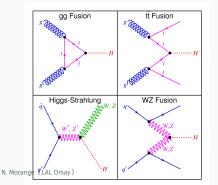
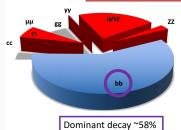
EVIDENCE FOR THE $H \rightarrow bb$ decay in VH production at ATLAS

Nicolas Morange

IRN Terascale, 14/12/17



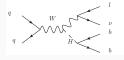


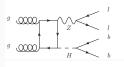
$H \rightarrow bb$

- Important search on its own (coupling to b quark)
- Largest BR: ∼ 58%
- Drives the total width, thus measurements of absolute couplings
- · Limits the amount of BSM decays allowed

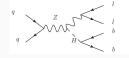
Observed decays ~31%

Where to look


- ggF Need to go to highly boosted regime (recent CMS analysis)
- VBF Analysis à la $H\gamma\gamma$. Also exploits VBF+ γ topology
- VH Most sensitive channel
- ttH Also important because of ttH production (direct coupling to top quark)

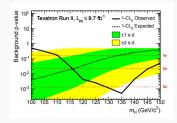


Processes


- ZH and WH
 - Leptonic decays for bkg rejection and trigger
 - 3 channels: 0, 1, 2 (charged) leptons
- ZH has gg induced diagrams
 - 10% of cross-section
 - ullet $p_{
 m T}$ spectrum peaking around 140 ${
 m GeV}$

Previous results

Tevatron legacy: 3.1 σ global, 2.8 σ at 125 GeV (1.5 exp.)

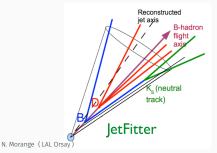

-...

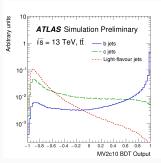
ATLAS and CMS Run 1: 1.4σ (2.6) / 2.1σ (2.5)

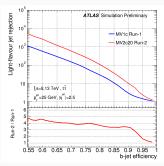
LHC combination: 2.6σ (3.7)

Run 2 analysis

- \bullet 36 fb⁻¹ at 13 TeVvs 25 fb⁻¹ at 7 and 8 TeV
- Signal cross-section $\sim \times 2$, but Z/W+jets $\times 1.7$,

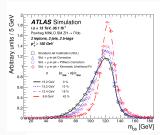


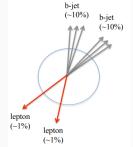

b-tagging


- Algorithms to identify jets from b hadrons
- Use track impact parameters, and reconstruction of secondary vertices

Run 2 performance

- Typical performance: 70%/8.2%/0.3% b/c/light efficiency
- Large improvement compared to Run 1, esp. on c-jet rejection
 - Tracking optimized for high-PU environments
 - Better algorithms + new IBL
- Makes it easier to use only events with 2 good b-tags




Mass resolution improvements We have a pair of *b*-jets

- Add muons in the vicinity (semi-lep. decays)
- Simple average jet p_T correction. Accounts for neutrinos, and interplay of resolution and p_T spectrum effects.
- Improvement ∼ 18%

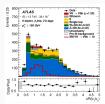
Kinematic Fit

- 2 leptons: final state fully reconstructed
- High resolution on leptons
- Constrain jet kinematics better: $\sum p_{\mathbf{T}}(\ell) = p_{\mathbf{T}}(bb)$ modulo intrinsic $k_{\mathbf{T}}$
- Improvement ∼ 40%

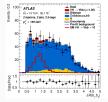
Z+hf, W+hf

- · Same final state as signal
- · non-peaking
- Sherpa 2.2.1

Diboson WZ, ZZ


- Peaking at lower mass than the signal
- Larger cross-section
- Softer p_T(V) spectrum
- Sherpa 2.2.1

t, single-top

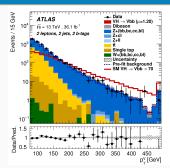

- 2 lepton: same final state as signal
- 0 and 1 leptons: additional jets, and/or missing leptons
- Powheg+Pythia

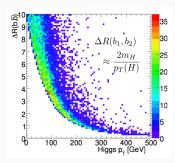
Multiiet

- Very large cross-section and high rejection factors
- Channel-dependent
- Data-driven

Conclusions

- m_{bb} , $\Delta R(b, b)$ very powerful variables
- Better S/B at higher $p_{\mathrm{T}}(V)$
- S/B depends on number of jets in the event
- Measurement of diboson process excellent validation of the analysis




Improving S/B

- Much harder spectrum for signal than bkgs
- Going to high-p_T improves S/B
- Use it for event classification: 75 < $p_{\rm T}(V)$ < 150 GeV, $p_{\rm T}(V)$ > 150 GeV
- Add it in our MVAs as well
- Need large bkg statistics in tails of distributions!

Topology

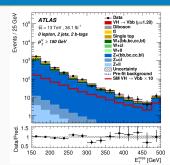
- ullet H o bar b is a simple 2-body decay
- At high $p_{\mathbf{T}}$, can cut hard on $\Delta R(b,b)$ with very high signal efficiency
- Helps reducing backgrounds significantly
 - Most prominently t\u00e4

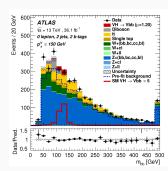
N. Morange (LAL Orsay)

Z selection

- MET trigger
- MET>150 GeV
- Veto leptons p_T >7 GeV

Higgs candidate


- 2 b-tagged jets. Leading p_{T} >45 GeV
- 1 additional jet max


Multijet background

- Typically arise from jets with large fluctuations in their interaction
- MET aligned with jet
- Angular cuts extremely efficient
- ⇒ Negligible remaining multijet contribution

Signal Acceptance

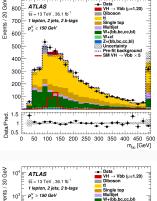
- \sim 20% of expected signal events are WH $(\tau \nu)$
- acceptance for ggZH 70% larger than for qqZH
 - Due to harder $p_{\rm T}(V)$ spectrum

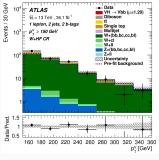
VH → Vbb (μ=1.20 Diboson

W selection

- Single-electron or MET trigger
- Well identified, isolated electron (>27 GeV) or muon (>25 GeV)
- Veto additional leptons p_T>7 GeV
- p_T(W) > 150 GeV

Higgs candidate


- 2 b-tagged jets. Leading p_T>45 GeV
- 1 additional jet max


Multijet

- From semi-lep decays, or from hadrons (electron channel)
- · Reduced by tightening the lepton isolation and ID criteria
- · Isolation tuned for the analysis (need tight isolation at high- $p_{\rm T}$)
- Then data-driven estimation

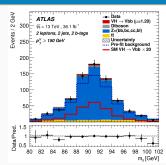
W+hf control region

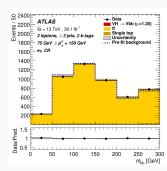
• m_{hh} < 75 GeV and m_{top} > 225 GeV

Z selection

- Single-lepton triggers
- 2 electrons or muons. Leading $p_{\rm T}$ >27 GeV, subleading $p_{\rm T}$ >7 GeV
- Z mass: 81 $< m_{\ell\ell} <$ 101 GeV
- 75 $< p_{\mathrm{T}}(Z) <$ 150 GeV, or $p_{\mathrm{T}}(Z) >$ 150 GeV

Higgs candidate

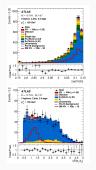

- 2 b-tagged jets. Leading p_T >45 GeV
- 0, or \geq 1 additional jets

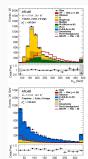

Top $e\mu$ control region

- · Opposite-flavour events
- 99% pure

Signal Acceptance

- acceptance for ggZH twice larger than for qqZH
 - Due to harder $p_{\rm T}(V)$ spectrum

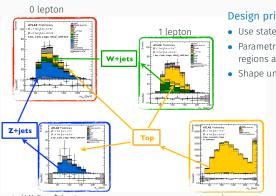



MVA setup

- · Pretty standard BDT analysis
- Input variables and hyper-parameters tuned to yield best sensitivity

Variables

- Kinematic variables, some specific to 3-jet regions
- m_{bb} , $\Delta R(b, b)$ and $p_T(V)$ most important ones
- Others depend on channel, e.g mee in 2-lepton



Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	×
$E_{ m T}^{ m miss}$	×	×	×
$p_{\mathrm{T}}^{b_{1}^{1}}$ $p_{\mathrm{T}}^{b_{2}}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(\vec{b}_1, \vec{b}_2)$	×	×	×
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×		
$\Delta\phi(ec{V}, bec{b})$	×	×	×
$ \Delta \eta(\vec{V}, \vec{bb}) $			×
$m_{ m eff}$	×		
$\min[\Delta\phi(\vec{\ell}, \vec{b})]$		×	
m_{T}^{W}		×	
$m_{\ell\ell}$			×
m_{top}		×	
$ \Delta Y(\vec{V}, \vec{bb}) $		×	
	Only	' in 3-jet ev	vents
$p_{\mathrm{T}}^{\mathrm{jet_3}}$	×	×	×
m_{bbj}	×	×	×

N. Morange (LAL Orsay)

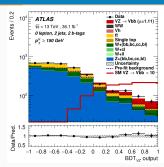
- Large backgrounds with many differences
- Bkg composition varies significantly over a large phase space
- Want to constrain modelling of bkg from data
 - Use as many regions as possible
- Much easier when cuts and phase space are similar among the channels
- Requires delicate understanding of the extrapolation from one region to another

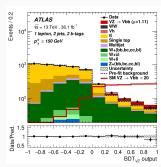
Design principles

- Use state-of-the-art MC generators
- Parametrize extrapolation uncertainties across regions as uncertainties on ratios of yields
- Shape uncertainties on BDTs

Scale Factors

- ~ 1.25 for W/Z+jets
- 1.0 for $t\overline{t}$: in 2 lepton
- 0.9 for $t\bar{t}$ in 0/1 leptons

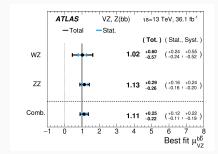


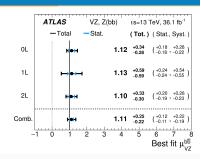

A must-have for VHbb

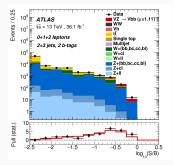
- Train the BDTs to look for WZ + ZZ instead of VH
- Done before looking at VH
- Robust validation of background model and associated uncertainties
- Critical to convince ourselves we are ready to unblind!

Analysis strategy

- · One main likelihood fit
- BDT in the 8 SR
- ullet m_{bb} in the 4 top $e\mu$ CR
- Normalization in the 2 W+hf CR
- Systematics parametrized as nuisance parameters

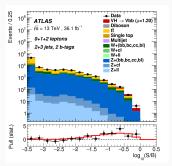


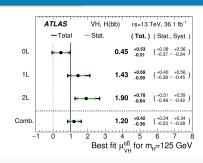


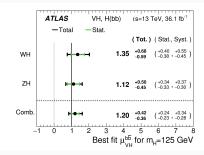


Results

- Clear observation: 5.8σ (5.3 exp.)
- · Agreement with SM
- Excellent agreement between channels
- Much better sensitivity to ZZ than to WZ: combinatorics; impact of low p_T(V) region
- \Rightarrow Ready to unblind VH!

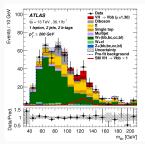



N. Morange (LAL Orsay)

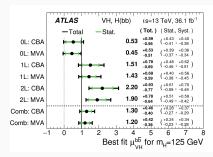


We have it!

- Evidence for bb decay at 3.5σ (3.0 exp.)
- Dominated by systematics
- Channels compatible at 10% level
- 2.4σ for WH, 2.6σ for ZH: VHbb most sensitive channel for VH production
- · As cross-sections:
 - $\sigma(WH) \times B(Hbb) = 1.08^{+0.54}_{-0.47} \, \text{pb}$
 - $\sigma(ZH) \times B(Hbb) = 0.57^{+0.26}_{-0.23} \text{ pb}$



m_{bb} fit


- Important cross-check to test robustness of result
- Cut $p_{\mathrm{T}}(V) >$ 150 GeV into 150 200 and > 200 GeV
- Add simple cuts on: $\Delta R(b,b)$, $m_T(W)$ (1 lepton), E_T^{miss} significance (2 lepton)
- Then fit m_{bb}!

Results

- Evidence at 3.5σ (2.8σ exp.)
- Consistent with MVA in all channels

What limits us on the road to 5σ ?

b-tagging both b and c jet tagging corrections

Will improve with time

Background modelling Z+hf, W+hf, $t\bar{t}$

- Better generators ?
- Understand better differences between generators
- Reduce uncertainties through specific SM measurements
- More data-driven approaches

Signal modelling dominated by PS/hadronization

· Needs better understanding of our MCs

MC stats never-ending race between data stat and MC stat

- Improve on MC filters
- Not easy in all cases, e.g $t\bar{t}$ phase space in 0/1-lepton
- Improve on MC generation speed

Source of uncertainty	σ_{μ}
Total	0.39
Statistical	0.24
Systematic	0.31
Experimental uncertainties	
Jets	0.03
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.03
Leptons	0.01

b-tagging	b-jets c-jets	0.09
	light jets extrapolation	$0.04 \\ 0.01$

Pile-up	0.01
Luminosity	0.04

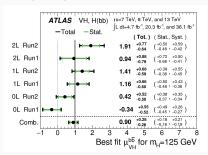
Theoretical and modelling uncertainties Signal 0.17

Floating normalisations	0.07
Z + jets	0.07
W + jets	0.07
$t\overline{t}$	0.07
Single top quark	0.08
Diboson	0.02
Multijet	0.02

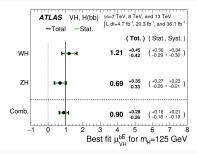
0.13

MC statistical

N. Morange (LAL Orsay) 17/2



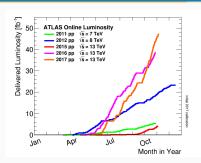

Combination How to correlate systematics?

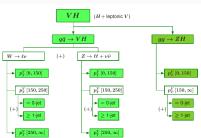

- Difficult to be sure in many cases (e.g b-tagging, when new detector / new algo?)
- Correlate b-jet energy scale uncertainty, and Higgs production cross-sections
- Test that other correlations have little impact

Results

- Evidence at 3.6σ (4.0 exp.)
- Compatibility of the 6 measurements: 7%

N. Morange (LAL Orsay) 18/21



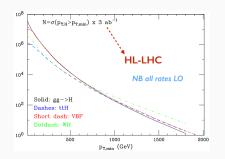

Next step: observation!

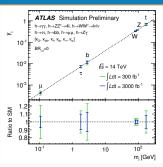
- 2017: more stat than 2016!
- Without systematics, observation would be a no-brainer
- Hard work needed on MC stat generation, background modelling, b-tagging calibration

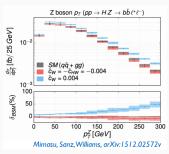
Signal Template Cross-sections

- Standardized definition of fiducial regions for Higgs productions
- Fiducial definitions not too far from what can be achieved with differential measurements
- Allows easy combination of Higgs channels and across experiments
- Allows interpretation in EFT bases
- Goal for VH(bb): p_T(V) measurement

N. Morange (LAL Orsay)

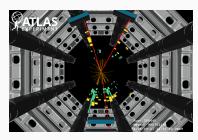


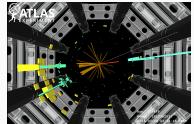

Couplings


- Projections from ATLAS and CMS
- Coupling to b-quarks known in the 5–10% range?
- Very much dependent on the systematics we can achieve

What for?

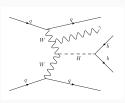
- ullet Deviations from New Physics can be mostly at high- $p_{
 m T}$
- VH dominates total Higgs x-sec for $p_T(H) > 800 \text{ GeV}$!
- · Decent statistics expected even in this regime

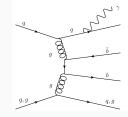




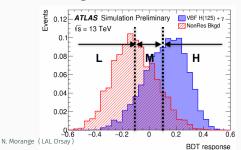
N. Morange (LAL Orsay) 20/21

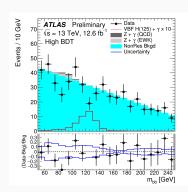
- Evidence for *Hbb* decay at 3.6σ in ATLAS
 - JHEP 12 (2017) 024 (paper published yesterday!)
- Similar result by our CMS colleagues
 - arXiv:1709.07497
- Interesting to look in all production modes
 - VBF, ttH... but VHbb leading the sensitivity
- Starts to be limited by systematics
 - Adding more data will bring diminishing returns
 - Need to reduce systematics
- · Next goals: observation and measurements!


	0-lepton 1-lepton		pton	2-lepton					
Signal regions	$p_{\rm T}^V > 150$ C	GeV, 2-b-tag	$p_{\rm T}^V > 150$ G			$GeV < p_T^V < 150 \text{ GeV}, 2-b\text{-tag}$		$p_{\rm T}^{V} > 150 \text{ GeV}, 2\text{-}b\text{-tag}$	
Sample	2-jet	3-jet	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet	
Z + ll	9.0 ± 5.1	15.5 ± 8.1	< 1	-	9.2 ± 5.4	35 ± 19	1.9 ± 1.1	16.4 ± 9.3	
Z + cl	21.4 ± 7.7	42 ± 14	2.2 ± 0.1	4.2 ± 0.1	25.3 ± 9.5	105 ± 39	5.3 ± 1.9	46 ± 17	
Z + HF	2198 ± 84	3270 ± 170	86.5 ± 6.1	186 ± 13	3449 ± 79	8270 ± 150	651 ± 20	3052 ± 66	
W + ll	9.8 ± 5.6	17.9 ± 9.9	22 ± 10	47 ± 22	< 1	< 1	< 1	< 1	
W + cl	19.9 ± 8.8	41 ± 18	70 ± 27	138 ± 53	< 1	< 1	< 1	< 1	
W + HF	460 ± 51	1120 ± 120	1280 ± 160	3140 ± 420	3.0 ± 0.4	5.9 ± 0.7	< 1	2.2 ± 0.2	
Single top quark	145 ± 22	536 ± 98	830 ± 120	3700 ± 670	53 ± 16	134 ± 46	5.9 ± 1.9	30 ± 10	
$t\bar{t}$	463 ± 42	3390 ± 200	2650 ± 170	20640 ± 680	1453 ± 46	4904 ± 91	49.6 ± 2.9	430 ± 22	
Diboson	116 ± 26	119 ± 36	79 ± 23	135 ± 47	73 ± 19	149 ± 32	24.4 ± 6.2	87 ± 19	
Multi-jet e sub-ch.	-	_	102 ± 66	27 ± 68	_	_	_	_	
Multi-jet μ sub-ch.	-	_	133 ± 99	90 ± 130	_	-	_	_	
Total bkg.	3443 ± 57	8560 ± 91	5255 ± 80	28110 ± 170	5065 ± 66	13600 ± 110	738 ± 19	3664 ± 56	
Signal (fit)	58 ± 17	60 ± 19	63 ± 19	65 ± 21	25.6 ± 7.8	46 ± 15	13.6 ± 4.1	35 ± 11	
Data	3520	8634	5307	28168	5113	13640	724	3708	


Control regions 1-lepton		2-lepton					
Control regions	$p_{\rm T}^V > 150$	150 GeV, 2-tag 75 GeV $< p_T^V < 150$ GeV, 2-t		$p_{\rm T}^{V} < 150 \; {\rm GeV}, \; 2\text{-tag}$	$p_T^V > 150 \text{ GeV}, 2\text{-tag}$		
Sample	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet	
Z + ll	< 1	< 1	< 1	< 1	< 1	< 1	
Z + cl	_	< 1	< 1	< 1	< 1	< 1	
Z + HF	6.6 ± 0.7	19.3 ± 1.4	2.1 ± 0.2	2.8 ± 0.2	< 1	1.2 ± 0.1	
W + ll	1.1 ± 0.1	2.9 ± 0.1	_	-	-	-	
W + cl	2.6 ± 1.1	8.7 ± 3.7	-	-	-	-	
W + HF	234 ± 21	594 ± 45	3.0 ± 0.3	2.7 ± 0.3	< 1	< 1	
Single top quark	10.3 ± 2.8	40 ± 14	50 ± 15	127 ± 45	5.8 ± 1.8	27.9 ± 9.8	
$t\bar{t}$	24.8 ± 7.8	107 ± 29	1437 ± 41	4852 ± 85	48.8 ± 3.8	431 ± 21	
Diboson	5.6 ± 1.9	12.1 ± 4.2	-	< 1	-	-	
Multi-jet e sub-ch.	8.2 ± 5.3	2.2 ± 5.6	-	-	-		
Multi-jet μ sub-ch.	6.8 ± 5.1	3.7 ± 5.4	-	-	-	-	
Total bkg.	300 ± 16	791 ± 27	1492 ± 37	4985 ± 68	55.2 ± 3.9	461 ± 19	
Signal (fit)	< 1	1.2 ± 0.4	< 1	< 1	< 1	< 1	
Data	302	790	1489	4967	50	470	

$VBF+\gamma$ channel


- Rare production ($lpha_{\it QED}$ compared to VBF)
- Great at triggering and suppressing background
- Even more than you think: destructive interference



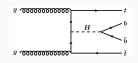
First analysis for ICHEP 2016

- ATLAS-CONF-2016-063 with partial 13 TeV data $(12.6 \, \mathrm{fb}^{-1})$
- $\bullet\,$ BDT to create 3 categories, then fit m_{bb} in each of them
- Zbb as first signal to look for

Result	$H(\rightarrow b\bar{b}) + \gamma jj$	$Z(\rightarrow b\bar{b}) + \gamma jj$
Expected significance	0.4	1.3
Expected p -value	0.4	0.1
Observed p -value	0.9	0.4
Expected limit	$6.0 \begin{array}{c} +2.3 \\ -1.7 \end{array}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$
Observed limit	4.0	2.0
Observed signal strength μ	$-3.9 \begin{array}{c} +2.8 \\ -2.7 \end{array}$	0.3 ± 0.8

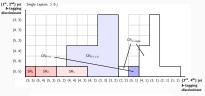
Results

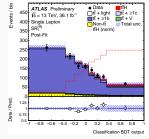
- Still rather low sensitivity
- Hugely dominated by data stat. Will be great for high lumi.
- Then large signal modelling uncertainties


Uncertainty source	Uncertainty $\Delta \mu$
Non-resonant background uncertainty in medium-BDT region	0.22
Non-resonant background uncertainty in high-BDT region	0.21
Non-resonant background uncertainty in low-BDT region	0.17
Parton shower uncertainty on $H + \gamma$ acceptance	0.16
QCD scale uncertainty on $H + \gamma$ cross section	0.13
Jet energy uncertainty from calibration across η	0.10
Jet energy uncertainty from flavour composition in calibration	0.09
Integrated luminosity uncertainty	0.08

One word on... ttH(bb)

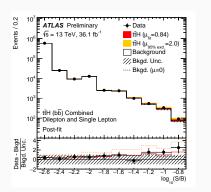
ttH(bb) channel

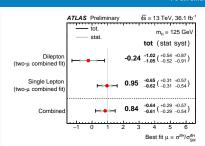

- Lower production (but not much lower) than VH(bb)
- Very busy topologies
- Combinatorics



Recent analysis with 2016 data: CONF-2017-076

- Semi-leptonic (dominant) and dileptonic tt decays
- Many jets and b-jets in final state
- Use ML techniques to resolve the combinatorics, then to discriminate signal from backgrounds
- MEM and likelihood discriminants used as inputs to the BDTs
- Use of b-tagging distribution also very important
- · Simultaneous fit of 18 SR and 20 CR

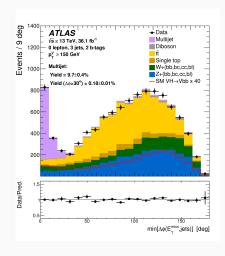



ttH(bb) RESULTS

Results

- Compatible results between the single- and dilepton channels
- Sensitivity 1.4 σ (1.6 σ exp)
 - ullet Corresponds to a limit of 2.0 imes SM
- Extreme sensitivity to t ar t + b ar b modelling
- Also quite sensitive to b-tagging and jet energy scale

Uncertainty source	Δ	μ
$t\bar{t} + \geq 1b \text{ modelling}$	+0.46	-0.46
Background model statistics	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modelling	+0.22	-0.05
$t\bar{t} + \geq 1c$ modelling	+0.09	-0.11
JVT, pileup modelling	+0.03	-0.05
Other background modelling	+0.08	-0.08
$t\bar{t}$ + light modelling	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \ge 1b$ normalisation	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalisation	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

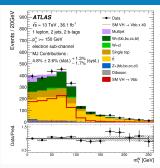


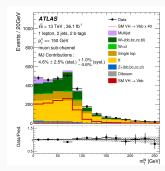
Multijet events

- Typically arise from jets with large fluctuations in their interaction
- MET aligned with jet
- Cuts on $\min(\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jets}))$, $\Delta\phi(E_{\mathrm{T}}^{\mathrm{miss}},bb)$, $\Delta\phi(b1,b2)$ extremely efficient
- ⇒ Negligible remaining multijet contribution

Non-collisional backgrounds

- Usual backgrounds for hadronic final states
- Negligible when requiring 2 b-tags

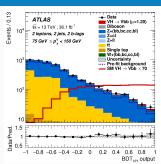


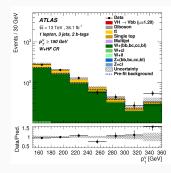

Multijet events

- From semi-lep decays, or from hadrons (electron channel)
- Reduced by tightening the lepton definition
- Isolation tuned for the analysis (need tight isolation at high- $p_{\mathbf{T}}$)

Multijet estimation

- Separate in electron and muon events
- Templates from inverted isolation
- · Corrected for bias in kinematics
- Normalization from fit to m_T(W)

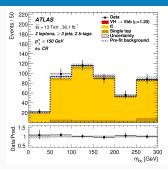

Modelling: W/Z+HF

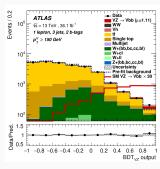


Principle

- Rely on MEPS@NLO (multi-jet merging at NLO) with up to 2 extra jets
- 2 lepton low p_T(V) can constrain Z normalizations, shapes
- 1 lepton Whf CR constrains W norm.
- ⇒ Normalization factors ~ 1.25
 - Extrapolations to 0-lepton or 1-lepton SR needed
 - Uncertainties on flavour composition
 - BDT shapes: through m_{bb} and $p_{\mathbf{T}}(V)$ variations

	Z + jets
Z + ll normalisation	18%
Z + cl normalisation	23%
Z + bb normalisation	Floating (2-jet, 3-jet)
Z + bc-to- $Z + bb$ ratio	30 - 40%
Z + cc-to- $Z + bb$ ratio	13 - 15%
Z + bl-to- $Z + bb$ ratio	20 - 25%
0-to-2 lepton ratio	7%
$m_{bb}, p_{\mathrm{T}}^{V}$	S
	W + jets
W + ll normalisation	32%
W + cl normalisation	37%
W + bb normalisation	Floating (2-jet, 3-jet)
W + bl-to- $W + bb$ ratio	26% (0-lepton) and 23% (1-lepton)
W + bc-to-W + bb ratio	15% (0-lepton) and 30% (1-lepton)
W + cc-to- $W + bb$ ratio	10% (0-lepton) and 30% (1-lepton)
0-to-1 lepton ratio	5%
W + HF CR to SR ratio	10% (1-lepton)
$m_{bb}, p_{\mathrm{T}}^{V}$	S
N. Morange (LAL Orsay)	





Principle

- 2 lepton vs 0/1 lepton: different phase space
- ullet 2 lepton $e\mu$ and 0/1 lepton 3-jet regions very pure
- \bullet Normalization factors: \sim 0.9 for 0/1 lepton, \sim 1.0 for 2-lepton
- Uncertainties needed for extrapolation to 0/1 lepton 2-jet regions
- ullet BDT shapes: through m_{bb} and $p_{f T}(V)$ variations

$t\bar{t}$ (all are uncorrelated between the 0+1 and 2-lepton channels)		
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)	
0-to-1 lepton ratio	8%	
2-to-3-jet ratio	9% (0+1 lepton only)	
W + HF CR to SR ratio	25%	
m_{bb}, p_T^V	S	
	Single top quark	
Cross-section	4.6% (s-channel), 4.4% (t-channel), 6.2% (Wt)	
Acceptance 2-jet	17% (t-channel), 35% (Wt)	
Acceptance 3-jet	20% (t-channel), 41% (Wt)	
m_{bb} , p_T^V	S $(t$ -channel, $Wt)$	

Multijet in 1 lepton

Large shape and norm. effects on the data-driven estimate

Signal and Diboson

- · No contraints from data
- Follow standard recipes for systematics
- Signal: Separate systematics on production (correlated with other channels in future Higgs combinations) from acceptance effects

ZZ	
Normalisation	20%
0-to-2 lepton ratio	6%
Acceptance from scale variations (var.)	10 – 18% (Stewart–Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), 5.8% (2-lepton)
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), 3.1% (2-lepton)
m_{bb} , p_T^V , from scale var.	S (correlated with WZ uncertainties)
m_{bb} , p_T^V , from PS/UE var.	S (correlated with WZ uncertainties)
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)
1	WZ
Normalisation	26%
0-to-1 lepton ratio	11%
Acceptance from scale var.	13 – 21% (Stewart-Tackmann jet binning method)
Acceptance from PS/UE var. for 2 or more jets	3.9%
Acceptance from PS/UE var. for 3 jets	11%
m_{bb} , p_T^V , from scale var.	S (correlated with ZZ uncertainties)
m_{bb} , p_T^V , from PS/UE var.	S (correlated with ZZ uncertainties)
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)
	VW .
Normalisation	25%

Signal	
Cross-section (scale)	0.7% (qq), 27% (gg)
Cross-section (PDF)	$1.9\% (qq \rightarrow WH), 1.6\% (qq \rightarrow ZH), 5\% (gg)$
Branching ratio	1.7 %
Acceptance from scale variations (var.)	2.5 – 8.8% (Stewart–Tackmann jet binning method
Acceptance from PS/UE var. for 2 or more jets	10 – 14% (depending on lepton channel)
Acceptance from PS/UE var. for 3 jets	13%
Acceptance from PDF+ α_8 var.	0.5 - 1.3%
m_{bb} , p_T^V , from scale var.	S
m_{bb} , p_T^V , from PS/UE var.	S
m_{bb} , p_T^V , from PDF+ α_S var.	S
p_T^V from NLO EW correction	S