Evidence for $t\bar{t}H$ production with the ATLAS detector

LIU Kun (LPNHE-Paris)

IRN Terascale@Marseille 14/12/2017

Outline

- ttH analysis motivation and ATLAS publications
- Search for ttH in four channels
 - * with multilepton final states (H \rightarrow WW^{*}, $\tau\tau$ and partially ZZ^{*})
 - $H \rightarrow bb$
 - $\text{ } \bigstar \ \mathsf{H} \to \mathsf{Z}\mathsf{Z}^{\star} \to \mathsf{4}\mathsf{I}$
 - $* \ \mathsf{H} \to \gamma \gamma$
- ◆ ttH combination using 36.1 fb⁻¹ @13TeV
- ATLAS ttH prospects
- + Summary

ttH analysis motivation

- ttH allows direct measurement of Higgs-top Yukawa coupling at tree level. Any deviation might be hint for New Physics !
- Contrastive analysis to indirect constraints through ggH and H→γγ loop processes.
- ★ ttH as the fifth main Higgs production channel has no 5σ observation yet → ~ 1% of Higgs production in LHC.
- Summary of recent ATLAS and CMS ttH public results:

	Signal strength $\mu_{t\bar{t}H}$	Obs. (exp.) significance		
Run1 ATLAS+CMS (~25 fb ⁻¹)	2.3 +0.7-0.6	4.4 σ (2.2 σ)		
Run2 ATLAS preliminary (36.1 fb ⁻¹)	1.2 ± 0.3	4.2 σ (3.8 σ)		
Run2 CMS preliminary (35.9 fb ⁻¹)	1.5 ± 0.5	3.3 <i>o</i> (2.5 <i>o</i>)		

ATLAS ttH analysis channels and publications

g Aatio		Analysis channels	Run 1 (20.3 fb ⁻¹ / 25 fb ⁻¹) (8 TeV / 7&8 TeV)	Run 2 (36.1 fb ⁻¹) (13 TeV)
Branching 3ranching 10-1 20 10-1 20 10-1		H → bb (tt leptonic decay)	<u>Eur. Phys. J. C (2015) 75:349</u>	ATLAS-CONF-2017-076
10 ⁻²		<i>H</i> → <i>bb</i> (tt full hadronic decay)	<u>JHEP 05 (2016) 160</u>	
10 ⁻³		<i>Multileptons</i> (<i>H</i> → <i>WW</i> *, ττ, <i>ZZ</i> *)	<u>Phys.Lett. B 749 (2015) 519</u>	ATLAS-CONF-2017-077
ΓΟ Ζγ		<i>H</i> → <i>ZZ*</i> →4 <i>I</i>	Phys. Rev. D 91, 012006 (2015)	ATLAS-CONF-2017-043
10^{-4}		Η⊸γγ	<u>Phys. Lett. B 740 (2015) 222</u>	ATLAS-CONF-2017-045
^{· °} 120 121 M _H	125 [GeV]	ttH combination	<u>JHEP 05 (2016) 160</u>	ATLAS-CONF-2017-077

This talk presents very recent results from ATLAS Run 2 analyses.

Search for ttH in multilepton final states

Higgs decays to WW^{*}, $\tau\tau$ and partially ZZ^{*} (veto on H \rightarrow ZZ^{*} \rightarrow 4I)

Event selection and classification

- + 7 orthogonal analysis channels (8 signal regions), according to number and flavour of charged leptons, with and without τ_{had} .
- + 91 expected ttH events after selection \rightarrow 0.50% of all expected ttH events.
- ~ 300k background events dominated by
 - ttV (V=W,Z) : similar event topologies as ttH signal
 - * tt : "extra" non-prompt lepton mainly from b-hadron decay
- + 4 control regions in 3I are defined for ttW, ttZ, di-boson and tt processes.

K. Liu (LPNHE-Paris)

Event selection and classification

- + 7 orthogonal analysis channels (8 signal regions), according to number and flavour of charged leptons, with and without τ_{had} .
- + 91 expected ttH events after selection \rightarrow 0.50% of all expected ttH events.
- ~ 300k background events dominated by
 - ttV (V=W,Z) : similar event topologies as ttH signal
 - * tt : "extra" non-prompt lepton mainly from b-hadron decay
- + 4 control regions in 3I are defined for ttW, ttZ, di-boson and tt processes.

K. Liu (LPNHE-Paris)

Background compositions

The fractional contributions of each bkg. to the total:

- "Non-prompt" bkg. arises from tt process with non-prompt lepton mainly from b-hadron decay.
- * "q mis-id" bkg. arises from tt and Z+jets with electron charge being mis-assigned → only visible in 2ISS channel.
- * "Fake τ_{had}" includes any other objects mis-tagged as τ_{had}.
- "Other" includes many rare processes, i.e tZ, tW, tWZ, tH, ttWW, triboson, ttt and tttt.
- Irruducible bkg. (ttW, ttZ, VV and rare) estimates rely on simulation, whose modelling are validated in data control regions.
- → Non-prompt and fake \(\tau\)had bkg. are estimated from collision data.

ttW and ttZ backgrounds validation

+ Data and predictions in CRs are in good agreements for ttZ (left) and for ttW (right).

 This analysis can constrain on ttW and ttZ production. The measured cross section modifiers are 0.92 ± 0.32 for ttW and 1.17 ± 0.25 for ttZ.

Comparison between data and estimates - I

★ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions. The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.

Comparison between data and estimates - II

 ★ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions. The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.

Results in ttH-multileptons analysis

- The combined signal strength is 1.6 ^{+0.3}_{-0.4} which corresponds to 4.1σ (2.8σ)
 observed (expected) significance.
- ← The measured ttH cross section is $\sigma(t\bar{t}H) = 790^{+230}_{-210}$ fb (the SM prediction 507^{+35}_{-50} fb).
- + Cutting&count analyses in 2ISS, 3I and 2ISS+1 τ_{had} observe compatible results.

 $\log_{10}(S/B)$

Search for ttH, Higgs decays to bb

the W boson from one or both top quarks decay leptonically

K. Liu (LPNHE-Paris)

Event selection and classification - I

- Di-lepton channel (tt leptonic decay, categorisation on jets and b-jets multiplicity)
 - exactly 3 jets : 2 CRs
 - at least 4 jets : 3 SRs + 2 CRs
- Event reconstruction employs multivariate techniques (BDT, LHD, MEM), achieving 49% (32%) of ttH signal being correctly reconstructed with (without) Higgs boson kinematics included.

Event selection and classification - II

- Single lepton channel
 - exactly 5 jets : 2 SRs + 3 CRs
 - at least 6 jets : 3 SRs + 3 CRs
 - boosted SR: large-R jet with $p_T > 200 \text{ GeV}$
- Event reconstruction achieves 48% (32%) of ttH signal being correctly reconstructed with (without) Higgs boson kinematics included.

15

Discriminants in signal regions

- Classification BDT is built by combining event reconstruction outputs with kinematic variables and b-tagging discriminants.
- + Simultaneous fit is performed in combining all categories.

+ The best-fit values of tt+ \geq 1b, tt+ \geq 1c normalisation factors are 1.24±0.10 and 1.63±0.23.

Discriminants in signal regions

- Classification BDT is built by combining event reconstruction outputs with kinematic variables and b-tagging discriminants.
- + Simultaneous fit is performed in combining all categories.

+ The best-fit values of $tt + \ge 1b$, $tt + \ge 1c$ normalisation factors are 1.24 ± 0.10 and 1.63 ± 0.23 .

Results in ttH-bb analysis

 10^{7} Events / 0.2 ATLAS Preliminary 🔶 Data $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ tτ̄H (μ_{fit}=0.84) **ATLAS** Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 10⁶ tτ̄H (μ_{95% excl.}=2.0) tot. m_H = 125 GeV Background stat. 10⁵ tot (stat syst) /// Bkgd. Unc. ---- Bkgd. (µ=0) -0.24 ^{+1.02} (^{+0.54 +0.87} -1.05 (^{+0.52 +0.87}) Dilepton 10⁴ (two-µ combined fit) Single Lepton +**0.65** (+0.31 +0.57 -**0.62** (-0.31 -0.54) 10^{3} 0.95 (two-µ combined fit) ttH (bb) Combined 10^{2} Dilepton and Single Lepton +**0.64** (+0.29 +0.57 -**0.61** (-0.29 -0.54) 0.84 Combined Post-fit Data - Bkgd Bkgd. Unc. 2 3 5 -1 0 Best fit $\mu = \sigma^{t\bar{t}H}/\sigma^{t\bar{t}H}_{SM}$ Data -2.4-2.2-2 -1.8-1.6 -1.4 -1.2-0.8

Event yields as a function of $log_{10}(S/B)$

 $\log_{10}(S/B)$

The best-fit values of the ttH signal strength

The combined signal strength is 0.84^{+0.64}_{-0.61},
 which corresponds to 1.4σ (1.6σ) observed (expected) significance.

Search for ttH, Higgs decays to photon pair

Signal peaks on top of background spectrum

- + Searching for $m_{\gamma\gamma}$ resonance on failing down background spectrum.
- + 14 ttH events and 95 backgrounds are expected after selection, under $m_{\gamma\gamma}$ peak.
- + ttH and tH are classified in leptonic and hadronic categories according to tt (t) decay:
 - ★ leptonic channel (≥ 1 lepton, ≥ 1 b-jet)
 - ★ ttH category: ≥ 2 central jets, veto on Z boson mass window.
 - ★ tH categories (==1 lepton):
 ≤ 3 jets, no forward jet ;
 ≤ 4 jets + ≥ 1 forward jet
 - * hadronic channel (\geq 3 jets, \geq 1 b-jet)
 - ttH category employs BDT : ttH vs ggH and multi-jets
 - tH category requires exactly 4 jets with exactly 1 or 2 b-jets
- The measured ttH signal strength is

 $\mu_{\text{top}} = 0.5 \,{}^{+0.6}_{-0.6} = 0.5 \,{}^{+0.6}_{-0.5} \,(\text{stat.}) \,{}^{+0.1}_{-0.1} \,(\text{exp.}) \,{}^{+0.1}_{-0.0} \,(\text{theory})$

which corresponds to 1.0σ (1.8σ) observed (expected) significance.

K. Liu (LPNHE-Paris)

Search for ttH, Higgs decays to ZZ*→4I

Rare decay channel, but very clean

- + Higgs candidate within m₄₁ mass window [118,129] GeV, and ≥ 1
 b-jet and ≥ 4 jets (or 1I + ≥ 2 jets).
- There are 0.39 ttH (0.08 bkg.) events expected in ttH category.
- No event is observed in data.

◆ 68% C.L. upper limit on the ttH signal strength is 1.9.

ttH combination in ATLAS Run 2

combining analyses using 36.1 fb⁻¹ collision data collected in ATLAS Run 2

ttH analyses combination in ATLAS Run 2

- + Combination of the four ATLAS Run 2 analyses: multileptons, bb, $\gamma\gamma$ and ZZ \rightarrow 4I
 - * all results are based on 36.1 fb⁻¹ data collected at $\sqrt{s} = 13$ TeV
 - * ttH signal strength is the only parameter of interest (tH as background)
- + Combination on the ttH signal strength:

 $\mu = 1.17 \pm 0.19 \text{ (stat)} {}^{+0.27}_{-0.23} \text{ (syst)}$

- The background-only hypothesis is excluded at 4.2σ, with an expectation of 3.8σ in the case of a SM signal !
- The measured ttH cross section is 590 ⁺¹⁶⁰₋₁₅₀ fb, in good agreement with the SM prediction 507 ⁺³⁵₋₅₀ fb.

ttH combination uncertainties

+ The impact of systematic uncertainties in the fitted signal strength.

Uncertainty Source	$\Delta \mu$		
$t\bar{t}$ modelling in $H \to b\bar{b}$ analysis	+0.15	-0.14	
$t\bar{t}H$ modelling (cross section)	+0.13	-0.06	
Non-prompt light-lepton and fake τ_{had} estimates	+0.09	-0.09	
Simulation statistics	+0.08	-0.08	
Jet energy scale and resolution	+0.08	-0.07	
$t\bar{t}V$ modelling	+0.07	-0.07	
$t\bar{t}H$ modelling (acceptance)	+0.07	-0.04	
Other non-Higgs boson backgrounds	+0.06	-0.05	
Other experimental uncertainties	+0.05	-0.05	
Luminosity	+0.05	-0.04	
Jet flavour tagging	+0.03	-0.02	
Modelling of other Higgs boson production modes	+0.01	-0.01	
Total systematic uncertainty	+0.27	-0.23	
Statistical uncertainty	+0.19	-0.19	
Total uncertainty	+0.34	-0.30	

Prospects

Keeping current analysis strategy and same level of systematics, all channels combination can reach to 5σ ttH discovery with ~80 fb⁻¹ luminosity.

Of course, 1σ error on this projections can lead to 80 ± 40 fb⁻¹ variation.

Summary

- Search for ttH production has been performed in ATLAS using 36.1 fb⁻¹ dataset at √s = 13 TeV, in final states of multilpetons, bb, *γγ* and ZZ^{*}→4I.
- + The background-only hypothesis is excluded at 4.2σ , with an expectation of 3.8σ in the case of a SM signal. This constitutes evidence for ttH production !
- + For a Higgs boson at 125 GeV, the measured signal strength is

$$\mu = 1.17 \pm 0.19$$
 (stat) $^{+0.27}_{-0.23}$ (syst)

- The measured cross section is 590⁺¹⁶⁰₋₁₅₀ fb, which is in good agreement with the SM prediction.
- + LHC Run 2 allows for ttH discovery !

Result interpretation in κ -parametrisation

- + κ is a linear scale factor to Higgs coupling parameter.
- + ttH analyses are sensitive to Higgs coupling to fermions (κ_F) and to bosons (κ_V).

The measurement is in good agreement with the SM prediction.

Comparison between data and estimates - III

+ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.

Comparison between data and estimates - IV

+ A fit of predictions to data is performed simultaneously on various discriminants over all 12 regions (in total 32 bins). The ttH signal strength ($\mu_{t\bar{t}H}$) is the parameter of interest.

Summary of systematic uncertainties

- + Left: summary of the effects of the most important groups of systematic uncertainties.
- + Right: the impact of systematic uncertainties in the fitted signal strength.

Summary of systematic uncertainties

- Left: summary of the effects of the most important groups of systematic uncertainties.
- Right: the impact of systematic uncertainties in the fitted signal strength.

Uncertainty source	$\Delta \mu$		
$t\bar{t} + \geq 1b \mod$	+0.46	-0.46	
Background model statistics	+0.29	-0.31	
b-tagging efficiency and mis-tag rates	+0.16	-0.16	
Jet energy scale and resolution	+0.14	-0.14	
$t\bar{t}H \mod$	+0.22	-0.05	
$t\bar{t} + \geq 1c \text{ modelling}$	+0.09	-0.11	
JVT, pileup modelling	+0.03	-0.05	
Other background modelling	+0.08	-0.08	
$t\bar{t} + \text{light modelling}$	+0.06	-0.03	
Luminosity	+0.03	-0.02	
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04	
Total systematic uncertainty	+0.57	-0.54	
$t\bar{t} + \geq 1b$ normalisation	+0.09	-0.10	
$t\bar{t} + \geq 1c$ normalisation	+0.02	-0.03	
Intrinsic statistical uncertainty	+0.21	-0.20	
Total statistical uncertainty	+0.29	-0.29	
Total uncertainty	+0.64	-0.61	

ttH analyses combination in ATLAS Run 2

- + Combination of the four ATLAS Run 2 analyses: multileptons, bb, $\gamma\gamma$ and ZZ \rightarrow 4I
 - * all results are based on 36.1 fb⁻¹ data collected at $\sqrt{s} = 13$ TeV
 - * ttH signal strength is the only parameter of interest (tH as background)
- + Combination on the ttH signal strength:

 $\mu = 1.17 \pm 0.19 \text{ (stat)} {}^{+0.27}_{-0.23} \text{ (syst)}$

- The background-only hypothesis is excluded at 4.2σ, with an expectation of 3.8σ in the case of a SM signal !
- The measured ttH cross section is 590 ⁺¹⁶⁰₋₁₅₀ fb, in good agreement with the SM prediction 507 ⁺³⁵₋₅₀ fb.

Selection criteria in multilepton signal regions - I

Channel	Selection criteria
Common	$N_{\rm jets} \ge 2$ and $N_{b-\rm jets} \ge 1$
$2\ell SS$	Two very tight light leptons with $p_{\rm T} > 20 {\rm ~GeV}$
	Same charge light leptons
	Zero medium τ_{had} candidates
	$N_{\rm jets} \ge 4; N_{b-\rm jets} < 3$
3ℓ	Three light leptons with $p_{\rm T} > 10$ GeV; sum of light lepton charges ± 1
	Two same-charge leptons must be very tight and have $p_{\rm T} > 15 { m ~GeV}$
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
	Zero medium τ_{had} candidates
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$
4ℓ	Four light leptons; sum of light lepton charges 0
	Third and fourth leading leptons must be tight
	$m(\ell^+\ell^-) > 12 \text{ GeV}$ and $ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV}$ for all SFOC pairs
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)

Selection criteria in multilepton signal regions - II

$1\ell + 2\tau_{had}$	One tight lepton, with $p_{\rm T} > 27 {\rm ~GeV}$						
	Two medium τ_{had} candidates of opposite charge, at least one being tight						
	$N_{ m jets} \geq 3$						
$2\ell SS+1\tau_{had}$	Two very tight light leptons with $p_{\rm T} > 15 {\rm ~GeV}$						
	Same charge light leptons						
	One medium τ_{had} candidate, of opposite charge to that of the light leptons						
	$N_{\rm jets} \ge 4$						
	m(ee) - 91.2 GeV > 10 GeV for ee events						
$2\ell OS + 1\tau_{had}$	Two loose and isolated light leptons, with $p_{\rm T} > 25$, 15 GeV						
	One medium τ_{had} candidate						
	Opposite charge light leptons						
	One medium τ_{had} candidate						
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOC pairs						
	$N_{ m jets} \geq 3$						
$3\ell + 1\tau_{had}$	3ℓ selection, except:						
	One medium τ_{had} candidate, of opposite charge to the total charge of the light leptons						
	The two same-charge leptons must be tight and have $p_{\rm T} > 10 {\rm ~GeV}$						
	The opposite-charge lepton must be loose and isolated						

Selection criteria in multilepton control regions

Channel	Region	Selection criteria
$2\ell SS$		$2 \leq N_{\text{jets}} \leq 3 \text{ and } N_{b-\text{jets}} \geq 1$
(3ℓ)		One very tight, one loose light lepton with $p_{\rm T} > 20$ (15) GeV
		Zero $\tau_{\rm had}$ candidates
	ϵ_{real}	Opposite charge; opposite flavour
	ϵ_{fake}	Same charge; opposite flavour or $\mu\mu$
4ℓ		$1 \le N_{\rm jets} \le 2$
		Three loose light leptons; sum of light lepton charges ± 1
		Subleading same-charge lepton must be tight
		Veto on 3ℓ selection
	Either	One SFOC pair with $ m(\ell^+\ell^-) - 91.2 \text{ GeV} < 10 \text{ GeV}$
		$E_{\rm T}^{\rm miss} < 50 { m ~GeV}, m_T < 50 { m ~GeV}$
	or	No SFOC pair
		Subleading jet $p_{\rm T} > 30 {\rm ~GeV}$
$2\ell SS+1\tau_{had}$		$2 \le N_{\text{jets}} \le 3 \text{ and } N_{b-\text{jets}} \ge 1$
		One very tight, one loose light lepton with $p_{\rm T} > 15 {\rm ~GeV}$
		A SFSC pair
		m(ee) - 91.2 GeV > 10 GeV
		Zero or one medium τ_{had} candidate, of opposite charge to the light leptons
$1\ell + 2\tau_{had}$		$N_{\rm jets} \ge 3$ and $N_{b-\rm jets} \ge 1$
		One tight lepton, with $p_{\rm T} > 27 {\rm ~GeV}$
		Two τ_{had} candidates of same charge
		At least one τ_{had} candidate has to pass tight identification criteria
$2\ell OS + 1\tau_{had}$		Two loose and isolated light leptons, with $p_{\rm T} > 25$, 15 GeV
		$ m(\ell^+\ell^-) - 91.2 \text{ GeV} > 10 \text{ GeV} \text{ and } m(\ell^+\ell^-) > 12 \text{ GeV}$
		$N_{\rm jets} \ge 3$ and $N_{b-\rm jets} = 0$

The MC configurations in multileptons analysis

Process	Generator	ME order	Parton Shower	PDF	Tune
$t\bar{t}H$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO [71]	A14
	$(MG5_AMC)$	(NLO)	(Herwig++)	(CT10 [72])	(UE-EE-5)
tHqb	$MG5_AMC$	LO	Pythia 8	CT10	A14
tHW	$MG5_AMC$	NLO	HERWIG++	CT10	UE-EE-5
$t \bar{t} W$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	(NNPDF 3.0 NLO)	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to \ell\ell)$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	$(NNPDF \ 3.0 \ NLO)$	(Sherpa default)
tZ	$MG5_AMC$	LO	Pythia 6	CTEQ6L1	Perugia2012
tWZ	$MG5_AMC$	NLO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}t,tar{t}tar{t}$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}$	Powheg-BOX v2 $[73]$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t -channel,	Powheg-BOX v1 $[74,75]$	NLO	Pythia 6	CT10	Perugia2012
Wt single top					
$VV(\to \ell\ell XX),$	Sherpa $2.1.1$	MEPS NLO	Sherpa	CT10	Sherpa default
qqVV, VVV					
$Z \to \ell^+ \ell^-$	Sherpa 2.2	MEPS NLO	Sherpa	NNPDF 3.0 NLO	SHERPA default

The cross sections used in MC samples

Process	Cross section [pb]	QCD scale $[\%]$	PDF+ α_S [%]	Order
$-t\bar{t}H$	0.51	$+5.8 \\ -9.2$	± 3.6	NLO QCD+EWK
tHqb	0.074	$^{+6.5}_{-14.7}$	± 3.7	NLO QCD
tHW	0.015	$^{+4.9}_{-6.7}$	± 6.3	NLO QCD
$t \bar{t} W$	0.60	$^{+12.9}_{-11.5}$	± 3.4	NLO QCD+EWK
$t\bar{t}(Z/\gamma^* \to \ell\ell)$	0.12	$+9.6 \\ -11.3$	± 4.0	NLO QCD+EWK
$t ar{t} t ar{t}$	0.0092	$+30.8 \\ -25.6$	$^{+5.5}_{-5.9}$	NLO QCD
$t\bar{t}W^+W^-$	0.0099	$+10.9 \\ -11.8$	± 2.1	NLO QCD
$tar{t}$	832	$+2.4 \\ -3.5$	± 4.2	NNLO $QCD + NNLL$
$tar{t}\gamma$	5.7	± 5	0	NLO QCD
tZ	0.61	± 5	0	LO QCD
tWZ	0.16	± 5	0	NLO QCD
s-, t -channel,	10,217		1	NLO QCD
Wt single top	72	土!	5	NLO QCD + NNLL
$VV(\to \ell\ell XX)$	37	± 5	0	NLO QCD
$Z \to \ell^+ \ell^-$	2070	士;	5	NNLO QCD

Background, signal and observed yields in the 12 multileptons analysis channels

Category	Non-prompt	Fake τ_{had}	q mis-id	ttW	tīΖ	Diboson	Other	Total Bkgd.	tīH	Observed
					Pre-fit yields					
2ℓSS	233 ± 39	_	33 ± 11	123 ± 18	41.4 ± 5.6	25 ± 15	28.4 ± 5.9	484 ± 38	42.6 ± 4.2	514
3ℓ SR	14.5 ± 4.3	_	_	5.5 ± 1.2	12.0 ± 1.8	1.2 ± 1.2	5.8 ± 1.4	39.1 ± 5.2	11.2 ± 1.6	61
3l tłW CR	13.3 ± 4.3	_	_	19.9 ± 3.1	8.7 ± 1.1	< 0.2	4.53 ± 0.92	46.5 ± 5.4	4.18 ± 0.46	56
3l tTZ CR	3.9 ± 2.5	_	_	2.71 ± 0.56	66 ± 11	8.4 ± 5.3	12.9 ± 4.2	93 ± 13	3.17 ± 0.41	107
3ℓ VV CR	27.7 ± 8.7	_	_	4.9 ± 1.0	21.3 ± 3.4	51 ± 30	17.9 ± 6.1	123 ± 32	1.67 ± 0.25	109
3l tī CR	70 ± 17	-	-	10.5 ± 1.5	7.9 ± 1.1	7.2 ± 4.8	7.3 ± 1.9	103 ± 17	4.00 ± 0.49	85
4ℓ Z-enr.	0.11 ± 0.07	_	_	< 0.01	1.52 ± 0.23	0.43 ± 0.23	0.21 ± 0.09	2.26 ± 0.34	1.06 ± 0.14	2
4ℓ Z-dep.	0.01 ± 0.01	-	-	< 0.01	0.04 ± 0.02	< 0.01	0.06 ± 0.03	0.11 ± 0.03	0.20 ± 0.03	0
$1\ell + 2\tau_{had}$	_	65 ± 21	_	0.09 ± 0.09	3.3 ± 1.0	1.3 ± 1.0	0.98 ± 0.35	71 ± 21	4.3 ± 1.0	67
$2\ell SS+1\tau_{had}$	2.4 ± 1.4	1.80 ± 0.30	0.05 ± 0.02	0.88 ± 0.24	1.83 ± 0.37	0.12 ± 0.18	1.06 ± 0.24	8.2 ± 1.6	3.09 ± 0.46	18
$2\ell OS+1\tau_{had}$	-	756 ± 80	-	6.5 ± 1.3	11.4 ± 1.9	2.0 ± 1.3	5.8 ± 1.5	782 ± 81	14.2 ± 2.0	807
$3\ell+1\tau_{had}$	_	0.75 ± 0.15	-	0.04 ± 0.04	1.38 ± 0.24	0.002 ± 0.002	0.38 ± 0.10	2.55 ± 0.32	1.51 ± 0.23	5
					Post-fit yields					
2ℓSS	211 ± 26	_	28.3 ± 9.4	127 ± 18	42.9 ± 5.4	20.0 ± 6.3	28.5 ± 5.7	459 ± 24	67 ± 18	514
3ℓ SR	13.2 ± 3.1	-	-	5.8 ± 1.2	12.9 ± 1.6	1.2 ± 1.1	5.9 ± 1.3	39.0 ± 4.0	17.7 ± 4.9	61
3ℓ tłW CR	11.7 ± 3.0	_	_	20.4 ± 3.0	8.9 ± 1.0	< 0.2	4.54 ± 0.88	45.6 ± 4.0	6.6 ± 1.9	56
3l tTZ CR	3.5 ± 2.1	-	-	2.82 ± 0.56	70.4 ± 8.6	7.1 ± 3.0	13.6 ± 4.2	97.4 ± 8.6	5.1 ± 1.4	107
3ℓ VV CR	22.4 ± 5.7	-	-	5.05 ± 0.94	22.0 ± 3.0	39 ± 11	18.1 ± 5.9	106.8 ± 9.4	2.61 ± 0.82	109
3l tī CR	56.0 ± 8.1	_	_	10.7 ± 1.4	8.1 ± 1.0	5.9 ± 2.7	7.1 ± 1.8	87.8 ± 7.9	6.3 ± 1.8	85
4ℓ Z-enr.	0.10 ± 0.07	-	-	< 0.01	1.60 ± 0.22	0.37 ± 0.15	0.22 ± 0.10	2.29 ± 0.28	1.65 ± 0.47	2
4ℓ Z-dep.	0.01 ± 0.01	_	_	< 0.01	0.04 ± 0.02	< 0.01	0.07 ± 0.03	0.11 ± 0.03	0.32 ± 0.09	0
$1\ell + 2\tau_{had}$	_	58.0 ± 6.8	_	0.11 ± 0.11	3.31 ± 0.90	0.98 ± 0.75	0.98 ± 0.33	63.4 ± 6.7	6.5 ± 2.0	67
$2\ell SS+1\tau_{had}$	1.86 ± 0.91	1.86 ± 0.27	0.05 ± 0.02	0.97 ± 0.26	1.96 ± 0.37	0.15 ± 0.20	1.09 ± 0.24	7.9 ± 1.2	5.1 ± 1.3	18
$2\ell OS+1\tau_{had}$	_	756 ± 28	_	6.6 ± 1.3	11.5 ± 1.7	1.64 ± 0.92	6.1 ± 1.5	782 ± 27	21.7 ± 5.9	807
$3\ell + 1\tau_{had}$	-	0.75 ± 0.14	_	0.04 ± 0.04	1.42 ± 0.22	0.002 ± 0.002	0.40 ± 0.10	2.61 ± 0.30	2.41 ± 0.68	5

tt+ ≥1b backgrounds sub-categories re-weight

◆ The relevant contributions of sub-categories, tt+≥3b, tt+bb, tt+B and tt+b, in Powheg+Pythia8 are scaled to match the predictions of an NLO tt + bb sample including Parton shower and hadronisation, generated with Sherpa+OpenLoops. The sample is produced with Sherpa version 2.1 and the CT10 four-flavour scheme PDF set.

tt+jets background modelling

- tt+heavy-flavour jets modelling relies on Powheg+Pythia8 simulation. The cross section is normalised to NNLO+NNLL prediction 832⁺⁴⁶₋₅₁ pb.
- + A set of systematic uncertainties are evaluated, account for various variations.

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t}+\geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t}+\geq 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalisation	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	$MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)$	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. POWHEG-BOX+PYTHIA 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ resumm. scale	Vary $\mu_{\rm Q}$ from $H_{\rm T}/2$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set $\mu_{\rm Q}$, $\mu_{\rm R}$, and $\mu_{\rm F}$ to $\mu_{\rm CMMPS}$	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (MSTW)$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ UE	Alternative set of tunable parameters for the underlying event	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ MPI}$	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 3b$ normalisation	Up or down by 50%	$t\bar{t} + \ge 1b$

★ tt+ ≥1b, tt+ ≥1c normalisations are determined in data from the fit.

Top pair decay branching fractions

K. Liu (LPNHE-Paris)

Non-prompt lepton background estimates - I

-raction of fake and non-prompt leptons [%]

- Arising from tt production with non-prompt leptons mainly from b-hadron decay, and photon to electron conversions.
- + Polluting 2ISS, 3I and 2ISS+ τ_{had} channels.
- The estimation counts number of events passing loose selection (loosen lepton's identification and isolation requirements), which is weighted by the probabilities for loose prompt and non-prompt leptons passing tighter requirements.

+ The probabilities for non-prompt and prompt leptons:

Non-prompt lepton background estimates - II

- Closure test is performed using simulated tt events. Non-closure of (11±8)% for 2ISS and (9±18)% for 3I are taken as systematic uncertainties.
- + The estimates procedure is validated in data regions enriched by non-prompt leptons:

 The total uncertainty of non-prompt background estimation varies from 20% to 30% in 2ISS and 3I channels, and about 55% in 2ISS+1τ_{had} channel.

Fake τ_{had} background estimates in τ_{had} channels

- + Arising from tt and ttV production with misreconstructed τ_{had} candidate.
- Fake τ_{had} factor (ratio of fake τ_{had} passing tight to those passing loose but failing tight) are measured in CR (close to 2IOS+τ_{had}SR).
- + In 2IOS+ τ_{had} channel, systematic uncertainty of fake τ_{had} background is 11%.
- In 3I+τ_{had} 2ISS+τ_{had} channels, a scale factor
 1.36±0.16 is used to correct MC prediction
 for fake τ_{had} component.
- In 1I+2τ_{had} channel, fake τ_{had} background is estimated in control region identical to the signal region but with same charge τ_{had} pair. In total, 30% systematic uncertainty mainly comes from method non-closure.

