoliubov transformation (BMZ) to \mathscr{W} and/or \breve{W}

$$
\mathcal{W} \boldsymbol{\sim} \tilde{\mathcal{W}} \equiv \mathcal{W} \mathcal{K}=\left(\begin{array}{cc}
U & V^{*} \\
V & U^{*}
\end{array}\right)\left(\begin{array}{cc}
K & 0 \\
0 & K^{*}
\end{array}\right) \equiv\left(\begin{array}{cc}
\tilde{U} & \tilde{V}^{*} \\
\tilde{V} & \tilde{U}^{*}
\end{array}\right) \Longrightarrow \tilde{\beta}_{k}|\Phi\rangle=0 \boldsymbol{\Delta}|\tilde{\Phi}\rangle \equiv \operatorname{det} K|\Phi\rangle
$$

Same vacuum up to a phase
Different manifold

$$
\tilde{\mathcal{S}}, \tilde{\mathcal{X}}(\theta)
$$

Constrain on S^{00} absorbes extra phase

$$
\frac{\langle\Phi \mid \Phi \breve{\Phi}\rangle}{\langle\Phi \mid \Phi\rangle}=e^{i \tilde{S}^{00}} e^{\frac{i}{2} \sum_{k_{1} k_{2}} \tilde{S}_{k_{1} k_{2}}^{02} \int_{0}^{1} d \phi \tilde{R}_{k_{2} k_{1}}^{--}(\phi)}
$$

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Toy model 1: global gauge rotation for 10-levels BCS model

- BCS transformations (,
* | $U(k, \bar{k})=\left(\begin{array}{cc}u_{k} & 0 \\ 0 & u_{k}\end{array}\right)$ |
| :--- |
| $V(k, \bar{k})=\left(\begin{array}{cc}0 & +v_{k} \\ -v_{k} & 0\end{array}\right)$ |
| $\breve{U}(k, \bar{k})=e^{+i \varphi} U(k, \bar{k})$ |
| $\breve{V}(k, \bar{k})=e^{-i \varphi} V(k, \bar{k})$ |

© Possible explicit representation
$\mathscr{W} \breve{\mathcal{W}}$

$\left\{\begin{array}{l}|\Phi\rangle \equiv \prod_{k=1}^{5}\left(u_{k}+v_{k} c_{k}^{\dagger} c_{\bar{k}}^{\dagger}\right)|0\rangle \\ |\breve{\Phi}\rangle=e^{i \varphi A}|\Phi\rangle\end{array}\right.$

Analytic result

Toy model 2: 4-levels Bogoliubov model

© Bogoliubov transformations

(Possible explicit representation

$\Rightarrow \begin{aligned} & U(k, \bar{k})=\left(\begin{array}{cc}u_{k} & 0 \\ 0 & u_{k}\end{array}\right) \\ & V(k, \bar{k})=\left(\begin{array}{cc}0 & +v_{k} \\ -v_{k} & 0\end{array}\right)\end{aligned}$

$\stackrel{\rightharpoonup}{W} \equiv \underbrace{\left(\begin{array}{cc}L & 0 \\ 0 & L^{*}\end{array}\right)}_{\text {Complex s.p. basis transformation }}\left(\begin{array}{cc}U & V^{*} \\ V & U^{*}\end{array}\right)$

Toy model 3: 10-levels Bogoliubov model

© Set of Bogoliubov vacua $\mathcal{M} \equiv\left\{\left|\Phi_{1}\right\rangle,\left|\Phi_{2}\right\rangle,\left|\Phi_{3}\right\rangle\right\}$
(t) Norm matrix
$\mathcal{N}_{\mathcal{M}} \equiv\left(\begin{array}{lll}\left\langle\Phi_{1} \mid \Phi_{1}\right\rangle & \left\langle\Phi_{1} \mid \Phi_{2}\right\rangle & \left\langle\Phi_{1} \mid \Phi_{3}\right\rangle \\ \left\langle\Phi_{2} \mid \Phi_{1}\right\rangle & \left\langle\Phi_{2} \mid \Phi_{2}\right\rangle & \left\langle\Phi_{2} \mid \Phi_{3}\right\rangle \\ \left\langle\Phi_{3} \mid \Phi_{1}\right\rangle & \left\langle\Phi_{3} \mid \Phi_{2}\right\rangle & \left\langle\Phi_{3} \mid \Phi_{3}\right\rangle\end{array}\right)$
© Phase convention
\rightarrow Pfaffian method

(b)

- Individual overlaps differ by a phase (convention)
- Eigenvalues of the norm matrix (or any observable) are the same

Consistency is what matters!

Outline

I. Background and objectives
II. Method for general correlated norm kernels
III. Application to arbitrary pair of Bogoliubov product states
IV. Numerical tests and validation
V. Conclusions

Conclusive remarks

(2) Unambiguous calculation of off-diagonal norm kernels

" \rightarrow Intuitive closed-form expression
\rightarrow Flexible alternative to Pfaffian for arbitrary Bogoliubov states
" \rightarrow Method applicable to correlated norm kernels
" \rightarrow Method potentially applicable to more generic many-body states

Toy model 2: global gauge rotation for 10-levels BCS model

Odd-number parity states for odd systems

$\operatorname{Arg}(\langle\bar{\Phi} \mid \breve{\Phi}\rangle)=\operatorname{Arg}(\langle\bar{\Phi} \mid \Phi\rangle)+\underline{\varphi}$
per fully occupied canonical state (1 here)
with $\underbrace{|\bar{\Phi}\rangle=c_{2}^{\dagger}|0\rangle}$ instead of $|\bar{\Phi}\rangle=|0\rangle$
Slater determinant with fully occupied canonical state(s)

- Phase lost through 0 (wrong sign)
- Imprecise numerics beyond 0
- 0 avoided by other manifolds!

Toy model 2: 10-levels BCS model

© BCS transformations (,

) $\quad \mathscr{W} \breve{W}$
$\left\lvert\, \begin{aligned} & U(k, \bar{k})=\left(\begin{array}{cc}u_{k} & 0 \\ 0 & u_{k}\end{array}\right) \\ & V(k, \bar{k})=\left(\begin{array}{cc}0 & +v_{k} \\ -v_{k} & 0\end{array}\right)\end{aligned}\right.$

$$
\begin{aligned}
& \breve{U}(k, \bar{k})=\left(\begin{array}{cc}
\breve{u}_{k} & 0 \\
0 & \breve{u}_{k}
\end{array}\right) \\
& \breve{V}(k, \bar{k})=\left(\begin{array}{cc}
0 & +\breve{v}_{k} \\
-\breve{v}_{k} & 0
\end{array}\right)
\end{aligned}
$$

© Possible explicit representation
$\left\{\begin{array}{l}|\Phi\rangle \equiv \prod_{k=1}^{5}\left(u_{k}+v_{k} c_{k}^{\dagger} c_{\bar{k}}^{\dagger}\right)|0\rangle \\ |\breve{\Phi}\rangle \equiv \prod_{k=1}^{5}\left(\breve{u}_{k}+\breve{v}_{k} c_{k}^{\dagger} c_{\vec{k}}^{\dagger}\right)|0\rangle\end{array}\right.$

$$
\operatorname{Arg}(\langle 0 \mid \Phi\rangle)=\operatorname{Arg}(\langle 0 \mid \breve{\Phi}\rangle)
$$

$$
\frac{\langle\Phi \mid \breve{\Phi}\rangle}{\langle\Phi \mid \Phi\rangle}=\prod_{k=1}^{5}\left(u_{k} \breve{u}_{k}+v_{k} \breve{v}_{k}\right)
$$

Real and positive
-Straightforward path goes along the real axis
-Other manifolds goes through complex plane

