New directions in VLQs searches

Nicolas Bizot (IPNL-Lyon)

Preliminary work [1712.XXXXX,T.Flacke, G. Cacciapaglia,N. Bizot]

IRN Terascale@Marseille - 14 December 2017

Current VLQs searches

<u>Currents searches</u> focus on VLQs decays into SM particles and assume:

$$Pr(T \rightarrow Zt, ht, W^+b) = 1 , \qquad Pr(B \rightarrow Zb, hb, W^-t) = 1 Pr(X_{5/3} \rightarrow W^+t) = 1 , \qquad Pr(Y_{-4/3} \rightarrow W^-b) = 1$$

VLQs can be:

- ▶ pair produced (QCD) \Rightarrow model-independent
- **•** singly produced (EW) \Rightarrow depends on mixing with SM quarks

<u>Vector-like</u>: left and right-handed chiralities have same quantum number such that mass term is allowed in opposition to SM chiral fermions

Motivations

Composite Higgs models:

- ▶ Higgs emerges as pNGB (like QCD pions) \Rightarrow Naturally light
- Simplest realisation: four-dimensional gauge theory of fermions (like QCD)
- \Rightarrow Non-minimal models [beyond SO(5)/SO(4)]

New channels in composite Higgs models (CHMs) <u>Generic prediction</u>: presence of additional light states (pNGBs) involved in $VLQs \ decays \Rightarrow 4 \ promising \ decay \ modes$

- $\blacktriangleright \quad \underline{\mathsf{EW}}_{\mathsf{sing}}[\mathsf{et mode}: \ T \to \eta t \qquad \qquad [\eta = \mathsf{EW pNGB} \ \mathsf{like Higgs}]$
- $\blacktriangleright \quad \underline{U(1)\text{-mode:}} \qquad T \rightarrow at \qquad [a = pNGB \text{ associated to} \\ \text{non-anomalous } U(1)]$
- <u>Coloured mode</u>: $X_{5/3} \rightarrow \pi_6 \overline{b}$ [π_6 = Coloured pNGB]
- Charged mode: $X_{5/3} \rightarrow \phi^+ t$ [$\phi^+ = EW \ pNGB \ like \ Higgs$]

 $\Rightarrow \text{Large branching ratios predicted: reduce experimental bound on } M_{VLQs}$ $\Rightarrow \underline{Well-defined theoretical framework: couplings predicted not added by hand$

Strategy: Choose a model (underlying theory, top partner irreps) look at benchmark scenarios (fix pre-Yukawa, VL masses)

 $\fbox{2} T \rightarrow at$

 $3 X_{5/3} \rightarrow \pi_6 \overline{b}$

4 Summary

► Lightest VLQ T: <u>pure EW singlet</u>, <u>no mixing</u> with SM quarks ⇒ No single production

► No standard decays as T couples only to ηt $\Rightarrow Br(T \rightarrow \eta t) = 1$

EW singlet η decays into SM particles ($m_\eta\gtrsim$ 100 GeV as same origin as Higgs boson)

 $\textcircled{2} T \rightarrow at$

 $3 X_{5/3} \rightarrow \pi_6 \overline{b}$

T ightarrow at

► Lightest VLQ *T* (mix singlet-doublet) mixes with SM top quark ⇒ Pair and single production relevant

► EW singlet a associated to non-anomalous U(1)-symmetry [Spontaneously broken contrary to $U(1)_V$ in QCD $\rightarrow a$ is a pNGB] \Rightarrow can be very light (10 GeV $\leq m_a \leq 1$ TeV) as different origin compare to Higgs boson mass

T ightarrow at

► Lightest VLQ *T* (mix singlet-doublet) mixes with SM top quark ⇒ Pair and single production relevant

► EW singlet a associated to non-anomalous U(1)-symmetry [Spontaneously broken contrary to $U(1)_V$ in QCD $\rightarrow a$ is a pNGB] \Rightarrow can be very light (10 GeV $\leq m_a \leq 1$ TeV) as different origin compare to Higgs boson mass

T ightarrow at

► Standard channels + at-channel \Rightarrow 4 dimensional parameter space (should extend 'triangle' plots)

▶ Below threshold $T \rightarrow at$ dominates in general

$T \rightarrow at$

Nicolas Bizot

T → at depends on m_T
 Ratio between singlet and doublet components (mixing) of T also depends on m_T
 ⇒ Relevant to explore Br(T → ht, Wb, Zt) + Br(T → at) = 1

2 $T \rightarrow at$

$X_{5/3} \rightarrow \pi_6 \overline{b}$

► Lightest VLQ is $X_{5/3}$ is part of EW-doublet $(X_{5/3}T) \sim (3, 2, 7/6)$ ⇒ Pair-produced from QCD

► Non-negligible $X_{5/3} \rightarrow \pi_6 \overline{b}$ branching ratio w.r.t standard $X_{5/3} \rightarrow W^+ t$ ⇒ Two dimensional parameter space

π_6 decays

▶ pNGB sextet π_6 associated to spontaneously broken global symmetry of the coloured sector (required to form composite VLQs) ⇒ Direct searches lead to $m_{\pi_6} \gtrsim 600 - 700$ GeV [Cacciapaglia, Deandrea, Flacke et al, 1507.02283]

▶ Decay only into tops $\pi_6 \rightarrow tt$

 $\pi_6 \sim (6, 1, 4/3)$

 \Rightarrow No decays into SM gauge bosons (hypercharge)

 \Rightarrow No decays into light fermions (partial compositeness vs bilinear coupling)

Relevant to explore $Br(W^+t) + Br(\pi_6\overline{b}) = 1$

Simplest realisation of composite Higgs model is a 4D gauge theory of fermions that condenses at low energy

- \Rightarrow Higgs naturally light as pNGB
- \Rightarrow Additional EW pNGB η, ϕ^+, \cdots (depending on the underlying model)
- ▶ EWSB requires partial compositeness for top quark
- \Rightarrow Coloured pNGBs $\pi_6, \cdots \Rightarrow$ Additional U(1)-singlet a

Final states

- $\blacktriangleright \frac{\text{EW-singlet mode: } T \to \eta t, \quad \eta \to WW, \gamma Z, ZZ}{\text{pair-production only , } m_{\eta} \gtrsim 100 \text{ GeV}}$
- ► U(1)-mode: $T \rightarrow at$, $a \rightarrow t\bar{t}$ (hight mass), hadrons, $b\bar{b}$, $\tau\tau$ (low mass) pair+single production, m_a could be very light ~ 10 GeV

• Coloured mode:
$$X_{5/3} \rightarrow \pi_6 \overline{b}$$
, $\pi_6 \rightarrow tt$

► Charged mode: $X_{5/3} \rightarrow \phi^+ t$, $\phi^+ \rightarrow W^+ \gamma, W^+ Z$

Model-dependant scenarios

- \Rightarrow Typical behaviour only (benchmarks scenarios from theory side)
- \Rightarrow Variations are possible (depending on the model, underlying gauge theory)

Final states

EW-singlet mode: $T \rightarrow \eta t$

 $\begin{array}{ll} \underline{\mathsf{Pair}} \ \mathsf{production}: \qquad \mathsf{pp} \to T \, \overline{T} \to (\eta t) (\eta \overline{t}) \ , \qquad \eta \to WW, \gamma Z, ZZ \end{array}$

▶ U(1)-mode: $T \rightarrow at$

Pair production: $pp \to T \overline{T} \to (at)(a\overline{t}) \text{ or } (at)(Z\overline{t}, h\overline{t}, W^{-}\overline{b})$ Single production: $pp \to T \to at$

▶ <u>Coloured mode</u>: $X_{5/3} \rightarrow \pi_6 \overline{b}$

 $\frac{\text{Pair production:}}{pp \to X_{5/3}\overline{X}_{5/3} \to (\pi_6\overline{b})(\pi_6^c b) \to (tt\overline{b})(\overline{t}tb)}{pp \to X_{5/3}\overline{X}_{5/3} \to (W^+t)(\pi_6^c b) \to (W^+t)(\overline{t}tb)}$

• Charged mode: $X_{5/3} \rightarrow \phi^+ t$

 $\frac{\text{Pair production:} \ pp \to X_{5/3}\overline{X}_{5/3} \to (\phi^+ t)(\phi^- \overline{t}) \to (W^+ \gamma t)(W^- \gamma \overline{t})}{pp \to X_{5/3}\overline{X}_{5/3} \to (W^+ t)(\phi^- \overline{t}) \to (W^+ t)(W^- \gamma \overline{t})}$

$X_{5/3} \rightarrow \phi^+ t$

- ► Lightest VLQ is $X_{5/3}$ is part of EW-doublet $(X_{5/3}T) \sim (3, 2, 7/6)$ ⇒ Pair-produced from QCD
- ▶ Non-negligible $X_{5/3} \rightarrow \phi^+ t$ branching ratio w.r.t standard $X_{5/3} \rightarrow W^+ t$ ⇒ Two dimensional parameter space (coloured pNGB can easily be heavier than VLQs)

$\phi^+ \; {\rm decays}$

▶ pNGB ϕ^+ is an EW triplet (same origin as the Higgs boson)

$$\Phi_+=egin{pmatrix}\phi^{++}&\phi^{0}\end{pmatrix}^{ au}\sim (1,3,1)\;,\quad \Phi_+=egin{pmatrix}\phi^{+}&\phi^{0}&\phi^{-}\end{pmatrix}^{ au}\sim (1,3,0)\;,$$

► Anomalous couplings: $\phi^+ \to W^+ \gamma$ and $\phi^+ \to W^+ Z$ from $\Phi_0 W^{\mu\nu} \tilde{B}_{\mu\nu}$ $\Rightarrow W^+ \gamma$ channel dominates

► Decays into SM fermions: $\phi^+ \to t\overline{b}$ from $\Phi^a_+(\overline{q}_L \widetilde{H})^a b_R$ or $\Phi^a_0(\overline{q}_L H)^a b_R$ (also decays into light quarks and leptons) \Rightarrow Supressed by v/f

► $\Gamma_{\phi^+W^+V} \sim m_{\phi^+}^3$ while $\Gamma_{W^+tb} \sim m_{\phi^+} \Rightarrow$ decays into spin 1 is dominant

Basics ideas of composite Higgs models

 \blacktriangleright New strong dynamics condensates at scale Λ and spontaneously breaks a global symmetry G into H

 \Rightarrow Higgs is naturally light as a pNGB leaving in the coset G/H (like QCD pions)

Potential and mass for the Higgs generated by explicit breaking terms

Gauging of SM symmetry

SM gauge symmetry embedded inside unbroken group H \Rightarrow Can not destabilise Higgs potential and induce EWSB ($\Delta M_H^2 > 0$) \Rightarrow Another explicit breaking source is required

Partial compositeness

- Linear couplings between top and top partners
- \Rightarrow induce EWSB and top mass
- ► Top quark heaviest SM particle ⇒ Largest interaction with strong sector

Bilinear couplings for other SM fermions

Barring extra space-time dimensions: Simplest, well-understood, explicit realization provided by 4D gauge theory of fermions that confines at the multi-TeV scale Λ

 \Rightarrow No fundamental scalar reintroducing hierarchy problem at higher scale

Fundamental fermions

```
pNGB Higgs + top partners (PC)
```

 \Rightarrow Two species of fundamental fermions (novel feature compare to QCD)

> EW sector (Higgs sector): fermions ψ

 \Rightarrow Spontaneous symetry breaking should deliver at least 4 pNGBs associated to Higgs doublet: $H\sim(\psi\psi)$

Coloured sector: fermions X

 \Rightarrow Some trilinear bound states ($\psi\psi X$) or (ψXX) should have same quantum numbers as SM top quark multiplets

 \Rightarrow Spontaneous breaking delivers additional coloured pNGBs (XX) $\sim \pi^c$

First example provided by:

EW sector $SU(4)/Sp(4) \cong SO(6)/SO(5)$

- ▶ $SU(4)/Sp(4) \Rightarrow$ only 15-10 = 5 NGBs: Higgs doublet + singlet η
- ▶ 4 Weyl fermions $\psi \Rightarrow SU(4)$ global symmetry

► $Sp(4) \Rightarrow \psi$ belong to a pseudo-real hypercolour representation: the fundamental of Sp(2N) [Barnard et al. '13]

Coloured sector SU(6)/SO(6)

- ► $SU(6)/SO(6) \Rightarrow 35-15 = 20$ coloured NGBs: π_8 , π_6 and π_6^c
- ▶ 6 Weyl fermions $\chi \Rightarrow SU(6)$ global symmetry

► $SO(6) \Rightarrow \chi$ belong to a real hypercolour representation: 2-index antisymmetric of Sp(2N)

List of "minimal" UV completions

$G_{\rm HC}$	ψ	X	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name	
	Real Real $SU(5)/SO(5) \times SU(6)/SO(6)$							
$SO(N_{\rm HC})$	$5 \times S_2$	$6 \times \mathbf{F}$	$N_{\rm HC} \geq 55$	$\frac{5(N_{\text{HC}}+2)}{6}$	1/3	/		
$SO(N_{\rm HC})$	$5 imes \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{ m HC} \ge 15$	$\frac{5(N_{HC}-2)}{6}$	1/3	/		
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times $ Spin	$N_{\rm HC} = 7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{\rm HC} = 7,9$	M1, M2	
$SO(N_{\rm HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{\rm HC} = 7,9$	M3, M4	
Real Pseudo-Real $SU(5)/SO(5) \times SU(6)/Sp(6)$								
$Sp(2N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{\rm HC} \ge 12$	$\frac{5(N_{\text{HC}}+1)}{3}$	1/3	/		
$Sp(2N_{\rm HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{\rm HC} \ge 4$	$\tfrac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\rm HC} = 4$	M5	
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times $ Spin	$N_{\rm HC} = 11, 13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/		
$\label{eq:complex} {\rm Real} \qquad {\rm Complex} \qquad {\rm SU}(5)/{\rm SO}(5) \times {\rm SU}(3)^2/{\rm SU}(3)$								
$SU(N_{\rm HC})$	$5 \times \mathbf{A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 4$	e lor	1/3	$N_{\rm HC} = 4$	M6	
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\rm HC} = 10, 14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{\rm HC} = 10$	M7	
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)	SO(6)			
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\rm HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8	
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9	
Complex Real $SU(4)^2/SU(4) \times SU(6)/SO(6)$								
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{\rm HC}=10$	83	2/3	$N_{\rm HC} = 10$	M10	
$SU(N_{\rm HC})$	$4\times ({\bf F},\overline{{\bf F}})$	$6 \times \mathbf{A}_2$	$N_{\rm HC} = 4$	243	2/3	$N_{\rm HC} = 4$	M11	
Complex Complex $SU(4)^2/SU(4) \times SU(3)^2/SU(3)$								
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} \ge 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{\rm HC} = 5$	M12	
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \ge 5$	$\frac{4}{3(N_{HC}+2)}$	2/3	/		
$SU(N_{\rm HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 5$	4	2/3	/		

Several other possibilities exist:

► EW and coloured cosets changed

Fundamental fermions are not the same

[Belyaev et al, 1610.06591]

Additional pNGBs

In addition to the Higgs doublet, additional EW pNGBs are present

EW sector

Smallest cosets constructed from pseudoreal, real or complex representations:

►
$$SU(4)/Sp(4)$$
: $5_{Sp(4)} \equiv \mathbf{A}_2 = 2_{\pm 1/2} + 1_0$ (H, η)

► SU(5)/SO(5):
$$14_{SO(5)} \equiv \mathbf{S}_2 = 3_{\pm 1} + 3_0 + 2_{\pm 1/2} + 1_0$$
 ($\Phi_{\pm}, \Phi_0, H, \eta$)

 $\begin{array}{l} \blacktriangleright \ SU(4) \times SU(4)/SU(4): \ 15_{SU(4)} \equiv \mathsf{Ad} = 3_0 + 2_{\pm 1/2} + 2_{\pm 1/2} + 1_{\pm 1} + 1_0 + 1_0 \\ [\mathsf{Ma, Cacciapaglia, 1508.0714}] & (\Phi_0, H_1, H_2, N_{\pm}, N_0, \eta) \end{array}$

\Rightarrow Always SM-like singlet $\eta \qquad \Rightarrow$ Sometimes triplets or second Higgs doublet

Coloured sector

►
$$SU(6)/SO(6) \supset SU(3)_c$$
: $20'_{SO(6)} \equiv \mathbf{A}_2 = 8_0 + 6_{4/3} + \overline{6}_{-4/3}$ (π_8, π_6, π_6^c)

►
$$SU(6)/Sp(6) \supset SU(3)_c$$
: $14_{Sp(6)} \equiv S_2 = 8_0 + 3_{-4/3} + \overline{3}_{4/3}$ (π_8, π_3, π_3^c)

$$\blacktriangleright SU(3) \times SU(3)/SU(3)_c: 8_{SU(3)} \equiv \mathsf{Ad} = 8_0$$

 \Rightarrow Always a coloured octet $\pi_8 \Rightarrow$ Sometimes coloured triplets or sextets [Cacciapaglia et al, 1507.02283, 1610.06591]

 (π_{8})

pNGBs may couple to gauge bosons through anomalies ($\pi^0 \rightarrow \gamma \gamma$ in QCD)

$$\mathcal{L}^{WZW} = -\frac{g_{\mathcal{W}}^2}{64\pi^2} \frac{d_{HC}}{F_G} \epsilon_{\mu\nu\rho\sigma} \mathcal{W}^{\mu\nu} \mathcal{W}^{\rho\sigma} \sum_{\hat{A}} d^{WW\hat{A}} G^{\hat{A}} + \cdots$$
$$d^{WW\hat{A}} = 2 \operatorname{Tr}(\{T^W, T^W\} T^{\hat{A}})$$

- \Rightarrow Non-zero couplings depend on the coset (global symmetries)
- \Rightarrow Stength depends on the underlying theory (fundamental fermions irreps)

EW pNGBs

- ▶ No anomalous couplings for the Higgs boson
- ► SU(4)/Sp(4) ηZZ , $\eta \gamma Z$, ηWW
- ► SU(5)/SO(5) $\eta\gamma\gamma$ ηZZ , $\eta\gamma Z$, ηWW , triplet anomalous couplings, ···

Coloured pNGBs

▶ π_8 decays in gg, γg or Zg via anomaly (and top triangle loop)

In general PC implies decays of pNGBs into tops $(\eta \rightarrow t\bar{t}, \pi_6 \rightarrow tt, \cdots)$

Non-anomalous U(1) symmetry

► <u>EW</u> ψ fermions: anomalous $U(1)_{\psi}$ ► <u>Coloured X fermions</u>: anomalous $U(1)_X$ ⇒ Always a non-anomalous combination w.r.t hypercolour

 $q_{\psi}N_{\psi}T(\psi)+q_{X}N_{X}T(X)=0$

 \Rightarrow One additional light pNGB a

 \Rightarrow Other pseudoscalar η' receive mass from anomaly (instanton effects), could be light as no way to estimate anomaly coefficient

Anomalous couplings

▶ η_{ψ} to $SU(2)_L \times U(1)_Y$ gauge bosons $(\eta_{\psi}WW, BB)$ [Cai et al, 1512.04508] ▶ η_X to $SU(3)_c \times U(1)_Y$ gauge bosons $(\eta_X gg, BB)$

$$\frac{\eta_{\psi} - \eta_X \text{ mixing:}}{\eta' = -\sin\phi \ \eta_{\psi} + \cos\phi \ \eta_X} \qquad \qquad \tan\phi = \frac{f_X q_X}{f_{\psi} q_{\psi}}$$

⇒ *a* produced by gluon fusion (contrary to EW pNGBs) ⇒ *a* decays to dibosons (*gg*, *WW*, *ZZ*, *Z* γ , $\gamma\gamma$) and $t\bar{t}$ thanks to PC [Belyaev et al, 1610.06591]

Structure of the mass matrix

Trilinear baryons
$$(\psi\psi X)$$
 in the $6_{SU(4)} = (5+1)_{Sp(4)} = (2,2) + (1,1) + (1,1)$
= $2_{7/6} + 2_{1/6} + 1_{2/3} + 1_{2/3}$

In the $\{t, T, X_{2/3}, \tilde{T}_1, \tilde{T}_5\}$ basis:

$$M_{top} = \begin{pmatrix} 0 & -y_{5L}f\cos^2\frac{\theta}{2} & y_{5L}f\sin^2\frac{\theta}{2} & \frac{y_{1L}f}{\sqrt{2}}s_{\theta} & 0\\ \frac{y_{5R}f}{\sqrt{2}}s_{\theta} & M_5 & 0 & 0 & 0\\ \frac{y_{5R}f}{\sqrt{2}}s_{\theta} & 0 & M_5 & 0 & 0\\ -y_{1R}fc_{\theta} & 0 & 0 & M_1 & 0\\ 0 & 0 & 0 & 0 & M_5 \end{pmatrix}$$

 $\Rightarrow ~ \tilde{T}_{5} ~ \text{does not mix}$

$ilde{T}_5$ and $X_{5/3}$ decays

▶
$$\eta$$
 couplings only involve \tilde{T}_5 : $\mathcal{L}_{\eta} = -\frac{y_{5R}f}{\sqrt{2}}it_R^c \tilde{T}_5 c_{\theta} \frac{\eta}{f} + \frac{y_{5L}f}{\sqrt{2}}i\tilde{T}_5 t_L s_{\theta} \frac{\eta}{f}$
⇒ \tilde{T}_5 only decays into ηt (or $\eta t'$)
▶ In general the lightest states are $m_{\tilde{T}_5} = m_{X_{5/3}} \equiv M_5$
⇒ $Br(\tilde{T}_5 \to \eta t) = 1 \to \text{Non-standard channel}$