Mono-Higgs searches with the ATLAS detector

Alvaro Lopez Solis

IRN Terascale - Marseille 2017

14th December 2017

Dark matter

Expected from its gravitational influence observed at cosmological and galactic scale.

- Microscopic structure is unrevealed.
- Is it a particle? Primordial black holes? Large dark structures?

DM production at LHC: Mono-X

Signature: SM particles + large missing transverse momentum.

- > Missing transverse momentum \rightarrow Imbalance in transverse momentum distribution.
- SM particles: gluons, quarks, photons, Z, W and Higgs boson
- Mono-X production: one SM particle as tag of the interaction.
- Two possible interpretations: Effective field theories or simplified models.

Simplified models: DM-SM interaction through a mediator:

- → Predictions are valid up to high energies.
- → Model-dependent results

EFT: contact interaction (neglecting terms in expansion beyond scale Λ)

- \rightarrow Predictions valid at collision energies below Λ .
- → Model-independent results

DM production at LHC: Mono-X

Signature: SM particles + large missing transverse momentum.

- > Missing transverse momentum \rightarrow Imbalance in transverse momentum distribution.
- SM particles: gluons, quarks, photons, Z, W and Higgs boson
- Mono-X production: one SM particle as tag of the interaction.
- In Run I, effective field theories and simplified models were used.

Simplified models: DM-SM interaction through a mediator:

- → Predictions are valid up to high energies.
- → Model-dependent results

EFT: contact interaction (neglecting terms in expansion beyond scale Λ)

- \rightarrow Predictions valid at collision energies below Λ .
- → Model-independent results

DM production at LHC: Mono-X

Signature: SM particles + large missing transverse momentum.

- > Missing transverse momentum \rightarrow Imbalance in transverse momentum distribution.
- SM particles: gluons, quarks, photons, Z, W and Higgs boson
- Mono-X production: one SM particle as tag of the interaction.
- In Run II, Dark Matter Forum defining benchmark simplified models.

DM production at LHC: Mono-Higgs

Signature: SM particles + large missing transverse momentum.

- > Missing transverse momentum \rightarrow Imbalance in transverse momentum distribution.
- SM particles: gluons, quarks, photons, Z, W and Higgs boson
- Mono-X production: one SM particle as tag of the interaction.
 - > SM particles produced as ISR.
 - > Higgs boson couplings to quarks are weak

→ Direct probe of the Higgs+BSM interaction.

Mono-Higgs searches: Simplified models

Three simplified models considered in the Mono-Higgs analyses:

Vector mediator (Z'_B model)

$$\mathcal{L} \supset egin{array}{l} g_{\mathrm{q}} ar{q} \gamma^{\mu} q Z'_{\mu} + g_{\chi} ar{\chi} \gamma^{\mu} \chi Z'_{\mu} . \ + rac{1}{2} \left(1 + rac{h_B}{v_B}
ight) Z'_{B,\mu} Z'^{\mu}_B \ m^2_{Z'_B} \end{array}$$

Relevant parameters

- Mass of the DM particle (m_{DM}).
- Mass of the mediator Z' (m_{z'}).

Other parameters

Mono-Higgs searches: Simplified models

Three simplified models considered in the Mono-Higgs analyses:

- Vector mediator (Z'_B model)
- > Vector+Pseudoscalar (Z'-2HDM)

$$\mathcal{L} \supset y_u Q \tilde{\Phi}_u \bar{u} + y_d Q \tilde{\Phi}_d \bar{d} + y_e L \tilde{\Phi}_d \bar{e} + \text{h.c.}$$

Type-II 2HDM

Relevant parameters

- Mass of the A boson (m_A).
- Mass of the mediator Z' (m_{z'}).

Other parameters

•
$$g_{z'} = 0.8$$
, $tan\beta = v_u/v_d = 1$, mDM = 100 GeV

Mono-Higgs searches: Simplified models

Three simplified models considered in the Mono-Higgs analyses:

- Vector mediator (Z'_B model)
- > Vector+Pseudoscalar (Z'-2HDM)

In addition, a third model is considered with heavy scalar (HS) and an effective

9

Mono-Higgs $(h \rightarrow \gamma \gamma)$

Diphoton decays of the Higgs boson:

- ATLAS good photon resolution
 - Allowing to use diphoton triggers
- Relatively low background.

PhysRevD.96.112004 (2017)

Signals using three Mono-Higgs models

- Z'_{B} and $Z'-2HDM \rightarrow boosted topologies$ $(high <math>p_{T}^{\gamma\gamma}$ and high E_{T}^{miss})
- Heavy scalar, intermediate $p_T^{\gamma\gamma}$ and E_T^{miss}

PhysRevD.96.112004 (2017) Mono-Higgs ($h \rightarrow \gamma \gamma$): Categorization

- Fake $E_{T^{miss}}$ ($\gamma\gamma$, γ j) backgrounds are highly reduced at large $E_{T^{miss}} \rightarrow$ Cut on $E_{T^{miss}}$ significance.
- Vy, Vyy and VH backgrounds become important \rightarrow Apply lepton veto
- Optimized cuts with $p_T^{\gamma\gamma}$ (boosted large p_T photons) and p_T^{hard} (sum of photons and jets p_T)

PhysRevD.96.112004 (2017)

ATLAS

√s = 13 TeV, 36.1 fb⁻¹

Mono-Higgs (h \rightarrow \gamma\gamma): Results Results are derived from unbinned fit to the m_{$\gamma\gamma$}

- distribution in categories
 - Fit on Mono-Higgs category for Z'_B and Z'-2HDM limits.
- No significant excess is observed beyond the SM predictions
 - 95 %CL limits on the gexp/gtheo of models. ≻
- On-shell regions are constrained ۶

 m_{χ} [GeV]

HS model is fully excluded in the region considered

 10^{4}

Observed

Expected $\pm 1\sigma$

Expected

PhysRevD.96.112004 (2017)

Mono-Higgs ($h \rightarrow \gamma \gamma$): Additional material

10⁻²⁹ $h(\gamma\gamma) + \chi \overline{\chi}, Z'_{B}, Dirac DM$ 10⁻³¹ ATLAS Z'_B model are translated into 90 % CL spin- $\sin\theta = 0.3, g_{g} = 1/3, g_{\chi} = 1$ DM-nucleon cross section [cm²] √s = 13 TeV, 36.1 ft independent limits. 10⁻³³ 10⁻³⁵ Sensitivity to low DM mass (if DM - SM ۲ 10⁻³⁷ governed by Z'_B) 10⁻³⁹ 10⁻⁴¹ CRESST-II 2016 Visible cross-section ($\sigma^* \mathcal{A}^* \varepsilon^* \mathcal{B}r$) limits on superCDMS 10⁻⁴³ PandaX-II the BSM signal are set XENON1T 10^{-45} Spin-independen Allow a better translation of limits to 90% ۲ 10-47 other theories. 10² 10^{3} 10 DM mass m_{χ} [GeV]

Category	$\sigma_{ m vis}^{ m BSM}$	¹ [fb]	$\mathcal{A} \times \epsilon \ [\%]$				
	Observed	Expected	Z'-2HDM	Z'_B	Heavy scalar		
Mono-Higgs	0.19	$0.23^{+0.11}_{-0.07}$	53–74	15-63	1.0-4.0		
High- $E_{\rm T}^{\rm miss}$	0.67	$0.52^{+0.23}_{-0.15}$	0.2-12	1.3-7.1	1.8-8.4		
Intermediate- $E_{\rm T}^{\rm miss}$	1.6	$1.2^{+0.5}_{-0.3}$	0.05-5.0	0.6-5.5	3.9-6.6		
Different-vertex	1.5	$2.5^{+1.1}_{-0.7}$	0.04-11	0.9–10	2.5-7.4		
Rest	11	15_{-4}^{+6}	0.06-5.5	1.1–22	14–27		

Mono-Higgs($h \rightarrow b\overline{b}$)

Dominant decay of the Higgs boson:

- Significant number of events is expected.
- Large QCD background \rightarrow Trigger based on E_{T}^{miss}
 - $E_{T,onl}^{miss} > 110 \text{ GeV}$ in most of data
- Using Z'-2HDM model (Z'_B included in next results)

Using control regions (1-µ and 2leptons) to get the different backgrounds:

- Z+jets (2-lepton CR)
- *tt*, W+jets (1-μ CR)
- Single top, VV, multijet backgrounds, Vh

Mono-Higgs(h→bb): Fit

- Simultaneous binned likelihood fit of signal regions and control regions.
- No excess over the SM is found.

Phys Rev Lett.119.181804

Mono-Higgs(h→bb): Results

۶

trigger)

۵

Range in	$\sigma^{\rm obs}_{{\rm vis},h(b\bar{b})+{\rm DM}}$	$\sigma^{\exp}_{\text{vis},h(b\bar{b})+\text{DM}}$	$\mathcal{A} imes \varepsilon$
$E_{\rm T}^{\rm miss}$ [GeV]	[fb]	[fb]	[%]
[150, 200)	19.1	$18.3^{+7.2}_{-5.1}$	15
[200, 350)	13.1	$10.5^{+4.1}_{-2.9}$	35
[350, 500)	2.4	$1.7^{+0.7}_{-0.5}$	40
[500,∞)	1.7	$1.8^{+0.7}_{-0.5}$	55

Summary

The mono-Higgs results obtained by analyzing events collected by ATLAS have been presented

- Using pp collision taken during LHC Run II in 2015-2016 at 13 TeV of center-of-mass energy.
 - Mono-Higgs to diphoton
 - > No BSM excess is observed.
 - > Limits are set in three benchmark models considered for interpretation.
 - Limits on the spin-independent WIMP-proton cross-section are also set, showing larger sensitivity than DD at low DM mass.

Mono-Higgs to bb

- > No BSM excess is observed.
- Limits are set on Z'-2HDM model. Large region of the parameter space below m_{z'} < 2.5 TeV can be rejected.
- > In general, more sensitive than diphoton decay channel \rightarrow Less sensitive at low $m_{z'}$ - m_A masses.
- Visible cross-section limits are set \rightarrow Can be used to constrain other type of models.

Waiting for the 2017 data !

Thank you very much for your attention

Back-up

Effective field theories vs simplified models

There are two ways to provide an extension to SM:

- 1. Effective field theories: direct interaction between SM and DM.
 - 1. Usually, non-renormalizable operators and valid up to a certain scale $\Lambda \rightarrow$ Theories valid at low energy.
 - 2. No assumption of the type of interaction between SM and DM \rightarrow Model-independent results.
- 2. Simplified models: interaction of DM with SM is done either directly or through a mediator:
 - 1. Usually, renormalizable theories and UV-complete theories \rightarrow Predictions are valid up to high energies.
 - 2. Interactions between DM, SM and mediators must be assumed \rightarrow results are model-dependent.
- 3. Simplified models can be rewritten as EFTs by integrating out the mediator \rightarrow These EFTs are valid for interactions at energies lower than the mediator mass.

Fit results: Mono-Higgs models

No significant excess is observed beyond the SM predictions

• Negative DM + Higgs contribution coming from a fluctuation of data.

Fit results: Heavy scalar models

No significant excess is observed beyond the SM predictions

Z'_B model

Vector mediator (Z'_B model)

23

Z'-2HDM model

Vector+Pseudoscalar (Z'-2HDM)

Heavy scalar model

Object and event selection

Photons

- 1. $|\eta| < 2.37$ (exclude crack 1.37 < $|\eta| < 1.52$)
- 2. Leading (subleading) photon : $p_{\scriptscriptstyle T}$ > 35 GeV ($p_{\scriptscriptstyle T}$ > 25 GeV)
- 3. Pass Tight Id, e/g ambiguity and FixedCutTight Iso
- 4. Relative p_{τ} cuts : $p_{\tau} > 0.35(0.25) m_{\gamma\gamma}$ for leading (subleading) photon

• Electrons

- 1. $p_{\scriptscriptstyle T}$ > 10 GeV and $|\,h\,|$ < 2.47 (exclude crack 1.37 < $|\,\eta\,|$ < 1.52)
- 2. $|d_0|/s_{d0} > 5$ and $z_0 sinq < 0.5$ mm
- 3. Pass Medium LH ID and Loose Iso criteria

• E_Tmiss

- Recalculated w.r.t the diphoton vertex.
- Using TST soft-terms.

- Jets
 - 1. AntiKt4EMTopoJets
 - 2. p_T > 25 GeV and $|\eta| < 4.4$
 - 3. JVT > 0.59 for central jets (20 GeV < $p_{\rm T}$ < 60 GeV , $|\eta|$ < 2.4)
- Muons
 - 1. $p_T > 10$ GeV and $|\eta| < 2.7$
 - 2. $|d_0|/\sigma_{d0}$ > 3 and $z_0 \sin\theta$ < 0.5 mm
 - 3. Pass Medium ID and GradientLoose Iso criteria
- Event selection
 - 1. Pass quality cuts
 - 2. Trigger HLT_g_35_loose_g_25_loose
 - 3. Pass jet cleaning : LooseBad WP for jets with $p_{\scriptscriptstyle T}$ > 20 GeV
 - 4. m_{γγ} in [105,160] GeV

Final categorization

After the optimization study, five categories are defined

Category	Requirements
Mono-Higgs	$S_{E_{T}^{\text{miss}}} > 7\sqrt{\text{GeV}}, p_{T}^{\gamma\gamma} > 90 \text{GeV}, \text{ lepton veto}$
High- $E_{\rm T}^{\rm miss}$	$S_{E_{T}^{\text{miss}}} > 5.5\sqrt{\text{GeV}}, \text{PV}^{\text{highest}} = \text{PV}^{\gamma\gamma}$
Intermediate- $E_{\rm T}^{\rm miss}$	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 4\sqrt{\mathrm{GeV}}, \ p_{\mathrm{T}}^{\mathrm{hard}} > 40 \mathrm{GeV},$
	$PV^{highest} = PV^{\gamma\gamma}$
Different-Vertex	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} > 4\sqrt{\mathrm{GeV}}, \ p_{\mathrm{T}}^{\mathrm{hard}} > 40 \mathrm{GeV},$
	$PV^{highest} \neq PV^{\gamma\gamma}$
Rest	$p_{\rm T}^{\gamma\gamma} > 15 { m GeV}$

Z'B and Z'-2HDM models: they present large significance in the Mono-Higgs category

1. Results are derived by fits only on this category

Heavy scalar model: it presents a significant number of events in all categories

- 1. Largest significance in the Intermediate- E_{T}^{miss} and High- E_{T}^{miss} category.
- 2. Results are derived by a simultaneous fit in all categories.

Expected and observed signals

Category	Mono-Higgs	High- $E_{\rm T}^{\rm miss}$	Intermediate- $E_{\rm T}^{\rm miss}$	Different-vertex	Rest	
Data	9	72	464	1511	46804	
		Bac	ckgrounds			
SM Higgs boson	2.43 ± 0.22	4.2 ± 0.6	11.9 ± 2.7	44 ± 10	1360 ± 110	
Nonresonant	9.9 ± 1.9	62 ± 5	418 ± 10	1490 ± 18	45570 ± 110	
Total background	12.3 ± 1.9	67 ± 5	430 ± 10	1535 ± 21	46930 ± 170	
		Z'_B model, $m_{Z'_B} =$	200 GeV, $m_{\gamma} = 1$ GeV			
Expected yields	20.0 ± 4.5	- <i>B</i>				
$\mathcal{A} \times \epsilon \ [\%]$	17.4 ± 0.2					
Z'	-2HDM model, $m_{Z'}$ =	= 1000 GeV, $m_{A^0} =$	200 GeV, $m_{H^{0,\pm}} = 300$ Ge	eV, and $m_{\chi} = 100 \text{ GeV}$		
Expected yields	28.0 ± 5.3			••••		
$\mathcal{A} \times \epsilon \ [\%]$	70.7 ± 0.2					
	Hea	avy-scalar model, <i>m</i>	$m_{H} = 275 \text{ GeV}, \ m_{\chi} = 60 \text{ GeV}$	eV		
Expected yields	10.9 ± 1.4	23.8 ± 3.2	43 ± 5^{2}	33 ± 5	222 ± 20	
$\mathcal{A} \times \epsilon \ [\%]$	1.22 ± 0.07	2.67 ± 0.10	4.82 ± 0.14	3.65 ± 0.13	24.9 ± 0.4	

Non-resonant background fitting functions

Category	Function	$\Delta N_{ m bkg}^{ m nonres}$	$\Delta N_{\rm bkg}^{\rm nonres} / N_{\rm bkg}^{\rm nonres}$ [%]	$\Delta N_{\rm bkg}^{\rm nonres}/N_{\rm signal}$ [%]
Mono-Higgs	$\exp(a \cdot x)$	1.2	9.8	6.0
High- $E_{\rm T}^{\rm miss}$	$(1 - x^{1/3})^b \cdot x^a$	2.7	4.0	11
Intermediate- $E_{\rm T}^{\rm miss}$	$\exp(a \cdot x + b \cdot x^2)$	5.8	1.3	14
Different-vertex	$\exp(a \cdot x + b \cdot x^2)$	8.4	0.5	26
Rest	$\sum_{j=0}^{3} C_3^j x^j (1-x)^{3-j} b_{j,3}$	61	< 0.1	28

Systematics

		Bac	kgrounds [%]	
Source	Signals [%]	SM Higgs boson	Non-resonant background	
Experimental				
Luminosity		3.2		
Trigger efficiency		0.4		
Vertex selection		< 0.1		
Photon energy scale	0.1-2.0	0.1–1.4		
Photon energy resolution	0.1-0.2	0.1–1.1		
Photon identification efficiency	2.9-4.3	1.9–3.8		
Photon isolation efficiency	1.2	0.8–1.6		
$E_{\rm T}^{\rm miss}$ reconstruction (diphoton vertex)	< 0.1	0.5-1.9		
$E_{\rm T}^{\rm miss}$ reconstruction (jets, soft term)	1.0-1.4	0.8–23		
Diphoton vertex with largest Σp_T^2	< 0.1–1.9	< 0.1–6.0		
Pileup reweighting	0.2-5.6	0.7-11		
Non-resonant background modeling			0.1–9.8	
Theoretical				
Factorization and renormalization scale	0.6-11	2.5-6.0		
$PDF + \alpha_S$	11–25	1.2–2.9		
Multiple parton-parton interactions	< 1	0.4–5.8		
$\mathcal{B}(H \to \gamma \gamma)$		1.73		

Statistical analysis

Unbinned likelihood fit on the different categories $t_{\mu} = -2\ln\lambda(\mu) \quad \lambda(\mu) = \frac{L(\mu,\hat{\theta})}{L(\hat{\mu},\hat{\theta})}$

- Statistical test t_{μ} based on $\lambda(\mu)$ where μ is the signal strength ($\mu = \sigma^{\text{signal}}/\sigma^{\text{signal}}M_{C}$)
- Nuisance parameters θ are constrained using Gaussian distributions (profiling). ۲

$$L(\mu,\theta) = \operatorname{Pois}(n|N) \cdot \prod_{i=1}^{n} F(m_{\gamma\gamma}^{i};\mu,\langle\theta\rangle \left(\prod_{j=1}^{N_{syst.source}} e^{\epsilon_{j}}\right)) \cdot G(\epsilon_{j})$$

Two possible outcomes:

- **Discovery:** reject the background-only hypothesis
- CLs technique: set limits on the magnitude of the possible new physics.

Complementary results

Z'_B model can be translated into spin-independent limits.

 90 % CL limits on the WIMP-nucleon cross-section are estimated using the following cross-section formula:

$$\sigma_{N\chi}^{\rm SI} = \frac{\mu_{N\chi}^2}{\pi A^2} \left[Z f_p - (A - Z) f_n \right]^2$$

$$\mu_{N\chi} = m_{\chi} m_N / (m_{\chi} + m_N)$$
$$f_{p,n} = 3g_q g_{\chi} / m_{Z'_B}^2$$

• Limits are compared to most recent direct detection limits.

DM production in association to $h \rightarrow b\overline{b}$ (selection)

Region	SR	1μ-CR	2 <i>ℓ</i> -CR					
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{ m T}^{ m miss}$	Single lepton					
			Exactly two e or μ					
Leptons	No e or μ	Exactly one μ	$83 \text{ GeV} < m_{ee} < 99 \text{ GeV}$					
			71 GeV < $m_{\mu^{\pm}\mu^{\mp}}$ < 106 GeV					
	$E_{\rm T}^{\rm miss} \in [150, 500) {\rm GeV}$	$p_{\rm T}(\mu, E_{\rm T}^{\rm miss}) \in [150, 500) { m GeV}$	$p_{\rm T}(\ell,\ell) \in [150, 500) { m GeV}$					
	$p_{\rm T}^{\rm miss,trk} > 30 {\rm GeV} (1 b - {\rm tag only})$	$p_{\rm T}(\mu, \vec{p}_{\rm T}^{\rm miss, trk}) > 30 {\rm GeV}$	-					
	$\min \left \Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{j} \right) \right > \pi/9$	$\min \left \Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{j} \right) \right > \pi/9$	-					
	$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} \right) < \pi/2$	$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} \right) < \pi/2$	-					
	—	_	$E_{\rm T}^{\rm miss} \times \left(\sum_{\rm jets, leptons} p_{\rm T}\right)^{-1/2} < 3.5 \ {\rm GeV}^{1/2}$					
	Number of central small-R jets ≥ 2							
Resolved	Leading Higgs candidate small-R jet $p_{\rm T} > 45$ GeV							
	$H_{T,2j} > 120$ GeV for 2 jets, $H_{T,3j} > 150$ GeV for > 2 jets							
	$\Delta \phi \left(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{p}_{\mathrm{T},h} ight) > 2\pi/3$							
	Veto on τ -leptons							
	$\Delta R\left(\vec{p}_{h}^{j_{1}},\vec{p}_{h}^{j_{2}}\right) < 1.8$							
	Veto on events with $> 2 b$ -tags							
	Sum of $p_{\rm T}$ of two Higgs candidate jets and leading extra jet > $0.63 \times H_{\rm T,alljets}$							
	b-ta	agging : one or two small-R calor	imeter jets					
		Final discriminant = Dijet n	nass					
	$E_{\rm T}^{\rm miss} \ge 500 {\rm GeV}$	$p_{\rm T}(\mu, E_{\rm T}^{\rm mms}) \ge 500 {\rm ~GeV}$	$p_{\mathrm{T}}(\ell,\ell) \geq 500 \; \mathrm{GeV}$					
	$p_{\rm T}^{\rm miss,ux} > 30 {\rm GeV}$	$p_{\rm T}(\mu, \vec{p}_{\rm T}) > 30 \text{ GeV}$	-					
	$\min\left[\Delta\phi\left(E_{\rm T}^{\rm miss},\vec{p}_{\rm T}^{\prime}\right)\right]>\pi/9$	$\min\left[\Delta\phi\left(E_{\rm T}^{\rm miss},\vec{p}_{\rm T}^{\prime}\right)\right] > \pi/9$	-					
Merged	$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} ight) < \pi/2$	$\Delta \phi \left(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss,trk}} \right) < \pi/2$	—					
	Number of large- <i>R</i> jets ≥ 1							
	Veto on τ -lepton not associated to large-R jet							
	Veto on b -jets not associated to large- R jet							
	$H_{\rm T}$ -ratio selection (<0.57)							
	b-tagging : one or two ID track jets matched to large- R jet							
	Final discriminant = Large- <i>R</i> jet mass							

MonoHiggs (h → bb)

MonoHiggs (h → bb)

CMS analysis strategy

Data is selected and divided into two categories:

- 1. Results are derived by unbinned fits of a signal + background function to the m_{γ} in those categories.
- 2. The choice of the background function is performed by studying the bias on the number of events on toy simulated samples. Function presenting a bias lower than 0.2 (N_{fit} N_{sim}/ σ_{fit}) is used:

$$P(x) = \sum_{i=1}^{n} \beta_i x^{-\alpha_i}$$

3. Dominant uncertainties are the statistical uncertainties

2 σ excess if fitted intermediate p_T^{miss} category. Simultaneous fit, no excess

36

CMS signal acceptance

Low- $p_{\rm T}^{\rm miss}$ Efficiencies [%]									
m_A [GeV]	300			400	500	6	600	700	800
$m_{Z'}$ [GeV]									
600	2	2.9 ± 2.0 1		$.3 \pm 3.7$	-	-		-	-
800	0.	$.4\pm0.7$	0	$.7 \pm 1.0$	2.0 ± 1.6	7.2	± 3.0	-	-
1000	0.	$.1\pm0.4$	0	$.2 \pm 0.5$	0.3 ± 0.6	0.6	± 0.9	1.7 ± 1.5	4.7 ± 2.5
1200		/		/	0.1 ± 0.4	0.1 ± 0.4		0.2 ± 0.6	0.5 ± 0.9
1400		/		/	/		/	0.1 ± 0.3	0.1 ± 0.4
1700		/		/	/		/	/	/
2000		/		/	1		/	/	/
2500		/		/	/		/	/	/
				High-p	^{miss} Efficienc	ties [%	6]		
m_A [GeV]		300		400	500	6	600	700	800
$m_{Z'}$ [GeV]									
600	28	28.9 ± 5.4 1		1.9 ± 4.2	-	-		-	-
800	38	3.8 ± 5.8	37	7.0 ± 5.7	32.4 ± 5.5	23.0 ± 5.0		-	-
1000	42	2.6 ± 5.8	41	$.6 \pm 5.8$	40.4 ± 5.8	0.4 ± 5.8 38.4 ± 5		35.0 ± 5.6	29.3 ± 5.4
1200	45	5.2 ± 5.9	44	1.8 ± 5.9	43.5 ± 5.9	43.1 ± 5.9		41.8 ± 5.8	39.6 ± 5.8
1400	46	6.6 ± 5.9	46	5.5 ± 5.9	45.8 ± 5.9	45.9 ± 5.9		44.6 ± 5.9	43.9 ± 5.9
1700	48	3.0 ± 5.9	48	3.2 ± 5.9	47.8 ± 5.9	47.7 ± 5.9		47.2 ± 5.9	47.0 ± 5.9
2000	47	7.4 ± 5.9	47	7.7 ± 5.9	47.5 ± 5.9	47.7 ± 5.9		47.9 ± 5.9	48.5 ± 5.9
2500	45	5.9 ± 5.9	45	5.8 ± 5.9	45.9 ± 5.9	46.5 ± 5.9 4		46.9 ± 5.9	46.7 ± 5.9
	Ι	$m_{Z'}$ [GeV	/]	Low-p _T ^{mi}	ss Efficiencies	s [%]	High-	p _T ^{miss} Efficier	ncies [%]
	Ī	10	-	/ 1	6.6 ± 2.9			7.0 ± 3.0	
50		50			6.0 ± 2.8		5.6 ± 2.7		
$m_{\chi} = 1 \text{ GeV} _{10}^{10}$		100			6.4 ± 2.9		5.9 ± 2.8		
200		200		6.1 ± 2.8		7.1 ± 3.0			
500				7.5 ± 3.1		12.6 ± 3.9			
1000				5.4 ± 2.7		22.6 ± 4.9			
2000		2000			3.1 ± 2.1		32.0 ± 5.5		
10000		10000			1.0 ± 1.2			40.1 ± 5.8	

CMS results

No BSM signal is observed \rightarrow 95 % CL limits are derived

- 1. Z'-2HDM and Z'_{B} model are tested.
- 2. Z'-2HDM: $m_{z'}$ < 800 GeV and m_A < 300 GeV are excluded.
- 3. Z'_{B} : $m_{Z'}$ < 800 GeV are excluded for m_{DM} =1 GeV

Mono-jet

Other mono-X searches

Pseudo-scalar+2HDM

