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Summary
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• Gauge-Higgs idea, naturalness, unification

• Group theory, sinθW, Yukawa couplings

• Renormalisation group evolutions

• Conclusion



Natural Higgs boson
• Naturalness implies the 125 GeV Higgs mass is not 

due to a tuning of the parameters, typically δm ~ 
ΛNP is a problem…

• Only special types of scalars may satisfy this 
requirement: 

• supersymmetry (scalar               fermion) 

• compositeness (condensate, goldstones)

• gauge-higgs (scalar               gauge boson)
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A scalar from extra dimensions
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A 5D field (with a compact 5th dimension is a Kaluza-
Klein tower when seen from our 4D perspective (Fourier 
decomposition)
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A gauge scalar from extra dimensions
AM = (Aµ, A5)
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Orbifold parity projection

Contains a zero mode vector Contains a zero mode scalar

5D gauge symmetry broken by parity projection (but 4D preserved)

Higgs scalar “protected” by the gauge symmetry (Hosotani 
mechanism), vev “geometrisation”



Hosotani mechanism
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EWSB giving a vev to the Higgs is a gauge transformation
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Spectrum is shifted and the zero mode gets a mass
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Yukawa couplings are related to gauge too
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A SU(3) toy model
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Weinberg angle, top mass
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Higgs doublet, but U(1) charge
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Therefore the group theory 
value for the Weinberg 
angle is not the correct one

g0 =
p
3 g ! sin2 ✓W =

3

4

Fermion mass related to W mass mf = mW
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Improving the model…
• Adding extra U(1)X: changes the U(1) charge, but ad hoc

• Use different group for embedding S(2)xU(1), example G2 is 
closer to the Weinberg angle value, but still incompatible

• Embed the top quark in a higher representation

• Modify the geometry

• Add localised fields and couplings

• …or keep the model and work harder!



Renormalisation group evolution
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Λ

n/R

EW

• Group theory prediction at 
unification, need to run down at 
the EW scale

• Λ and EW not that far, but running 
in Xdim is fast, linear effect, not log

• Here Yukawa coupling is also 
gauge



Reconsidering SU(3)
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SU(2)L U(1)Y Yuk. SU(3)c

g g0 y gs

SU(3) GHU gGHU

p
3 gGHU gGHU/

p
2 -

SM 0.66 0.35 1.0 1.2

TABLE I: Gauge and top Yukawa couplings in the SU(3)
GHU model compared to the SM values at the MZ scale. We
also include for completeness the QCD coupling.

Minimal SU(3) model with a bulk triplet

We will focus here on the simplest GHU group that al-
lows us to embed both the EW symmetry and the Higgs:
GGHU = SU(3)W [12]. This group, of rank 2 like the EW
symmetry, contains an SU(2)⇥U(1) subgroup that can
be identified with the gauged EW one. Furthermore, the
remaining 4 broken generators correspond to a doublet
of SU(2) with non-vanishing hypercharge, like the Higgs
doublet in the SM. Fixing the hypercharge of the doublet
fixes the relation between the SU(2) and U(1) couplings.
Finally, a fermion field in the fundamental representa-
tion decomposes into a doublet and singlet of the SU(2):
once the hypercharge of the Higgs candidate is fixed, the
hypercharges of the doublet and singlet matches those of
the left-handed quarks and the right-handed down-type
ones. While we would like to describe the top quark
as a bulk field, we will consider this simple model as a
toy to test our idea. Note that other SM fermions can
be added as localised degrees of freedom [7, 12], how-
ever, their couplings to the bulk Higgs will be suppressed,
thus explaining fermion masses below the EW scale. The
SU(3) predictions for the gauge and Yukawa couplings,
in terms of the unified coupling gGHU, are shown in Ta-
ble I together with the SM values of the couplings at the
EW scale (i.e. MZ). For the Yukawa we consider the top
Yukawa as our benchmark value because it is the largest
one. It is clear that the tree-level GHU predictions are
di↵erent from the SM values, however, they only apply
at the cut-o↵ of the e↵ective theory, which may be very
far from the EW scale. We show that the running will
strongly modify the predictions.

We thus study the running e↵ects in a concrete model
based on a single extra-dimension compactified on an in-
terval S1/Z2. The boundary conditions at the two end
points of the interval, x5 = 0 and x5 = ⇡R (where R
is the radius of the extra-dimension), are such that the
GHU group is broken to the EW one. The spectrum
will thus contain massless gauge bosons plus a massless
scalar associated to the broken generators. Furthermore,
the bulk fermion transforming as the fundamental of
SU(3)W is assigned boundary conditions such that only
two massless fermions appear and we identify them with
the third generation quark doublet and down-type singlet
(the missing SM fermions are assumed to be localised).
At low energy, therefore, the field content matches that

of the SM. The running of the couplings will be a↵ected
by the presence of the Kaluza-Klein (KK) states once the
mass thresholds are met, starting at mKK = 1/R.
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FIG. 1: Running of the normalised gauge and Yukawa cou-
plings for the SU(3) GHU model, for 1/R = 5 TeV. The first
KK mode enters at tKK ⇠ 4.0.

In Figure 1 we show the running of the couplings as a
function of the energy scale µ, normalised to the unified
values as in Table I:

{g1, g2, g3, gy} =

⇢
g0p
3
, g, gs,

p
2 y

�
. (1)

The normalisations simply follow from the group theory
structure of the SU(3)W matrices, while the QCD cou-
pling is, in principle, unrelated. The couplings follow SM
evolutions up to the scale where the first KK resonances
appear, i.e.

tKK = ln
1

MZR
. (2)

From there on the running is modified by the extra-
dimensions, and it features the expected linear be-
haviour. The figure clearly shows that the gauge cou-
plings asymptotically tend to the same value. This is
more evident from the plot in Figure 2, where we show,
as a function of the energy, a naive estimate of the 5-
dimensional loop factor, obtained by using naive dimen-
sional analysis (NDA) [13, 14]:

↵NDA

i (µ) ⇠ g2i (µ)

8⇡
µR . (3)

While all the couplings run asymptotically to zero, their
ratio clearly tends to 1. Thus it looks as if the unified
value of the gauge couplings is an UV attractor of the
one loop running. It may seem surprising that the strong
coupling also falls very close. However, the GHU model
contains two SU(3) gauge structures, one associated to
QCD and the other to the EW gauge sector, and the
bulk fermion is a bi-fundamental. This allows the exis-
tence of a Z2 symmetry between the two sectors at high
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SU(2) and U(1) unify 
asymptotically

1st KK mode kicks in the running

hep-ph/1706.02313



Running of the gauge couplings 
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S(t) encodes the sum of 
the KK contributions to 
the running

3

energy that implies equal couplings. Note, finally, that
the NDA loop factor, which can be thought of as a 5D
’t Hooft coupling (as µR counts the number of KK tiers
below energy µ), can be used as a marker of the energy
where the calculability of the extra-dimensional theory is
lost. The fact that the values stay small seems to suggest
that the theory under study may have a more extended
validity than previously thought.

FIG. 2: 5D NDA loop factor as a function of the energy, for
1/R = 5 TeV.

The initial value of the Yukawa coupling, correspond-
ing to y(mZ) = 0.51, is tuned to achieve unification in the
UV. This value depends only mildly on the scale of the
extra-dimension 1/R. It should be noted that the run-
ning of the Yukawa coupling does not follow the gauge
ones at high energy, due to the fact that the compactifica-
tion of the extra-dimension clearly singles out the scalar
component of the bulk gauge field. However, in the UV,
the running needs to be replaced by the running of the
5D gauge coupling. Our results show that the value of
the Yukawa coupling at low energy is larger than the val-
ues at unification, y = g2/

p
2, however the enhancement

is not enough to explain the Yukawa coupling of the top,
y = 1. It should be remarked that the value we obtain
is a solid prediction of this toy model. Nevertheless two
loop corrections, and the embedding of the top in a more
realistic model, may further improve the agreement.

One possibility is to replace the bulk fermion triplet
with a larger representation that can contain a singlet
with the correct hypercharge to match the right-handed
top: the minimal possibility is to use a 2-index symmet-
ric representation (sextet). The sextet would contain a
doublet and singlet matching the quantum numbers of
the SM quarks, plus an SU(2) triplet. Thus, one can
define two independent Yukawa couplings. Furthermore,
the triplet acquires a mass by marrying to a localised
chiral fermion, which is also needed to cancel residual
4-dimensional gauge anomalies. We also performed the
running in this model, following the same prescriptions
as before. However, we noticed that the NDA loop fac-
tor estimate for the EW gauge couplings run to non-

perturbative values well before unification occurs, thus
rendering the perturbative running unreliable. This re-
sult seems to indicate that only models with small rep-
resentations of the bulk gauge symmetries can provide
useful predictions for the low energy values of the cou-
plings in the model.

Details of the calculation

The renormalisation group equations allow us to resum
the leading energy-dependent corrections to any coupling
in terms of a di↵erential equation. The solutions are
energy-dependent couplings whose values run with the
scale at which the physics is probed. While in four di-
mensions the running is logarithmic, in five dimensional
models it becomes linear in the energy. The generic struc-
ture of the running of the gauge couplings at one loop
level is given by [15]

16⇡2
dgi
dt

= bSMi g3i + (S(t)� 1) bGHU

i g3i , (4)

where t = ln (µ/MZ) and contains the energy scale pa-
rameter µ. We chose to use the Z mass as a reference
scale, so that for µ = MZ we have t = 0 and we can
fix the initial conditions of the running. The coe�cients
bSMi and bGHU

i can be computed once the field content
of the model is specified: the former are equal to the
values in the SM, while the latter include the e↵ects of
the KK modes in the bulk of the extra-dimension. This
e↵ect only starts contributing above the mass of the first
mode, equal to the inverse radius mKK = 1/R. The func-
tion S(t), defined as

S(t) =

(
µR = MZ R et for µ > 1/R ,

1 for MZ < µ < 1/R,
(5)

encodes the linear running due to the extra-dimension.
This continuum approximation has been tested against
the discrete sum over the KK modes, and the results are
in excellent agreement. For the SU(3) GHU model the b
coe�cients for the SM gauge couplings, gi = {g0, g, gs},
are

bSM
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(6)
This result can be easily understood: �17/2 is the beta

function of the unified SU(3) model (recall that bSU(3)

1

has an additional normalisation of 1/3), and the result
matches the fact that each KK tier contains a complete
representation of SU(3). For the hypercharge running
the normalisation factor has been taken into account.
The asymptotic behaviour of the running of the gauge

couplings can be easily understood when rewriting Eq.(4)
in terms of ↵NDA (as defined in Eq.(3))

d↵NDA

dt
= ↵NDA +

bSU(3)

⇡
(↵NDA)2 , (7)
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This result can be easily understood: �17/2 is the beta

function of the unified SU(3) model (recall that bSU(3)

1

has an additional normalisation of 1/3), and the result
matches the fact that each KK tier contains a complete
representation of SU(3). For the hypercharge running
the normalisation factor has been taken into account.
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couplings can be easily understood when rewriting Eq.(4)
in terms of ↵NDA (as defined in Eq.(3))

d↵NDA

dt
= ↵NDA +

bSU(3)

⇡
(↵NDA)2 , (7)
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where we only retain the term proportional to S(t) that
grows with energy. As such, for negative b, the above
equation allows for an UV fixed point, where the coupling
stops running, that is
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bSU(3)
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17
. (8)

The value above matches the numerical value we found
in Figure 2 and, as discussed earlier, it remains perturba-
tive. We also estimated the two loop contribution which
adds to Eq.(7) the following term

+
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(↵NDA)3 (9)

with bSU(3)

2loop
= �44. The zero of the beta function is

marginally corrected and now appears at ↵NDA
��
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⇠
0.3. This confirms that the perturbative expansion is
well behaved. The presence of an UV fixed point is less
certain, as there are non-perturbative indications against
its presence [16, 17].

Similarly, the general form of the running of the one
loop �-function for the top Yukawa coupling yt can be
written as [18]:
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where
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Computing the coe�cients for the Yukawa running is not
as straightforward as for the gauge ones: already at one
loop, vertices involving di↵erent KK modes contribute.
Thus to simplify the calculation, we assigned the SM val-
ues to the new couplings. Note though that the choice
needs to be done in a consistent way. As such, we decided
on the following policy: for couplings between bosons, we
always associate the coupling to a gauge one, while cou-
plings to fermions depend on the quantum numbers of
the boson (thus for doublets we associate the coupling
to the Yukawa)1. We also checked that the numerical
results do not depend crucially on this choice. For the
model under study the coe�cients assume the following
values
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1 Note that for larger bulk representations this is the only phys-
ically meaningful choice. For instance, in the case of a sextet,
two Yukawa couplings can be identified that run di↵erently from
each other.

It is interesting to notice that imposing the unification re-
lations between the EW couplings and the Yukawa, com-
pare to Table I, one would obtain a beta function of
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2
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+ dSU(3)

2
= �4 , (14)

which is the same value of dSU(3)

3
for the QCD contri-

bution. Thus, the running of the scalar coupling, even
in the unification regime, is di↵erent from the running of
the vector couplings. This is due to the intrinsic violation
of 5D gauge invariance encoded in the compactification
of the extra-dimension.
The evolution equations for the gauge couplings can

be solved analytically as, at one loop level, they are not
coupled. On the other hand, the Yukawa coupling is
related to the gauge couplings, therefore we have per-
formed a numerical calculation, whose results are given
in Figure 1.

Significance of our results

Our results show that the running cannot be neglected
and is crucial to test the feasibility of gauge-Higgs-
Yukawa unification in extra-dimensions. We have per-
formed a one loop calculation within the approximation
of neglecting the finite parts of the loops. The result can
be improved by including the finite contributions, that
may also depend linearly on the energy [19] and thus
be non-negligible. For increased accuracy the two loop
running may also be computed. For the purpose of this
letter, the accuracy we achieved at one loop is su�cient
to enforce our conclusions. The simplicity of this model
contrasts previous attempts made in the literature to ad-
dress the issue of the mismatch between tree-level pre-
dictions and the low energy SM values. The value of the
gauge couplings can be easily modified by adding an extra
gauged U(1)X in the extra-dimension. The hypercharge
is thus identified with a combination of the U(1) con-
tained in the unified group GGHU and of the new U(1)X ,
and the gauge coupling gX can be tuned to the correct
value. Additionally, localised kinetic terms [20] for the
SM gauge subgroups (that are not broken on the bound-
aries) also modify the unified relation. The challenge pre-
sented by the top Yukawa is more critical. One possibility
is to embed the top in an higher dimensional represen-
tation in order to gain a group theory factor [21] at the
price of lowering the cut-o↵ of the theory. Another pos-
sibility is to modify the geometry of the extra-dimension
by including a curvature: in such a case, playing with
the localisation of the zero mode wave functions, with
an enhanced overlap with the Higgs being obtained. The
latter mechanism has been used in warped space [22, 23],
leading to a revival of composite Higgs models. Prop-
erly taking into account the running, maybe none of the
above complications would be necessary. Note that ob-
taining the masses of light fermions is rather easy, as one
can use localisation in flat space to suppress the overlap
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Conclusions

• Gauge-Higgs models should be reconsidered

• Renormalisation group running is important to 
bring the unification scale results to the EW one

• SU(3) is still a toy model but interesting features 
emerge from the running

• Work towards more realistic models in progress


