The Hunt for Extra Higgs Bosons in the NMSSM

Ulrich Ellwanger Université Paris-Saclay, Orsay, France with Matías Rodríguez-Vázquez

December 14, 2017

	lwanger

Extra Higgs Bosons

The NMSSM: MSSM + an extra Singlet (Super-)Field \widehat{S}

- Solves the μ -problem of the MSSM:
 - $\langle S \rangle$ generates the required higgsino mass term
- Alleviates the tension related to the SM-like Higgs mass:
 - In the MSSM the tree level quartic Higgs coupling is bounded by the electroweak gauge couplings $\rightarrow M_H \leq M_Z \rightarrow$ need large radiative corrections
 - The extra singlet in the NMSSM generates an extra quartic Higgs coupling $\sim\lambda^2\to$ less radiative corrections required
- The "singlino" is a perfect dark matter candidate, good relic density compatible with its non-observation in direct and indirect searches

The Higgs Sector of the NMSSM: ("Higgs basis")

- \rightarrow An essentially SM-like H_{125} , up to mixing with H_{MSSM}/H_S
- → H_{MSSM} , a heavy approximately degenerate SU(2) doublet: neutral scalar + pseudoscalar + one charged state; heavy due to lower bounds on $M_{H^{\pm}}$ amongst others from $b \rightarrow s + \gamma$
- → Essentially singlet-like scalar H_S and pseudoscalar A_S, NOT degenerate in general, lighter or heavier than 125 GeV depending on unknown parameters

How to Search for H_S/A_S : Direct Production:

Rely on mixing $\sim \xi$ of H_S with H_{125} : Induces couplings of H_S to SM particles \rightarrow same production mechanisms but with smaller cross sections Mixing reduces these couplings of $H_{125} \rightarrow$ limited to $\xi^2 \leq 0.25$ (at present)

Summary of LEP search for a light scalar decaying into $b\bar{b}$ with reduced coupling ξ^2 to ZZ:

The region in the $\xi^2 - m_H$ plane below the black line is allowed \rightarrow Weak bounds for $M_{H_S} \sim 90 - 100$ GeV

95% CL limit on σ_{lid} · BR [fb]

Do the 8 TeV ATLAS/CMS searches touch possible values for $\sigma(ggF \rightarrow H_S \rightarrow \gamma\gamma)$ within the LEP-allowed NMSSM parameter space? (M. Rodríguez, U.E., JHEP 1602 (2016) 096): Red points: NMSSM-specific lift of $\Delta M_{Hos} > 12$ GeV

YES, the excess could be explained (if confirmed) ... but even light H_S states may have too small direct production cross sections for discovery, even at 13 TeV

Run I searches for $H_{125} \rightarrow A_S A_S (H_S H_S) \rightarrow 4$ leptons (From R. Aggleton et al., JHEP 1702 (2017) 035, arXiv:1609.06089)

Light green/blue points: viable in the NMSSM after LEP/LHC constraints \rightarrow These searches for H_S/A_S have only scratched the NMSSM parameter space ...

Ulrich Ellwanger

Extra Higgs Bosons

7 / 1

... and are limited to $M_{H_s,A_s} \lesssim 60$ GeV; how to search for heavier H_s/A_s ?

→ Note: the trilinear couplings $H_{MSSM}H_SH_{125}$, $A_{MSSM}A_SH_{125}$ are SU(2) invariant and can be large (proportional to a parameter A_{λ}), in contrast to $H_{MSSM}H_{125}H_{125}$, $H_{MSSM}H_SH_S$, ... which must be proportional to a SU(2) breaking vev × couplings

→ The $BRs(H_{MSSM}/A_{MSSM} \rightarrow H_{125}H_S/A_S)$ can be large ~ 50%, competing only with $H/A_{MSSM} \rightarrow t\bar{t}$, and reducing the BR for the search into $\tau\tau$!

 $ggF \rightarrow H_{MSSM} \rightarrow H_S H_{125}$ and $ggF \rightarrow A_{MSSM} \rightarrow A_S H_{125}$ look like resonant Higgs pair production, but with one SM Higgs replaced by H_S/A_S with unknown mass

A New Search: Look for $b\bar{b}b\bar{b}$ or $b\bar{b}\gamma\gamma$

with

- one $bar{b}$ or $\gamma\gamma$ pair: $M_{bar{b}/\gamma\gamma}\sim 125$ GeV,
- another $b\bar{b}$ or $\gamma\gamma$ pair: $M_{b\bar{b}/\gamma\gamma} \sim M_{H_S,A_S}$ (unknown),

•
$$M_{bar{b}bbar{b}}$$
 or $M_{bar{b}\gamma\gamma} \sim M_{H/A_{MSSM}}$ (unknown)

 $b\bar{b} au au$ final states are slightly less promising;

Best Strategy (M. Rodríguez, U.E., JHEP_072P_0817)

Borrowed from ATLAS/CMS searches for resonant SM Higgs pair production:

Do not just look for simultaneous bumps in $M_{b\bar{b}}$ (corresponding to M_{H_S}) and in $M_{b\bar{b}b\bar{b}}$ (corresponding to $M_{H_{MSSM}}$), but:

Use a "test" mass M_{H_s} ; for given M_{H_s} (or M_{A_s}):

- Optimize the cuts on p_T and the pairing of 4 *b*-tagged jets into 2 × 2 *b*-tagged jets: cut on *bb* masses arond 115 GeV and $M_{H_S} - 10$ GeV (allow for "losses" outside the R = 0.4 - jets)
- Only if M_{H_S} was chosen correctly, one observes a "bump" in $M_{b\bar{b}b\bar{b}}$ near $M_{H_{MSSM}}$ whose significance can be computed as function of M_{H_S} , $M_{H_{MSSM}}$ and notably the $\sigma(ggF \rightarrow H_{MSSM} \rightarrow H_{125} + H_S \rightarrow b\bar{b}b\bar{b})$

The dominant QCD backgrounds are multijets $b\bar{b}b\bar{b}$, $b\bar{b}c\bar{c}$ (mistagged), and a few % $t\bar{t}$.

Simulations are insufficient; the absolute scale should be obtained from sidebands as done by ATLAS/CMS in their search for Higgs pair production in ATL-CONF-2016-049, CMS-PAS-HIG-16-002

Here: Take $M_{H_S} \sim 125$ GeV, simulate multijets $(+ t\bar{t})$, apply ATLAS cuts, compare our simulated M_{4b} distribution to ATLAS data in their search for Higgs pair production, used as "sideband"

 \rightarrow Rescale the simulated M_{4b} distribution from multijets by a factor 1.55 \pm 0.27 (beyond a NLO K-factor 1.7): Approximately M_{4b} independent!

L.h.s.: M_{4b} distribution from MC vs. ATL-CONF-2016-049. R.h.s.: M_{4b} distribution from MC vs. ATL-CONF-2016-049 after rescaling

Subsequently: Rescale M_{4b} distributions from MC by 1.55 ± 0.27 for all M_{Hs}

Exp. sensitiv. to $\sigma(ggF \rightarrow H/A \rightarrow H_{SM} + H_S/A_S \rightarrow b\bar{b}b\bar{b})$ as function of M_{H_S} :

Upper left: $M_{H_{MSSM}} = 500$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Upper right: $M_{H_{MSSM}} = 750$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Lower left: $M_{H_{MSSM}} = 500$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Lower right: $M_{H_{MSSM}} = 750$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Blue: NMSSM points for H_S , Orange: NMSSM points for A_S

Exp. sensitiv. to $\sigma(ggF \rightarrow H/A \rightarrow H_{SM} + H_S/A_S \rightarrow b\bar{b}\gamma\gamma)$ as function of M_{H_S} :

Upper left: $M_{H_{MSSM}} = 425$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Upper right: $M_{H_{MSSM}} = 500$ GeV, 95% limits and 5 σ discovery for $L = 300 fb^{-1}$ Lower left: $M_{H_{MSSM}} = 425$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Lower right: $M_{H_{MSSM}} = 500$ GeV, 95% limits and 5 σ discovery for $L = 3000 fb^{-1}$ Blue: NMSSM points for H_S , Orange: NMSSM points for A_S

Ulrich Ellwanger

Extra Higgs Bosons

13 / 1

Conclusions

- The NMSSM contains a rich BSM Higgs sector which is hardly tested
- Mostly singlet-like scalars H_S (or A_S) are difficult to detect:
- If lighter than 60 GeV possibly via H_{125} decays; indirect constraints from SM-like signal rates of H_{125} notably $H_{125} \rightarrow Z^*Z$, many ongoing ATLAS/CMS studies on exotic Higgs decays
- If heavier than 60 GeV: $ggF \rightarrow H_S/A_S \rightarrow \gamma\gamma$ cross sections may be large enough if H_S/A_S mix considerably with H_{125} , H_{MSSM}/A_{MSSM} ; excesses near $M_{H_S} \sim 97$ GeV remain to be confirmed
- Searches for $H_{MSSM}/A_{MSSM} \rightarrow H_{125} + H_S/A_S$ in *bbbb* or *bb* $\gamma\gamma$ can even be sensitive to pure singlet-like H_S/A_S !
- Such decays would also reduce the branching ratio of H_{MSSM}/A_{MSSM} into the usually employed $\tau\tau$ channel \rightarrow alleviated limits!
- The proposed strategy allows to discover simultaneously H/A and H_S/A_S in any Two Higgs Doublet + Singlet model