Dissecting reaction calculations using halo EFT and *ab initio* input

Pierre Capel, Daniel Phillips and Hans-Werner Hammer

13 October 2017

Halo nuclei

Exotic nuclear structures are found far from stability In particular halo nuclei with peculiar quantal structure :

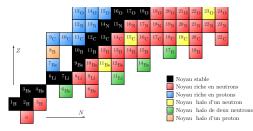

- Light, n-rich nuclei
- Low S_n or S_{2n}

Exhibit large matter radius

due to strongly clusterised structure : neutrons tunnel far from the core and form a halo

One-neutron halo ${}^{11}\text{Be} \equiv {}^{10}\text{Be} + n$ ${}^{15}\text{C} \equiv {}^{14}\text{C} + n$

Two-neutron halo

Proton haloes are possible but less probable : ⁸B, ¹⁷F

Reactions with halo nuclei

Halo nuclei are fascinating objects but difficult to study $[\tau_{1/2}(^{11}Be)= 13 s]$

 \Rightarrow require indirect techniques, new probes, like reactions :

Knock-out (see N. Orr's talk) Breakup ≡ dissociation of halo from core by interaction with target

Need good understanding of the reaction mechanism (i.e. a good reaction model) to know to what the probe is sensitive (i.e. what nuclear-structure information it provides)

We address this by coupling precise reaction models with halo EFT

- Quantum-system description
 - EFT description of ¹¹Be
 - Ab initio calculation
- Breakup calculations of ¹¹Be into ¹⁰Be+n
 - NLO analysis ($s_{\frac{1}{2}}$ and $p_{\frac{1}{2}}$ constrained)
 - Constraining the ¹⁰Be-n continuum

Framework

Projectile (P) modelled as a two-body quantum system : core (c)+loosely bound nucleon (f) described by

- $H_0 = T_r + V_{cf}(\boldsymbol{r})$
- V_{cf} effective interaction describes the quantum system with ground state Φ_0

Target T seen as structureless

Interaction with target simulated by optical potentials \Rightarrow breakup reduces to three-body scattering problem :

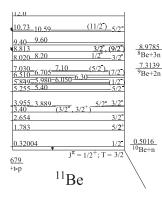
$$\left[T_R + H_0 + V_{cT} + V_{fT}\right]\Psi(\boldsymbol{r},\boldsymbol{R}) = E_T\Psi(\boldsymbol{r},\boldsymbol{R})$$

with initial condition $\Psi(\mathbf{r}, \mathbf{R}) \xrightarrow[Z \to -\infty]{} e^{iKZ} \Phi_0(\mathbf{r})$ We use the Dynamical Eikonal Approximation (DEA) [Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Reaction model

- Quantum-system description
 EFT description of ¹¹Be
 - Ab initio calculation
 - Breakup calculations of ¹¹Be into ¹⁰Be+n
 - NLO analysis ($s_{\frac{1}{2}}$ and $p_{\frac{1}{2}}$ constrained)
 - Constraining the ¹⁰Be-n continuum

Summary


Usual phenomenological description

In reaction models, projectile \equiv two-body system :

 $H_0 = T_r + V_{cn}(\mathbf{r}),$

where V_{cn} is a phenomenological Woods-Saxon that reproduces the basic nuclear properties of the projectile (binding energy, $J^{\pi},...$)

$^{11}\text{Be} \equiv {}^{10}\text{Be} \otimes \text{n}$

- $\frac{1}{2}^+$ ground state : $\epsilon_{\frac{1}{2}^+} = -0.503$ MeV In our model, seen as $1s_{\frac{1}{2}}$ neutron bound to ${}^{10}\text{Be}(0^+)$
- $\frac{1}{2}^{-}$ bound excited state : $\epsilon_{\frac{1}{2}} = -0.184 \text{ MeV}$ In our model, seen as $0p_{\frac{1}{2}}$ neutron bound to ${}^{10}\text{Be}(0^+)$
- What should we do for the continuum? (e.g. what about the p_{3/2} partial wave?) Does it matter?

Can halo EFT provide an answer?

¹⁰Be-n potential

Replace the ¹⁰Be-n interaction by effective potentials in each partial wave

Use halo EFT : clear separation of scales (in energy or in distance) \Rightarrow provides an expansion parameter (small scale / large scale) along which the low-energy behaviour is expanded

[H.-W. Hammer, C. Ji, D. R. Phillips JPG 44, 103002 (2017)]

Use narrow Gaussian potentials

$$V_{lj}(r) = V_0 \ e^{-\frac{r^2}{2\sigma^2}} + V_2 \ r^2 e^{-\frac{r^2}{2\sigma^2}}$$

Fit V_0 and V_2 to reproduce ϵ_{lj} (@ LO), and C_{lj} (@ NLO for bound states)

 σ = 1.2, 1.5 or 2 fm is a parameter used to evaluate the sensitivity of the calculations to this effective model

 ϵ_{lj} is known experimentally, but what about C_{lj} ? Fortunately, for ¹¹Be, we've got the ab initio calculation of Calci *et al.* [A. Calci *et al.* PRL 117, 242501 (2016)]

Ab initio description of ¹¹Be

A recent ab initio calculation of ¹¹Be has been performed

[A. Calci et al. PRL 117, 242501 (2016)]

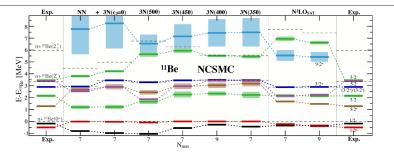
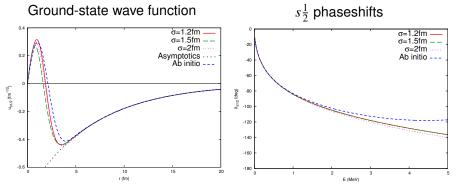
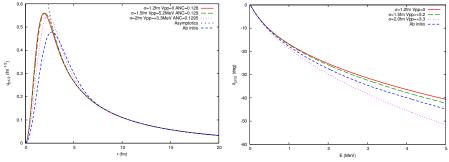



FIG. 2. NCSMC spectrum of ¹¹Be with respect to the $n + {}^{10}$ Be threshold. Dashed black lines indicate the energies of the 10 Be states. Light boxes indicate resonance widths. Experimental energies are taken from Refs. [1,51].

$s_{\frac{1}{2}}^{1}$: @ NLO potentials fitted to $\epsilon_{\frac{1}{2}^{+}}$ and $C_{\frac{1}{2}^{+}}$

Potentials fitted to $\epsilon_{1s\frac{1}{2}} = -0.503$ MeV and $C_{1s\frac{1}{2}} = 0.786$ fm^{-1/2}


- Wave functions : same asymptotics but different interior
- δ_{s¹/2} : all effective potentials are in good agreement with ab initio up to 1.5 MeV (same effective-range expansion)

$p_{\frac{1}{2}}^{1}$: @ NLO potentials fitted to $\epsilon_{\frac{1}{2}^{-}}$ and $C_{\frac{1}{2}^{-}}$

Potentials fitted to $\epsilon_{0p\frac{1}{2}} = -0.184$ MeV and $C_{0p\frac{1}{2}} = 0.129$ fm^{-1/2}

Excited-state wave function

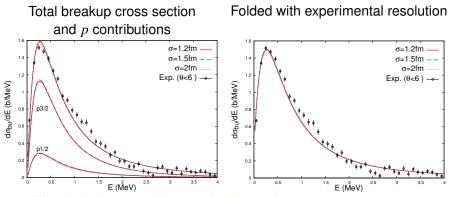
 $p_{1/2}$ phaseshifts

- Wave functions : same asymptotics but different interior
- Larger variation in $\delta_{p\frac{1}{2}}$ obtained by effective potentials Fair agreement with ab initio results up to 0.5 MeV
- In higher partial waves $(lj \ge p3/2) V_{lj} = 0$

Reaction model

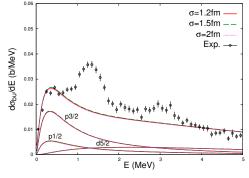
- Quantum-system description
 EFT description of ¹¹Be
 - Ab initio calculation

Breakup calculations of ¹¹Be into ¹⁰Be+n


- NLO analysis ($s_{\frac{1}{2}}$ and $p_{\frac{1}{2}}$ constrained)
- Constraining the ¹⁰Be-n continuum

Summary

Breakup calculations of ¹¹Be into ¹⁰Be+n


NLO analysis (s $\frac{1}{3}$ and $p \frac{1}{3}$ constrained)

NLO analysis of ¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV

- All calculations provide very similar results, for all *σ*, despite the difference in the internal part of the wave function ⇒ reaction is peripheral
- Slight differences in the $p_{1/2}$ contribution, due to differences in $\delta_{p_{1/2}}$
- Excellent agreement with data [Fukuda et al. PRC 70, 054606 (2004)]

NLO analysis of ¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV

Exp. [Fukuda et al. PRC 70, 054606 (2004)]

- All potentials produce very similar breakup cross sections
 ⇒ still peripheral (even if nuclear dominated)
- Order of magnitude of experiment well reproduced
- Breakup strength missing at the 5/2⁺ and 3/2⁺ resonances
- \Rightarrow for this observable, the continuum must be better described

Ab initio description of ¹⁰Be-n continuum

Provides the most accurate calculation for the ¹⁰Be-n continuum

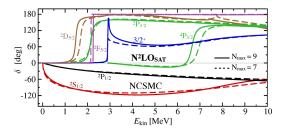
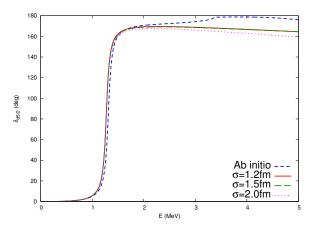
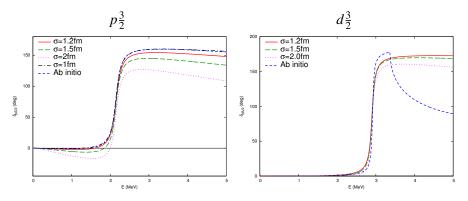
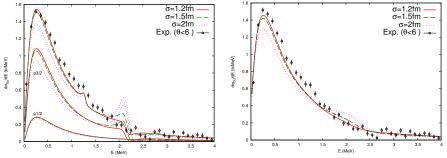



FIG. 3. The $n + {}^{10}$ Be phase shifts as a function of the kinetic energy in the center-of-mass frame. NCSMC phase shifts for the N²LO_{SAT} interaction are compared for two model spaces indicated by N_{max} .


Idea : constrain the ¹⁰Be-n potential in the reaction code to reproduce ab initio δ_{lj} , i.e. fit V_0 and V_2 to reproduce $\epsilon_{lj} \& \Gamma_{lj}$ (in $d_{\frac{5}{2}}$, $p_{\frac{3}{2}}$, and $d_{\frac{3}{2}}$)

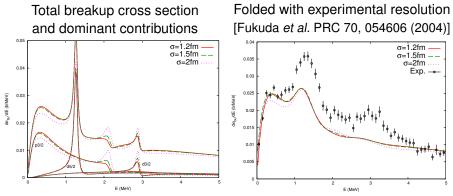
$drac{5}{2}$: potentials fitted to $\epsilon^{ m res}_{rac{5}{2}^+}$ and $\Gamma_{rac{5}{2}^+}$

- Identical $\delta_{d\frac{5}{2}}$ up to 1.5 MeV up to 5 MeV for the narrow potentials (σ = 1.2 or 1.5 fm)
- Excellent agreement with ab initio results up to 2 MeV


p_2^3 and d_2^3 : potentials fitted to $\epsilon^{ m res}$ and Γ

- Large variation in δ obtained by effective potentials Broad potential (σ = 2 fm) cannot reproduce correct behaviour
- Fair agreement with ab initio results up to 2.5 MeV
- ¹⁰Be core excitation @ 3.4 MeV not described in effective model

¹¹Be+Pb \rightarrow ¹⁰Be+n+Pb @ 69AMeV (beyond NLO)

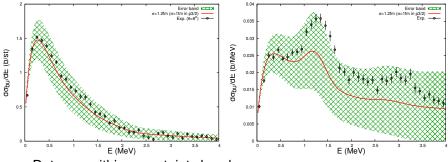


• Major differences in $p_{3/2}$ partial wave ; due to differences in $\delta_{p_{3/2}}$

- Broad potential ($\sigma = 2$ fm) produces unrealistic $p_{3/2}$ contribution
- Tiny peak at 1.27 MeV due to $d_{\frac{5}{2}}$ resonance
- Excellent agreement with data [Fukuda *et al.* PRC 70, 054606 (2004)] Best agreement with $\sigma = 1.2$ and 1.5 fm, whose $\delta_{p3/2} \sim \delta_{3/2^-}^{ab initio}$

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV (beyond NLO)

- All potentials produce similar breakup cross sections (but σ = 2 fm)
- In nuclear breakup, resonances play significant role
- Order of magnitude of experiment well reproduced
- But resonant breakup not correctly described due to degrees of freedom [¹⁰Be(2⁺)] missing in the effective model

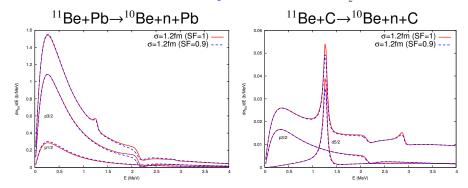

Estimation of the uncertainty within halo-EFT

We estimate the uncertainty @ NLO through

 $\frac{E + S_{\rm n}}{E(^{10}\text{Be}(2^+)) + S_{\rm n}}$

 $^{11}\text{Be+Pb} \rightarrow ^{10}\text{Be+n+Pb} @ 69A \text{MeV}$

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV


Data are within uncertainty bands

• Effect of ¹⁰Be(2⁺) more significant in reaction on C

SF vs ANC

Calci *et al.* predict $S_{1s\frac{1}{2}} = 0.90$, but we use $S_{1s\frac{1}{2}} = 1...$

 \Rightarrow repeat calculations with $S_{1s\frac{1}{2}} = 0.90$ (keeping $C_{\frac{1}{2}^+} = 0.786$ fm^{-1/2})

No difference \Rightarrow SF cannot be extracted from these measurements One exception : resonant breakup, where SF plays a role \Rightarrow influence of the short-range details (?)

Summary and prospect

- Exotic nuclei studied mostly through reactions
- Mechanism of reactions with halo nuclei understood
 Can we understand what reactions probe using halo EFT? Yes
- Using Gaussian potentials, we reproduce the ANC and phase shifts predicted by ab initio calculations
- Our study confirms
 - peripherality of breakup reactions
 - influence of the continuum through phase shifts
- Halo EFT
 - efficient way to include the significant degrees of freedom e.g., by fitting ab initio predictions (for ¹¹Be, we confirm the ANC predicted by Calci *et al.*)
 - estimates the influence of omitted mechanisms
 e.g., short-range details missing in resonances description

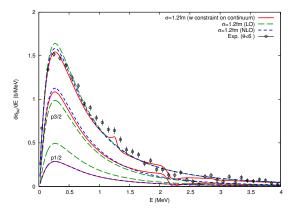
Thanks to my collaborators

Daniel Baye Gerald Goldstein

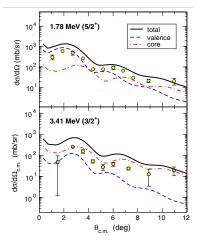
Achim Schwenk Hans-Werner Hammer

Daniel Phillips

Filomena Nunes



LO, NLO and beyond


Calculations repeated with σ = 1.2 fm @ LO, NLO and beyond

• Similar $p_{3/2}$ contributions, consistent with $\delta_{p3/2} = 0$

• Significant change in *p*_{1/2} contribution due to excited bound state

Effect of core-excitation in resonant breakup $^{11}Be+C \rightarrow ^{10}Be+n+C @ 67AMeV$ computed in an extended DWBA model including core excitation [A. Moro & J.A. Lay, PRL 109, 232502 (2012)]

- Breakup due to the excitation of the valence neutron and of the core are considered
- Both are needed to reproduce the oscillatory pattern of experiment
- Core excitation dominates the $\frac{3}{2}^+$ resonant breakup
- Confirms the missing short-range details in our effective model