The Hunt for Extra Higgs Bosons in the NMSSM

Ulrich Ellwanger
Université Paris-Saclay, Orsay, France with Matías Rodríguez-Vázquez

December 14, 2017

The NMSSM: MSSM + an extra Singlet (Super-)Field \widehat{S}

- Solves the μ-problem of the MSSM:
$\langle S\rangle$ generates the required higgsino mass term
- Alleviates the tension related to the SM-like Higgs mass:
- In the MSSM the tree level quartic Higgs coupling is bounded by the electroweak gauge couplings $\rightarrow M_{H} \leq M_{Z} \rightarrow$ need large radiative corrections
- The extra singlet in the NMSSM generates an extra quartic Higgs coupling $\sim \lambda^{2} \rightarrow$ less radiative corrections required
- The "singlino" is a perfect dark matter candidate, good relic density compatible with its non-observation in direct and indirect searches

The Higgs Sector of the NMSSM: ("Higgs basis")

\rightarrow An essentially SM-like H_{125}, up to mixing with $H_{M S S M} / H_{S}$
$\rightarrow H_{\text {MSSM }}$, a heavy approximately degenerate $\mathrm{SU}(2)$ doublet: neutral scalar + pseudoscalar + one charged state; heavy due to lower bounds on $M_{H^{ \pm}}$amongst others from $b \rightarrow s+\gamma$
\rightarrow Essentially singlet-like scalar H_{S} and pseudoscalar A_{S}, NOT degenerate in general, lighter or heavier than 125 GeV depending on unknown parameters

How to Search for H_{S} / A_{S} : Direct Production:

Rely on mixing $\sim \xi$ of H_{S} with H_{125} : Induces couplings of H_{S} to $S M$ particles \rightarrow same production mechanisms but with smaller cross sections Mixing reduces these couplings of $H_{125} \rightarrow$ limited to $\xi^{2} \lesssim 0.25$ (at present)

Summary of LEP search for a light scalar decaying into $b \bar{b}$ with reduced coupling ξ^{2} to $Z Z$:

The region in the $\xi^{2}-m_{H}$ plane below the black line is allowed \rightarrow Weak bounds for $M_{H_{S}} \sim 90-100 \mathrm{GeV}$

ATLAS and CMS searches for $g g F \rightarrow H_{S} \rightarrow \gamma \gamma$ at 8 TeV :
ATLAS, PRL 113 (2014) 17, 171801, 1407.6583
CMS-PAS-HIG-14-037

CMS search for $g g F \rightarrow H_{S} \rightarrow \gamma \gamma$ at 13 TeV :
(CMS PAS HIG-17-013)
\rightarrow Excesses near 97 GeV
(not confirmed by ATLAS)

Do the 8 TeV ATLAS/CMS searches touch possible values for $\sigma\left(g g F \rightarrow H_{S} \rightarrow \gamma \gamma\right)$ within the LEP-allowed NMSSM parameter space?
(M. Rodríguez, U.E., JHEP 1602 (2016) 096):

Red points: NMSSM-specific lift of $\Delta M_{H_{125}}>12 \mathrm{GeV}$

YES, the excess could be explained (if confirmed) ... but even light H_{S} states may have too small direct production cross sections for discovery, even at 13 TeV

Run I searches for $H_{125} \rightarrow A_{S} A_{S}\left(H_{S} H_{S}\right) \rightarrow 4$ leptons
(From R. Aggleton et al., JHEP 1702 (2017) 035, arXiv:1609.06089)
Observed exclusion limits $(\sqrt{s}=8 \mathrm{TeV})$

Light green/blue points: viable in the NMSSM after LEP/LHC constraints \rightarrow These searches for H_{S} / A_{S} have only scratched the NMSSM parameter space ...
... and are limited to $M_{H_{S}, A_{S}} \lesssim 60 \mathrm{GeV}$; how to search for heavier H_{S} / A_{S} ?
\rightarrow Note: the trilinear couplings $H_{M S S M} H_{S} H_{125}, A_{M S S M} A_{S} H_{125}$ are $\mathrm{SU}(2)$ invariant and can be large (proportional to a parameter A_{λ}), in contrast to $H_{M S S M} H_{125} H_{125}, H_{M S S M} H_{S} H_{S}, \ldots$ which must be proportional to a $\mathrm{SU}(2)$ breaking vev \times couplings
\rightarrow The $B R s\left(H_{M S S M} / A_{M S S M} \rightarrow H_{125} H_{S} / A_{S}\right)$ can be large $\sim 50 \%$, competing only with $H / A_{\text {MSSM }} \rightarrow t \bar{t}$, and reducing the $B R$ for the search into $\tau \tau$!
ggF $\rightarrow H_{\text {MSSM }} \rightarrow H_{S} H_{125}$ and $g g F \rightarrow A_{\text {MSSM }} \rightarrow A_{S} H_{125}$ look like resonant Higgs pair production, but with one SM Higgs replaced by H_{S} / A_{S} with unknown mass

A New Search: Look for $b \bar{b} b \bar{b}$ or $b \bar{b} \gamma \gamma$
with

- one $b \bar{b}$ or $\gamma \gamma$ pair: $M_{b \bar{b} / \gamma \gamma} \sim 125 \mathrm{GeV}$,
- another $b \bar{b}$ or $\gamma \gamma$ pair: $M_{b \bar{b} / \gamma \gamma} \sim M_{H_{s}, A_{s}}$ (unknown),
- $M_{b \bar{b} b \bar{b}}$ or $M_{b \bar{b} \gamma \gamma} \sim M_{H / A_{M S S M}}$ (unknown)
$b \bar{b} \tau \tau$ final states are slightly less promising;

Best Strategy (M. Rodríguez, U.E., JHEP_072P_0817)

Borrowed from ATLAS/CMS searches for resonant SM Higgs pair production:
Do not just look for simultaneous bumps in $M_{b \bar{b}}$ (corresponding to $M_{H_{s}}$) and in $M_{b \bar{b} b \bar{b}}$ (corresponding to $M_{H_{M S S M}}$), but:

Use a "test" mass $M_{H_{s}}$; for given $M_{H_{s}}\left(\right.$ or $M_{A_{S}}$):

- Optimize the cuts on p_{T} and the pairing of $4 b$-tagged jets into 2×2 b-tagged jets:
cut on $b b$ masses arond 115 GeV and $M_{H_{s}}-10 \mathrm{GeV}$ (allow for "losses" outside the $R=0.4$ - jets)
- Only if $M_{H_{s}}$ was chosen correctly, one observes a "bump" in $M_{b \bar{b} b \bar{b}}$ near $M_{H_{M S S M}}$ whose significance can be computed as function of $M_{H_{S}}, M_{H_{M S S M}}$ and notably the $\sigma\left(g g F \rightarrow H_{M S S M} \rightarrow H_{125}+H_{S} \rightarrow b \bar{b} b \bar{b}\right)$

Backorround

The dominant QCD backgrounds are multijets $b \bar{b} b \bar{b}, b \bar{b} c \bar{c}$ (mistagged), and a few $\% t \bar{t}$.

Simulations are insufficient; the absolute scale should be obtained from sidebands as done by ATLAS/CMS in their search for Higgs pair production in ATL-CONF-2016-049, CMS-PAS-HIG-16-002

Here: Take $M_{H_{s}} \sim 125 \mathrm{GeV}$, simulate multijets ($+t \bar{t}$), apply ATLAS cuts, compare our simulated $M_{4 b}$ distribution to ATLAS data in their search for Higgs pair production, used as "sideband"
\rightarrow Rescale the simulated $M_{4 b}$ distribution from multijets by a factor 1.55 ± 0.27 (beyond a NLO K-factor 1.7): Approximately $M_{4 b}$ independent!

L.h.s.: $M_{4 b}$ distribution from MC vs. ATL-CONF-2016-049.
R.h.s.: $M_{4 b}$ distribution from MC vs. ATL-CONF-2016-049 after rescaling

Subsequently: Rescale $M_{4 b}$ distributions from MC by 1.55 ± 0.27 for all $M_{H_{s}}$

Exp. sensitiv. to $\sigma\left(g g F \rightarrow H / A \rightarrow H_{S M}+H_{S} / A_{S} \rightarrow b \bar{b} b \bar{b}\right)$ as function of $M_{H_{S}}$: Upper left: $M_{H_{\text {MSSM }}}=500 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb} b^{-1}$ Upper right: $M_{H_{\text {MSSM }}}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb} b^{-1}$ Lower left: $M_{H_{M S S M}}=500 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Lower right: $M_{H_{\text {MSSM }}}=750 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Blue: NMSSM points for H_{S}, Orange: NMSSM points for A_{S}

Exp. sensitiv. to $\sigma\left(g g F \rightarrow H / A \rightarrow H_{S M}+H_{S} / A_{S} \rightarrow b \bar{b} \gamma \gamma\right)$ as function of $M_{H_{S}}$: Upper left: $M_{H_{\text {MSSM }}}=425 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 \mathrm{fb}^{-1}$ Upper right: $M_{H_{\text {MSSM }}}=500 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=300 f b^{-1}$ Lower left: $M_{H_{M S S M}}=425 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Lower right: $M_{H_{\text {MSSM }}}=500 \mathrm{GeV}, 95 \%$ limits and 5σ discovery for $L=3000 \mathrm{fb}^{-1}$ Blue: NMSSM points for H_{S}, Orange: NMSSM points for A_{S}

Conclusions

- The NMSSM contains a rich BSM Higgs sector which is hardly tested
- Mostly singlet-like scalars H_{S} (or A_{S}) are difficult to detect:
- If lighter than 60 GeV possibly via H_{125} decays; indirect constraints from SM-like signal rates of H_{125} notably $H_{125} \rightarrow Z^{*} Z$, many ongoing ATLAS/CMS studies on exotic Higgs decays
- If heavier than $60 \mathrm{GeV}: g g F \rightarrow H_{S} / A_{S} \rightarrow \gamma \gamma$ cross sections may be large enough if H_{S} / A_{S} mix considerably with $H_{125}, H_{\text {MSSM }} / A_{\text {MSSM }}$; excesses near $M_{H_{s}} \sim 97 \mathrm{GeV}$ remain to be confirmed
- Searches for $H_{\text {MSSM }} / A_{\text {MSSM }} \rightarrow H_{125}+H_{S} / A_{S}$ in $b b b b$ or $b b \gamma \gamma$ can even be sensitive to pure singlet-like H_{S} / A_{S} !
- Such decays would also reduce the branching ratio of $H_{\text {MSSM }} / A_{\text {MSSM }}$ into the usually employed $\tau \tau$ channel \rightarrow alleviated limits!
- The proposed strategy allows to discover simultaneously H / A and H_{S} / A_{S} in any Two Higgs Doublet + Singlet model

