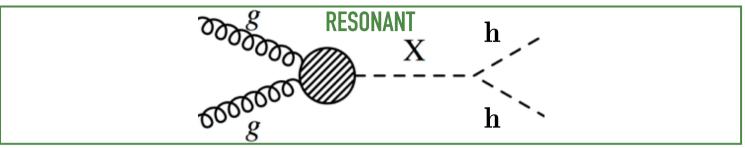
Status and prospects for HH at the LHC A. Zghiche

IRN Terascale@Marseille


Status and prospects for HH at the LHC

Di-Higgs productions in pp collisions

- Mainly via gluon-gluon fusion GF but VBF can help
 - at higher luminosities
- •GF has a small production cross section: 33.53fb at 13 TeV
- Direct measurement of the higgs self-coupling in SM
- Search for BSM effects
 - new resonances
 - Enhanced non resonant production
- Status of the search per decay channel
- Future prospects at HL-LHC

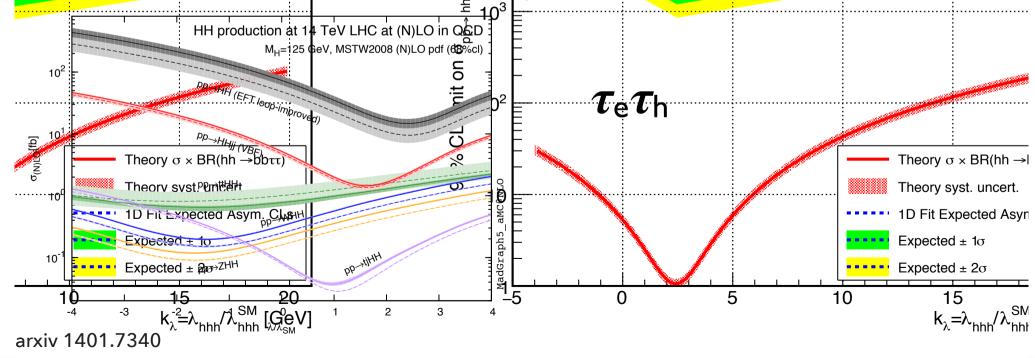
Higgs pair production: Resonant

Searches for new resonances decaying into a pair of Higgs are conducted: BSM models scenarios with SM di-Higgs final state

- 1. Higgs Singlet model (250-1000GeV)
 - 1. SM Higgs doublet $\mathbf{\phi}_0$ +real gauge singlet scalar S
 - 2. Physical fields h, H {h= $\phi_0 \cos\alpha + S \sin\alpha$, H= - $\phi_0 \sin\alpha + S \cos\alpha$ }

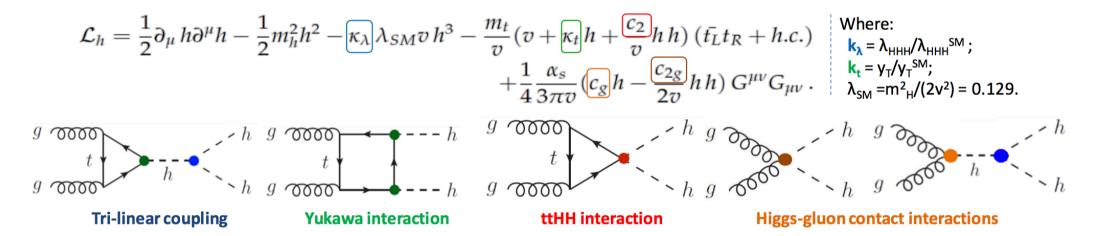
2. hMSSM (250-400 GeV)

- 1. Two higgs doublets, resulting in 5 physical states: h, H, A, H^\pm
- 2. Parametrization with two parameters: $m_{\rm A}$ and $tan\beta$
- 3. if $M_{SUSY} \gg 1$ TeV low tan β could produce h with $m_h=125$ GeV
- 3. Warped Extra Dim
 - 1. Two fields: Radion(spin 0) [1] and KK-Graviton(spin 2) [2]that could decay to hh(if $M_X>250$ GeV)


[1]https://arxiv.org/abs/0705.3844[2]https://arxiv.org/abs/hep-ph/0701186

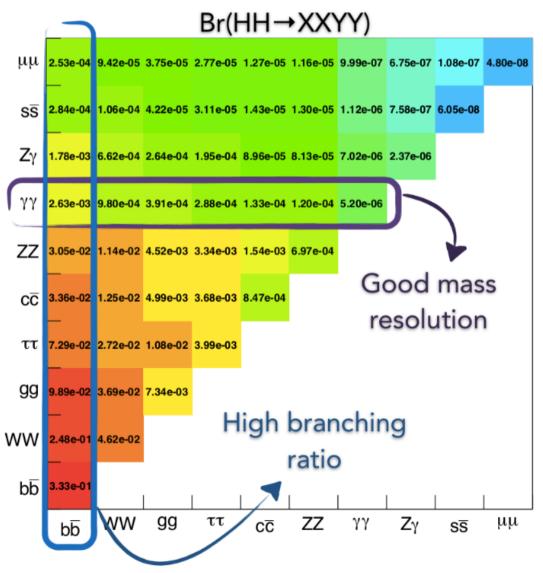
Higgs Pair Production: Non resonant

- 1. Double Higgs production is the direct way to measure the higgs self coupling (trilinear): λ_{hhh}
- 2. The ATLAS and CMS detectors sensitivity at LHC-Run2 is not expected to suffice for this measurement
- 3. But BSM predictions using non-SM values for λ_{hhh} show an enhancement of the non-resonant di-Higgs production, hence a possiblity for λ_{hhh} measurement.
- 4. VBF contribution could also enhance the sensitivity and reduce the limits.



Higgs pair production: Non resonant

Beyond standard model BSM effect are EFT modeled with dim-6 opetrators[1]


The process 5 parameters Lagrangian is the following, where the parameters are λ_{hhh} , y_T , c_2 , c_g , c_{2g}

The HH cross section and the final state kinematics vary in 5D phase space (over more than 1500 combinations: 12 benchmarks identified)[2] [1]Phys.Rev.D91 (2015), n0.11, 115008 [2]JHEP04(2016)126

Di-Higgs searches are performed looking at several final states

Among which: 1. bbbb: higher BR, High QCD/tt contamination

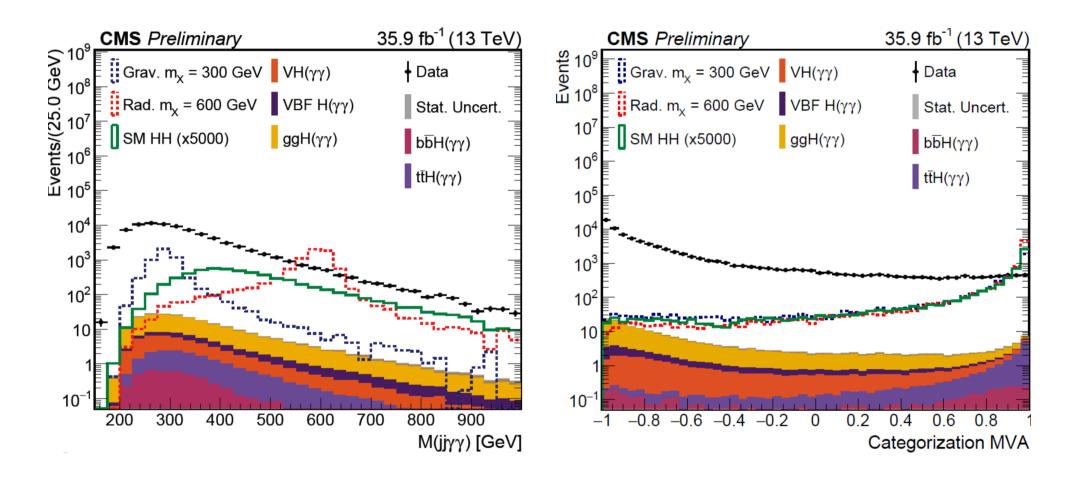
- 2. bbWW: high BR, large irreducible ttbackground
- 3. $bb\tau\tau$ relatively low bkg
- 4. $bb\gamma\gamma$ High purity, but

very low BR

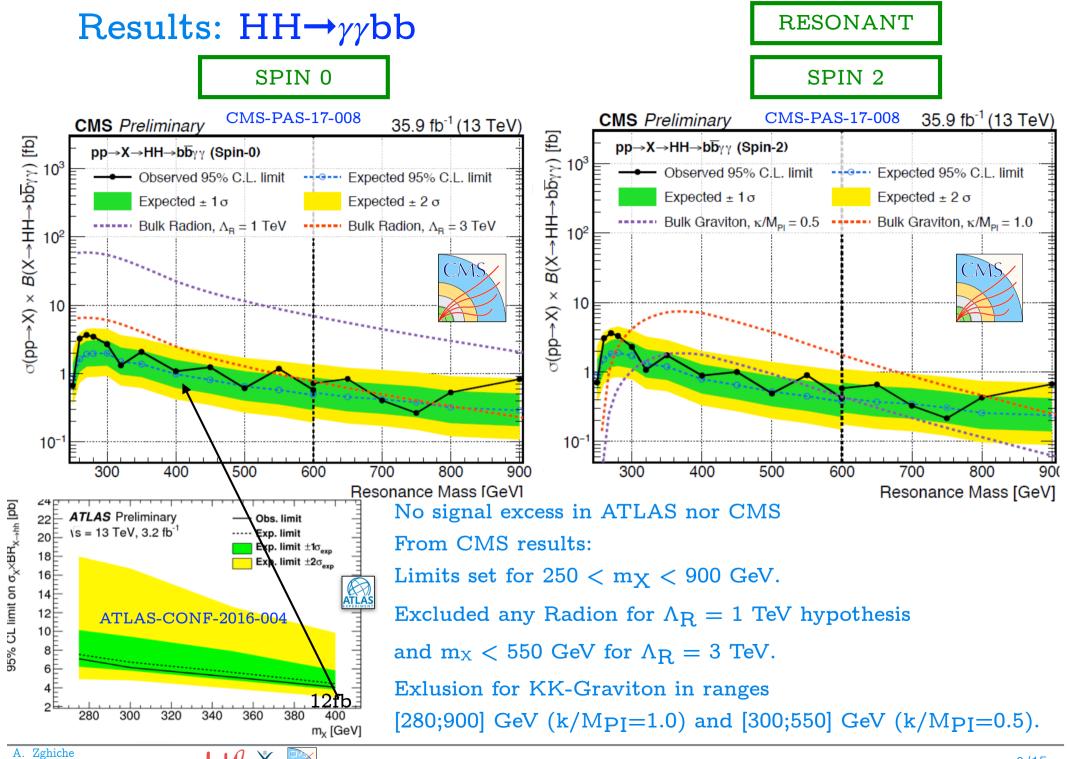
5. Other: $\gamma\gamma WW^*$

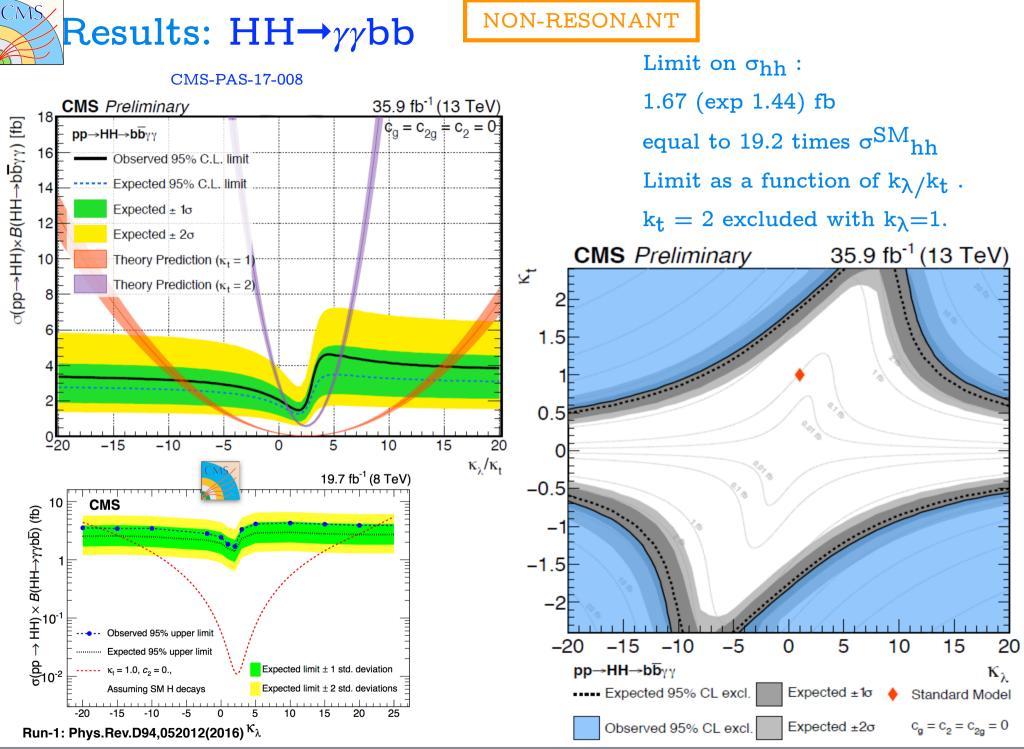
A. Zghiche

GENERAL


PROCEDURE: $HH \rightarrow \gamma \gamma bb$

- 1. Reconstruct and select the 4 objets:
- -2b-tagged resolved jets+2 photons
- -with double photon trigger and MVA based vertex finding, selection on E_T , $m_{\gamma\gamma}$, m_{ii} , pT, $\Delta R(j,\gamma) > 0.4$ and application of the jet energy regression for the b-tagged jets
- 2. Categorize the signal using the system invariant mass and MVA outputs: -classify the events according to BDT output in purity, trained on b-tagging variables, helicity angles, pT(jj)/m
 - -for non resonant, categorize over the resolution improved 4-body mass
 - $M_x = M(jj\gamma\gamma) M(jj) M(\gamma\gamma) + 250$, boundary $M_x = 350 \text{GeV}$
- 3. Estimate the Background
 - γ +jet from QCD (data driven), single H $\rightarrow \gamma\gamma$, ttH, bbH, VH
 - fitted with Bernstein polynomials
- 4. Extract the signal: in a 2D plane, simultaneously fitting $m_{\gamma\gamma}$ and m_{ii}




CMS-PAS-17-008

X

IN2P2-CNRS/LLR-Polytechnique

A. Zghiche IN2P2-CNRS/LLR-Polytechnique

RESONANT

No signal excess.

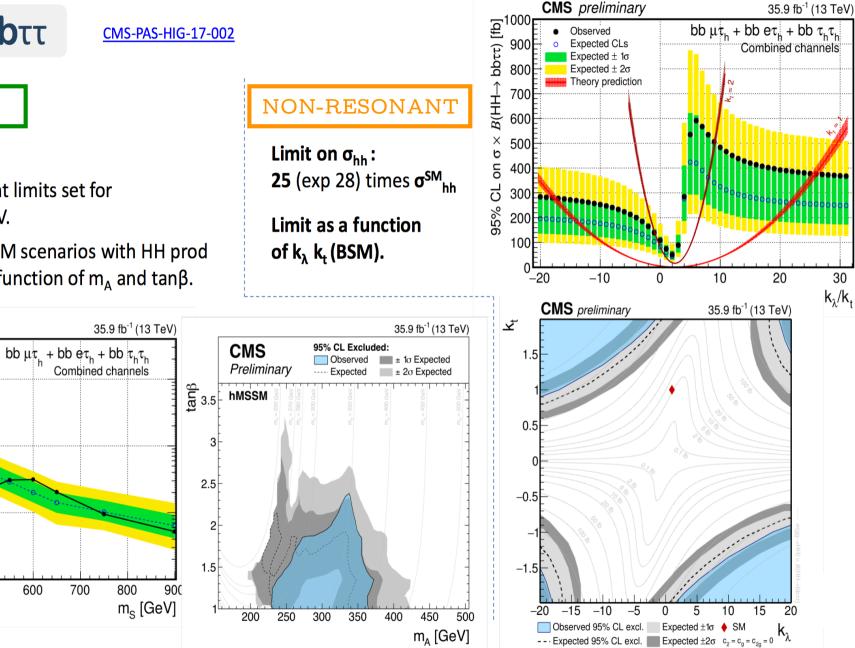
CMS

preliminary

on $\sigma imes B(S
ightarrow HH
ightarrow bbtt)$ [fb]

95% CL

 10^{3}


 10^{2}

10

300

Model independent limits set for 250 < m_x < 900 GeV.

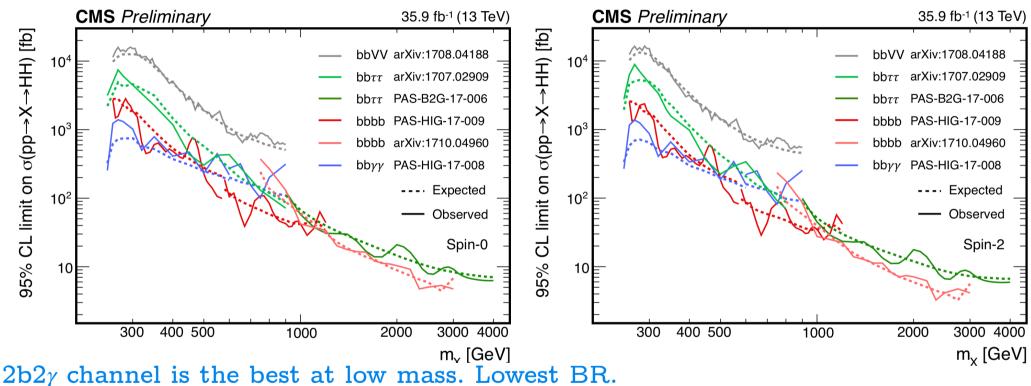
Interpreted in MSSM scenarios with HH prod parametrized as a function of m_A and $tan\beta$.

CMS preliminary

Observed CLs

Expected CLs Expected $\pm 1\sigma$ Expected $\pm 2\sigma$

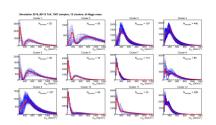
400


500

RESONANT

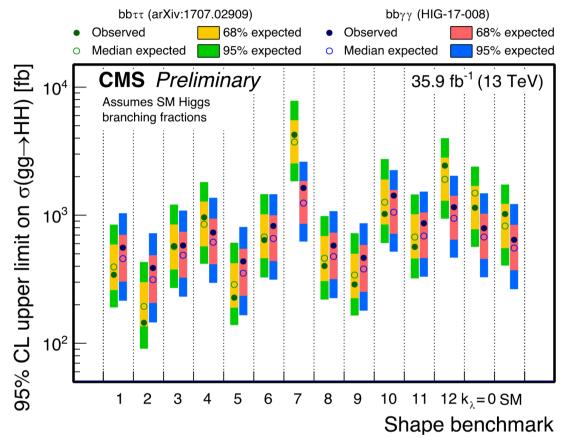
SPIN 0

SPIN 2


bbbb channel has recently improved (NEW) and is competitive with 2b2 at low mass and shows best sensitivity at high mass $2b2\tau$ channel improved at high mass with better trigger efficiency.

2b2W channel is limited by large irreducible tt background.

HH Run2 summary


NON-RESONANT

Run2 95 % C.L. limits on $\mu = \sigma / \sigma_{SM}$

Observed/(Expected)

final state	ATLAS	CMS
bbγγ	117(161) (3fb ⁻¹)	19(17) (36fb ⁻¹)
bb au au		28(25)
		(36fb ⁻¹)
bb <i>vv</i>		79(89)
		(36fb ⁻¹)
bbbb	29(38)	342(308)
	(13fb ⁻¹)	(2.3fb ⁻¹)
WWγγ	747(386)	
	(13fb ⁻¹)	

CMS provides also limits in benchmarks (slide 5) that

describe typical topologies possible in 5D EFT space.

For the trilinear coupling more integrated luminosity is needed : What can we expect at HL-LHC?

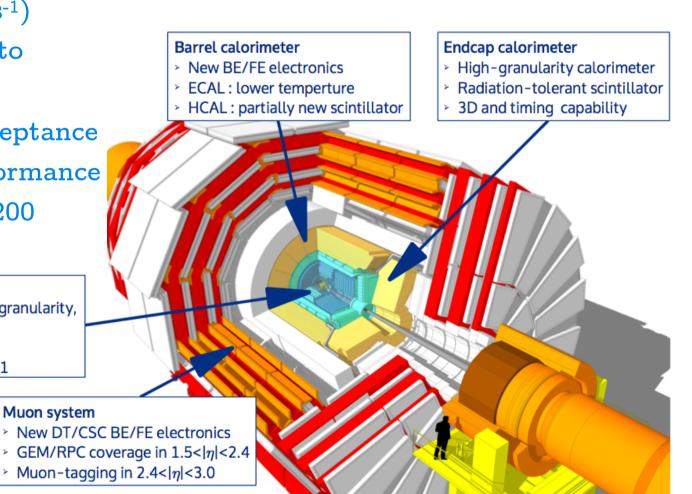
HH at HL-LHC

HL-LHC upgrade CMS detector

- 1. Phase-2 LHC: up to $3000 \text{fb}^{-1}(\text{L}_{\text{inst}}=5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1})$
- 2. New detector needed due to Phase-1 radiation damage
- 3. Will be with extended acceptance
- 4. Maintain the current performance with expected PU of 140-200

Inner Tracker Radiation tolerant, high granularity, low material budget

- > Coverage up to $|\eta|=3.8$
- Triggering capability at L1

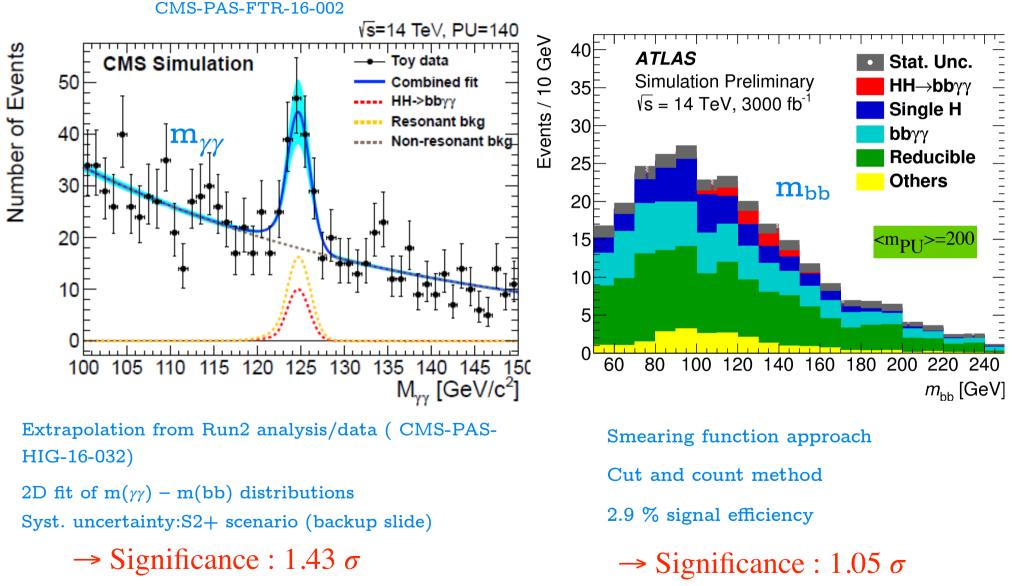

Trigger and DAQ

> Track-trigger at L1

L1 rate ~ 750 kHz HLT output ~ 7.5 kHz

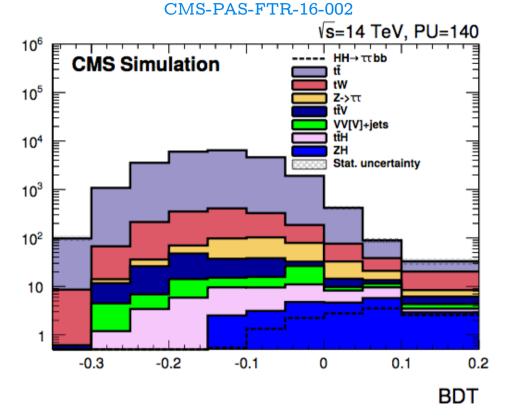
Muon system

- New DT/CSC BE/FE electronics
- > Muon-tagging in 2.4< $|\eta|$ <3.0

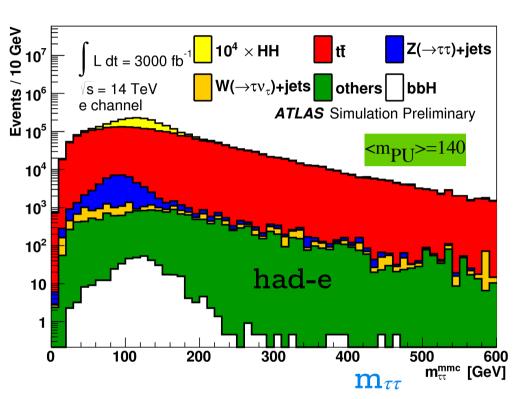

Phase-2 HH \rightarrow bb $\gamma\gamma$

SM NON-RESONANT

ATL-PHYS-PUB-2017-001


Phase-2 HH \rightarrow bb $\tau\tau$

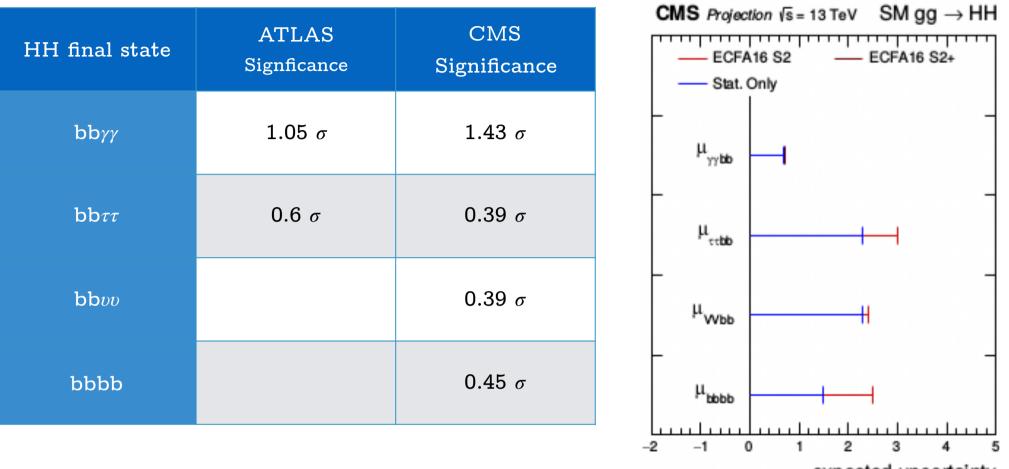
SM NON-RESONANT


ATL-PHYS-PUB-2015-048

Reduced uncertainty on tt shape (< lower jet $\rightarrow \tau$ fake rate)

 \mathcal{scalar} Multijet bkg. from data \rightarrow negligible stat. uncertainty Lepton (incl. $\tau)$ uncertainties as of 2015

 \rightarrow Significance : 0.39 σ



Main background had-e/ μ :tt had-had:Z $\rightarrow \tau\tau$ +jets+tt smearing function approach \rightarrow Significance : 0.6 σ

Expected HH results at HL-LHC

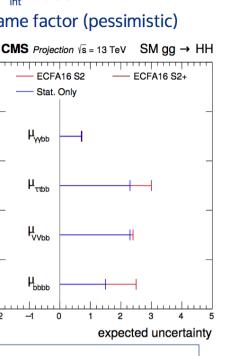
SM NON-RESONANT

expected uncertainty

-Observation with 3ab⁻¹ will be challenging even with combination of the different final states

-Additional HH production processes such as VBF and ttHH would be helpful

-Improvements in the analysis techniques are also expected



Extrapolation of Run II analyses

- > Results on 2015 data @ 13 TeV (2.3-2.7 fb⁻¹) \rightarrow projected to L_{int}=3000 fb⁻¹
- > 13 → 14 TeV : $\sigma_{\rm HH}$ increase by 18 % scale backgrounds by same factor (pessimistic)
- Increased acceptance not taken into account (pessimistic)
- Different scenarios assumed for systematic uncertainties :
- 1) « **Stat. only** » : scale yields with L_{int}; neglect systematics
- 2) « ECFA16 S2 »:
- Theory uncertainties reduced by 50 %
- Experimental systematics reduced with luminosity
- \rightarrow lower limit depending on upgraded detector performances
- 3) « ECFA16 S2+ » (bbγγ only) :
- S2 + Impact of <PU>=200 and detector upgrades on photon performance (efficiency, resolution, fake rate) explicitly taken into account

Assumptions on photon reconstruction :

- Majority of signal photons in Barrel
 - \rightarrow Efficiencies & energy resolution similar to current detector
- Vertex finding degradation due to PU mitigated by timing capabilities
- \rightarrow Maintain M_{YY} resolution
- Results in agreement with dedicated study
- ttH background not explicitly rejected here

- > Reduced uncertainty on tt shape (< lower jet → τ fake rate)
- Multijet bkg. from data → negligible stat. uncertainty
- > Lepton (incl. τ) uncertainties as of 2015
- Differences with dedicated study :
- Multijet bkg. not explicitly rejected
- Signal extraction less aggressive

	Median expected		Z-value		Uncertainty						
	limits in μ_r				as fraction of $\mu_r = 1$						
Channel	ECFA 16 S2	Stat. Only	ECFA 16 S2	Stat. Only	ECFA 16 S2	Stat. Only					
gg \rightarrow HH $\rightarrow \gamma\gamma$ bb (S2+)	1.44	1.37	1.43	1.47	0.72	0.71					
$gg \rightarrow HH \rightarrow \tau \tau bb$	5.2	3.9	0.39	0.53	2.6	1.9 🦯					
$gg \rightarrow HH \rightarrow VVbb(lvlv)$	4.8	4.6	0.45	0.47	2.4	2.3 —					
$gg \rightarrow HH \rightarrow bbbb$	7.0	2.9	0.39	0.67	2.5	1.5					
	$gg \rightarrow HH \rightarrow \gamma\gamma bb (S2+)$ $gg \rightarrow HH \rightarrow \tau\tau bb$ $gg \rightarrow HH \rightarrow VV bb (lvlv)$	$\begin{array}{ll} \mbox{limits}\\ \mbox{Channel} & \mbox{ECFA 16 S2} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \gamma\gamma \mbox{bb} (\mbox{S2+}) & \mbox{1.44} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \tau\tau \mbox{bb} & \mbox{5.2} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \mbox{VV bb} (\mbox{lvlv}) & \mbox{4.8} \end{array}$	$\begin{array}{c c} \text{limits in } \mu_{r} \\ \hline \text{Channel} \\ gg \rightarrow \text{HH} \rightarrow \gamma\gamma bb \text{ (S2+)} \\ gg \rightarrow \text{HH} \rightarrow \tau\tau bb \\ gg \rightarrow \text{HH} \rightarrow \tau\tau bb \\ gg \rightarrow \text{HH} \rightarrow \forall \forall bb (lvlv) \\ \hline 4.8 \\ \hline 4.6 \\ \hline \end{array}$	$\begin{array}{c c} \mbox{limits in } \mu_r & \\ \mbox{Channel} & \mbox{ECFA 16 S2} & \mbox{Stat. Only} & \mbox{ECFA 16 S2} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \gamma\gamma \mbox{bb} (\mbox{S2+}) & \mbox{1.44} & \mbox{1.37} & \mbox{1.43} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \tau\tau \mbox{bb} & \mbox{5.2} & \mbox{3.9} & \mbox{0.39} \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \mbox{VVbb} (\mbox{lvlv}) & \mbox{4.8} & \mbox{4.6} & \mbox{0.45} \end{array}$	$\begin{array}{c c} \mbox{limits in } \mu_r & \\ \mbox{Channel} & ECFA 16 S2 & Stat. Only & ECFA 16 S2 & Stat. Only \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \gamma\gamma bb (S2+) & 1.44 & 1.37 & 1.43 & 1.47 \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \tau\tau bb & 5.2 & 3.9 & 0.39 & 0.53 \\ \mbox{gg} \rightarrow \mbox{HH} \rightarrow \mbox{VV} bb (lvlv) & 4.8 & 4.6 & 0.45 & 0.47 \\ \end{array}$	$ \begin{array}{c c} \mbox{limits in } \mu_r & \mbox{as fraction} \\ \hline \mbox{Channel} & \mbox{ECFA16S2} & \mbox{Stat. Only} & \mbox{ECFA16S2} & \mbox{Stat. Only} & \mbox{ECFA16S2} & \mbox{Stat. Only} & \mbox{ECFA16S2} & \mbox{gg \rightarrow HH \rightarrow \gamma\gamma bb (S2+)} & \mbox{1.44} & \mbox{1.37} & \mbox{1.43} & \mbox{1.47} & \mbox{0.72} & \mbox{gg \rightarrow HH \rightarrow \tau\tau bb} & \mbox{5.2} & \mbox{3.9} & \mbox{0.39} & \mbox{0.53} & \mbox{2.6} & \mbox{gg \rightarrow HH \rightarrow VV bb (lvlv)} & \mbox{4.8} & \mbox{4.6} & \mbox{0.45} & \mbox{0.47} & \mbox{2.4} & \ \end{array} $					

Assumptions :

> Main background : QCD multijet est. from data

 \rightarrow Stat. uncertainty only (scaled with L)

> Other backgrounds : uncertainties as of 2015

Assumptions :

≻ Main backgrounds (tt̄, Z+jets) est. from data
 → Stat. uncertainty only (scaled with L)
 Results in agreement with dedicated study